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The function of antibodies, namely the identification and neutralization of pathogens, is
mediated by their antigen binding site (Fab). In contrast, the subsequent signal
transduction for activation of the immune system is mediated by the fragment
crystallizable (Fc) region, which interacts with receptors or other components of the
immune system, such as the complement system. This aspect of binding and interaction
is more precise, readjusted by covalently attached glycan structures close to the hinge
region of immunoglobulins (Ig). This fine-tuning of Ig and its actual state of knowledge is
the topic of this review. It describes the function of glycosylation at Ig in general and the
associated changes due to corresponding glycan structures. We discuss the functionality
of IgG glycosylation during different physiological statuses, like aging, lactation and
pathophysiological processes. Further, we point out what is known to date about Ig
glycosylation in farm animals and how new achievements in vaccination may contribute to
improved animal welfare.
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INTRODUCTION

Immunoglobulins (Ig) are essential players in the immune system. They recognize foreign molecules
via their antigen binding sites, which are located in the variable domain of the antigen binding
fragment (Fab) (Figure 1A). The recognition and binding of foreign molecules can induce several
different defense strategies. For instance, soluble molecules such as toxins can be agglutinated and/
or neutralized (Figure 1B). Furthermore, opsonization by Ig is an important process to counteract
the invasion of pathogens. The recognition of antigens on the surface of pathogens subsequently
initiate antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular
phagocytosis (ADCP), or a complement-dependent cytotoxicity (CDC) (Figure 1B). Each of
these three mechanisms is driven by an interaction of the fragment crystallizable (Fc) region
with receptors of an effector cell or members of the complement system.

Remarkably, such interactions with the Fc region are influenced by its glycosylation status. For
this reason, the detailed analysis of the glycosylation patterns of Igs during physiological and
pathophysiological processes and the knowledge of the glycan-dependent functionality of Igs in
mice and humans are increasingly being explored. However, very little is known about the
org October 2021 | Volume 12 | Article 7532941
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glycosylation patterns of Igs in other mammals, such as farm
animals. This is surprising given that an optimal functioning
adaptive immune system is essential to ensure the health and
welfare of animals.

This review gives a general overview of Ig glycosylation and
its effect on the mechanisms of the adaptive immune system with
the aim to demonstrate how Ig glycosylation has the potential to
support the health and welfare of farm animals.
GLYCOSYLATION OF IG

In eukaryotes, the majority of extracellular proteins is
glycosylated (1). This post-translational modification of
proteins is important to initiate cellular processes, such as
recognition, communication, differentiating and binding
events. Remarkably, the glycosylation status of proteins
depends on several aspects. Firstly, within the animal kingdom,
significant differences in the glycosylation machinery exist; for
example, enzymes that are necessary for the synthesis and
utilization of monosaccharides are species dependent, so that
one and the same protein can be decorated with various glycan
structures. Furthermore, the cell type, its differentiation state,
and its metabolism status have an impact on the glycosylation
patterns. Therefore, different physiological and pathological
conditions frequently come with an altered glycosylation
status. The most prominent forms of protein-glycosylations are
the N- and the O-glycosylation.

In the case of N-glycosylation, a precursor structure is co-
translational transferred to an asparagine (Asn) residue of the
nascent protein in the endoplasmic reticulum. The Asn must be
Frontiers in Immunology | www.frontiersin.org 2
part of the amino acid sequon Asn-X-Ser/Thr, whereby X can be
any amino acid with the exception of proline. Thereafter, N-
glycan processing starts, which includes numerous possible
trimming and elongation events in the endoplasmic reticulum
and Golgi apparatus (see Supplemental Figure S1 for more
information). Approximately 70% of all proteins carry one or
more potential N-glycosylation sites (1). Further, Igs have several
N-glycosylation sites (2). The number and positions differ
between the individual Ig-classes and subtypes (Figure 2). For
example, all IgG molecules are generally N-glycosylated in the Fc
region at the conserved Asn297 (Figure 2A). Approximately 15-
25% are additional N-glycosylated at the Fab region. However,
no conserved N-glycosylation site exists in the Fab region (3).
Altogether, N-glycans approximately account for 2-3% of their
molecular weight. In contrast to IgG, the Ig-classes IgM, IgD and
IgE contain significantly more conserved N-glycosylation sites
and are much more N-glycosylated (~12-14% of the molecular
weight) (2).

Besides N-glycans, Igs can also contain O-glycans (Figure 2).
O-glycans are attached to the oxygen atom of serine (Ser) or
threonine (Thr) residues. In contrast to N-glycosylation sites, no
specific sequon exists and, thus, O-glycosylation sites are difficult
to predict. To date, little is known about the impact of O-glycans
on the functionality of Igs. For this reason, the review is focused
on the structure and mode of action of N-glycans on Igs.

Commonly, Igs are primarily decorated with complex N-
glycans, but oligomannose and hybrid N-glycans can also be
present (Figure 3A). In Figure 3B, for example, common N-
glycans at Asn297 of human IgG are displayed, which frequently
contain core fucose, bisecting N-acetylglucosamine (GlcNAc),
galactose (Gal), and N-acetylneuraminic acid (Neu5Ac) residues.
A B

FIGURE 1 | Immunoglobulin: schematic structure and how they activate the immune system. (A) A common IgG structure consisting of two heavy chain (dark blue)
with three constant (Cg1-3) and one variable domain (VH) and two light chain (light blue) with one constant (CL) and one variable domain (VL). The heavy and light
chains are covalently connected by disulfide bonds. The IgG is further subdivided in the antigen binding fragment (Fab) and fragment crystallisable (Fc). (B) Activation
of the immune system by antibodies. Left column: Ig can neutralize soluble molecules, e.g. bacteria toxins, to protect endogenous cells. Middle column: The binding
of Ig to virus or bacteria antigens is called opsonisation. Right column: Ig bound to pathogens can activate the complement. Complement factors C1q recognize Ig
and induce the complement cascade; a membrane attack complex (MAC) is formed in the end. In the end, macrophages or neutrophils phagocytose the complex of
Ig with either soluble molecules or bacteria or, additionally, with the components of the complement. Created with BioRender.com.
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Oligomannose structures are mainly located in the Fab region of
IgG (5). Overall, it appears that the heterogeneity of the glycan
structures is higher in the Fab region (5).

Glycans not only contribute to an altered molecular weight
but also change the structural conformation (Figure 4). The
presence of glycans at Asn297 within CH2 of Fc entails an “open”
conformation (Figure 4A top), while enzymatic deglycosylation
leads to a “closed” structure instead (6). Further, it is being
explored whether distinct sugars, like sialic acid, induce
additional conformational changes of the CH2 of Fc (7–9).
Sondermann et al. described that the addition of sialic acid
leads to a more “closed” Fc structure as compared to the
Frontiers in Immunology | www.frontiersin.org 3
presence of other glycan species or desialylated glycans
(bottom in Figure 4A). Similar results were obtained by
Ahmed et al. (8). In this review, the PDB structures used by
Sondermann et al. and those generated by Ahmed et al. were
aligned in order to compare the structural conformation. Five Fc
regions are overlaid in Figure 4B, and their structures are related
depending on the conformation between “open” and “closed”.
Their glycans, which were present and obtained during the
structural characterization, are given below the corresponding
PDB entry. This comparison shows that the presence of sugar
residues, like sialic acid and fucose, lead to closer Fc
conformation. However, it has to be mentioned that, in fluids,
FIGURE 2 | Overview of glycosylation sites of different Ig: IgA, IgG. IgM, IgD, and IgE in individual colors. The bright color illustrates the light chain, the dark color the
heavy chain. The grey lines indicate disulphide bridges. Created with BioRender.com.
A B

FIGURE 3 | N-Glycans. (A) general types of N-glycans; all of them have a common core structure, highlighted with a square (1). (B) Commonly abundant glycans of
human IgG, grouped by glycan affiliation. The N-glycans were created using GlycoWorkbench 2.1 (4) and arranged with BioRender.com.
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molecules are flexible and glycans significantly increase
structural variations, which cannot be completely reproduced
when the crystal structures are obtained. Therefore, molecular
dynamic tools have to be applied. Frank et al. analyzed Fc
structures using such a strategy and observed high flexibility of
both the glycans and the CH2 of Fc (10). Nevertheless, whether
and to what extent different glycan patterns contribute not only
to structural changes but also to the functionality of IgGs is
under discussion.

The Impact of Glycosylation on the
Functionality of Igs
Among other mechanisms of the immune system, Igs mediate an
immune response through the complement system. The classical
pathway of the complement system is activated when the C1-
complex molecule C1q binds to IgGs or IgM, which recognize an
antigen on the cell membrane. The Ig/C1q complex induces a
cascade of enzymatic reactions, leading to the formation of the
membrane attack complex (MAC) and, thus, perforation of
cellular membranes. Remarkably, the interaction with C1q is
modulated by N-glycans of IgG1 at Asn297 (11). For instance,
terminal galactose increases the binding to C1q (examples for
different N-glycans are shown in Figure 3A). The observed effects
might be the result of a changed 3D structure of the Fc region, as
displayed inFigure4. Thus,N-glycans seems to influenceone of the
key mechanisms of the classical complement pathway.

Moreover, the lectin complement pathway can be induced if
agalactosylated N-glycans are present on IgG. Typically, this
pathway is initiated by the binding of mannan-binding protein
Frontiers in Immunology | www.frontiersin.org 4
(MBP) to oligomannose on the cell surface of pathogens. Via the
MBP associated serine protease (MASP) an activation of the
complement system is initiated. Malhotra et al. observed that
agalactosyl N-glycans on IgG are also recognized by MBP,
leading to an activation of the lectin complement pathway (12)
(Figure 5A). Interestingly, these same glycan structures
(mannose or GlcNAc residues) are also recognized by the
mannose binding receptor (CD 206). This receptor is
expressed in macrophages and dendritic cells (13). The binding
of CD 206 to agalactosylated IgGs results in their uptake.

Further immunomodulatory interaction partners of Igs are
their related Fc receptors (FcR). The major classes of Fc receptors
are Fc-gamma receptors (FcgR), FcaR, FcϵR, and FcmR, which
bind IgG, IgA, IgE, and IgM, respectively. FcmR recognize IgA
molecules in addition to IgM, although with a lower affinity.
Besides the extracellular Ig binding domain, Fc receptors may
intracellularly have an activating or inhibitory motif, namely the
immunoreceptor tyrosine-based activation motif (ITAM) (e.g.
FcgRI, FcgRIIa, FcgRIIc, FcgRIIIa) or the immunoreceptor
tyrosine-based inhibitory motif (ITIM) (e.g. FcgRIIb).
Interestingly, the removal of N-glycans from the Fc region of
IgG significantly reduces their binding to FcgR and, thus, their
effector functions (14–16) (Figure 5B). However, further
structural changes alter the IgG/FcgR interplay. For instance,
removal of core fucose enhance the monocyte, macrophages,
granulocyte, and natural killer cells mediated ADCC (17–19).
Moreover, defucosylated IgGs have a higher affinity to FcgRIIIa,
resulting in improved effector functions (18, 20, 21) (Figure 5A).
FcgRIIIa and FcgRIIIb are also glycoproteins, and their N-
A B

FIGURE 4 | Glycosylation-induced conformational changes. (A) Schematic model of the IgG Fc structure with or without glycans. Top: Glycan structures by self-
induce conformational changes, resulting in an “open” structure. The de-glycosylated Fc have a “closed” structure instead. Bottom: Suggested model for individual
glycan-induced conformational changes. Different glycan structures are discussed to influence the distance between the Cg2 domains. E.g., sialylated (G2FS2) glycans
lead to a sterically closer conformation of Cg2 to each other. Created with BioRender.com (B) Superpose of different Fc structures. The PDB entries correspond to the
colour code in the cartoon- and tube-styled structures; additionally, their glycan structures are given. The structures were classified as “open” and “closed” conformation.
The structures were superimposed using YASARA. The N-glycans were created using GlycoWorkbench 2.1 (4).
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glycans at Asn162 are involved in binding with IgG via an direct
interaction with N-glycans of the IgG at the Fc Asn297 (22). It
seems that a core fucose at the Fc Asn297 inhibit this glycan-
glycan interaction and reduces the affinity toward FcgRIIIa (23).

Also, sialic acid plays a key role in FcR mediated signaling.
Terminal a2,6-linked Neu5Ac has an anti-inflammatory
function (24). The presence of Neu5Ac reduces the binding to
activating FcgR, and this interaction subsequently leads to
increased expression of inhibitory FcgRIIb (25, 26)
(Figure 5C). It is under debate whether the interaction of FcgR
is reduced to sialylated IgG and the binding of CD23/DC-SIGN
to IgG is increased instead (27, 28). A recent study investigated
the binding of human sialylated IgG to cells expressing CD23 or
DC-SIGN (29). It could not verify the binding of Fc- or Fab-
sialylated IgG to one of the proteins. Crispin et al. could also not
verify the binding of IgG Fc to DC-SIGN (9, 30). The impact of
sialylation was also investigated in the case of IgM. For instance,
sialic acid residues on glycans of IgM induce its internalization in
T cells and a subsequent suppression of T-cell responses (31).
This effect could be counteracted by desialylation and might be
the result of a reduced binding affinity of FcmR for asialylated
IgM (Figure 5D). Furthermore, the activity of IgE is influenced
by its sialylation status (32). This type of Ig plays a crucial role in
type 1 hypersensitivity. After exposure to allergens, cross-linked
IgE activate basophil and/or mast cells, leading to their activation
and the release of inflammatory mediators, such as histamine
Frontiers in Immunology | www.frontiersin.org 5
(33). Interestingly, the amount of IgE present seems to be less
important than the grade of IgE-sialylation to the extent of
reaction (32). There are hints that the activation of FceRI is
less efficient when asialylated IgE is bound. However, the exact
mechanism is still not fully understood (Figure 5E).

These examples demonstrate that the N-glycan structures of
Igs significantly influence their immunomodulatory capacities,
which explains the rapidly growing interest in glycan-mediated
mechanisms in different areas of life sciences and medicine
during the last decade.

Aging
One of these scientific fields is aging, since the adaptive immune
systems undergoes several changes during aging. Newborn
mammals receive their first Igs from their mother. In humans
and other mammals with a hemochorial placenta, such as
rodents and primates, IgG can pass through the placenta
barrier. As a consequence, offsprings are already equipped with
IgG during pregnancy. Since, during pregnancy, IgG Fc N-
glycans become significantly more galactosylated, sialylated,
and less bisected (34), comparable glycosylation patterns can
be observed in newborns (Figure 6). This glycosylation status of
IgGs relates to the anti-inflammatory character of IgG (24). The
increase of anti-inflammatory Igs might be necessary to suppress
possible immune reactions between the unborn baby and the
mother during pregnancy (35). When children begin to produce
A B

D E

C

FIGURE 5 | Overview of selected properties of Ig that are affected by glycosylation. (A) Mannan-binding protein (MBP) binds G0 glycan structures of IgG and
induces the lectin complement pathway. (B) FcgR bind better to glycosylated Fc as compared to de-glycosylated Fc. (C) Sialylated IgG has an anti-inflammatory
effect. (D) Sialylated IgM are internalized by T-cells, leading to a reduced T-cell response. (E) Un-sialylated IgE activates FcϵR less efficient than sialylated IgE.
Created with BioRender.com.
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endogenous IgG, an altered glycosylation can be observed
(Figure 6). Digalactosylated N-glycans decrease, but the level
of monogalactosylated structures remains stable (35). Thus, in
sum, the ratio of N-glycans with at least one galactose residue
stays constant. In contrast, the status fucosylation and sialylation
decreases and that of bisecting N-glycans increase (35). However,
from the age of 40, the level of IgG galactosylation decreases
(36, 39).

Moreover, the glycosylation of the Fab region was
investigated in this context. Interestingly, during pregnancy,
the glycosylation status of the IgG Fab region changes as well
(5). These alterations were much more heterogeneous and
different as compared to Fc glycosylation. For example, the
percentage of monosialylated structures at Fc increases slightly
during pregnancy and decreases after delivery. The opposite was
observed at the Fab. Here, the monosialylated structures stay
nearly at the same level during pregnancy and their amount
increases after delivery. This fine-tuning of the glycosylation
seems to regulate the effectiveness of IgGs during different
physiological conditions, such as pregnancy or childhood.

Ig Glycosylation Status During Lactation
As mentioned above, in species with a hemochorial placenta,
such as rodents, primates, and humans, IgG can pass through the
placenta barrier to equip offspring with Ig, whereas species with
an epitheliochorial placenta, like ruminants, horses and pigs, are
not able to transfer Ig via the umbilical cord. In these animals,
the source of the first Igs is the colostrum. For instance, the gut of
calves and piglets allows an unselective transition of proteins into
blood circulation, approximately within the first 12-36 h
postpartum. Calves and piglets that do not receive colostrum
within the first 12 h have, for instance, reduced weight and
increased mortality rates (40), and the administration of
colostrum to calves within the first weeks of life reduces
diarrheic disease (41). Thus, colostrum represents an essential
Frontiers in Immunology | www.frontiersin.org 6
source for Igs in farm animals, such as pigs and cows. However,
Igs in matured milk also are important biomolecules to prevent
pathogen invasion and to support the health of calves and piglets
during their suckling period. This is also the case in species with a
hemochorial placenta, such as humans. The major classes of Ig in
milk are IgG, the secretory IgA (sIgA), and IgM. Their
concentration varies during the lactation period (see Table 1)
and is species and probably also breed-specific.

There are several examples showing the importance of Ig
glycans for the prevention of pathological bacteria in human.
The members of the family Enterobacteriaceae, for instance, have
Type 1 fimbriae on their surface with an adhesin that possesses
mannose-specific lectin-like properties. This allows the bacteria
to adhere to nasopharynx or colonic epithelial cells. After
adhesion, they subsequently spread in the blood stream. The
incubation of these bacteria with isolated secretory IgA (sIgA)
from human milk leads to their agglutination, thus, their ability
to bind to epithelial cells is inhibited (44). This is possible
because glycans at the sIgA-Fc contain glycan structures with
terminal mannose residues, which can bind using their fimbriae.
Figure 7 displays a schematic illustration of sIgA. Its specific
joining chain (~16 kDa) connects the IgA dimers, and sIgA is
associated with the secretory component (~75 kDa) that is
additionally involved in the transport of IgA across epithelial
cells. This transport is important to allow a transfer from the
blood into milk. Usually, the secretory component shields these
truncated glycan structures. However, acidic conditions in the
digestive tract can disrupt the interaction between the secretory
component and sIgA and enable the presentation of these sIgA
glycans to bacteria (45) (Figure 7).

Furthermore, the S-fimbriated E. coli adhere to terminal
Neu5Ac(a2,3)Gal at buccal epithelial cells and can induce
neonate meningitis and sepsis. This interaction can be
competitively inhibited by soluble glycans or glycoproteins,
including sIgA from the human colostrum, which reduces the
FIGURE 6 | Changes of glycosylation status of IgG at Fc during ontogenesis. A schematic illustration of the relative ratios of various glycan structures and their
changes over different ages are shown. For glycan structures examples and color codes, see Figure 3B. Further details are given in the main text. 1 (35), ² (36, 37),
³ (38). UC – samples from umbilical cord. Created with BioRender.com.
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binding of E. coli to the host cells (47). The motif Neu5Ac(a2,3)
Gal is also a common terminal structure of N-glycan on IgG.
Thus, these antibodies might also act as competitors against
bacterial adherence via their glycans. Moreover, Hanisch et al.
demonstrated a strong interaction of S-fimbriae with N-
glycolylneuraminic acid (Neu5Gc) (48). This sialic acid is
usually not found in humans but in farm animals, like
donkeys, cows, and pigs, and might prevent bacterial
adherence and, thereby, an infection in their offspring.

Interestingly, a recent study detected Neu5Gc on glycans of
sIgA in donkey milk (46). The milk sample was from an animal
in the mid-lactating stage. They detected 5 N-glycosylation sites
at the secretory component (N83LT, N135GT, N291QT, N423GT,
and N530LT), two sites at the heavy chain of IgA (N139AS,
N338VS [according to UniProt: N134AS, N333VS]), and one at
the joining chain (N72IS). Furthermore, several O-glycans were
present at the hinge region. The detected N-glycans were very
heterogenic and included several fucosylated and sialylated
structures with Neu5Ac as well as Neu5Gc. In addition,
oligomannose N-glycans were present at the Fc region on
Asn291 (46). It would be interesting if comparable inhibitory
results can be achieved in relation to the adhesion of bacteria, as
Frontiers in Immunology | www.frontiersin.org 7
shown for sIgA from human milk. With the remarkable
exception of Neu5Gc containing N-glycans, several of the
glycan structures are comparable.

In bovine milk, primarily, the glycosylation status of IgG was
analyzed, representing the main Ig class in bovine milk (Table 1)
(42, 43, 49, 50). In two studies, the composition of glycans from
bovine milk at different time points of lactation period were
examined. Feeney et al. investigated the IgG specific glycans by
lectin-array assays at day 1, 2, 3, and 10 after birth (50). Takimori
et al. determined the amount of IgG and its glycosylation status
at the 1st day and 1st, 2nd 3rd as well as 4th week postpartum using
MALDI-TOF MS (49). In this way, the short and longer term
changes can be characterized. The biggest difference was
observed in the sialylation of glycans (Figure 8) (50). The
highest amount of sialylated glycans was detected in the
colostrum, which rapidly decreases within the first three days
(50). After 10 days, Neu5Ac is no longer detectable and only
minor amounts of Neu5Gc are present. These results are in line
with those of Takimori et al., who found that 50% of all IgG-
glycans in the colostrum were sialylated. After 7 days, these
sialylated structures were almost absent (49). Interestingly, the
sialylated structures were only located at the Fc but not at the Fab
TABLE 1 | Species dependent Ig amounts in colostrum and milk.

Species Ig Colostrum [mg/ml] Mature milk [mg/ml] Reference

H. Sapiens (human) IgG 0.4 0.04 (42)
IgM 0.3 0.03 (42)
IgA 6-40 0.26-1.8 (42)

B. taurus (cattle) IgG 15-180 0,5 (42)
IgM 3-5 0.04 (42)
IgA 1-6 0.05 -0.1 (42)

O. aries (sheep) IgG 94-162 1 (43)
IgM 1.3-21.2 0.2 (43)
IgA 3.5 0.2 (43)

E. ferus (horse) IgG1/IgG2 (IgGa) 82 0.2 (43)
IgG4/IgG5 (IgGb) 183 0.3 (43)
IgG3/IgG5 [IgG[T)] 44 0.1 (43)

IgM 2.3 0.07 (43)
IgA 9 0.7 (43)

S. scofa d. (pig) IgG 618 1.6 (43)
IgM 3.8 1.5 (43)
IgA 11.3 4.3 (43)
October 2021 | Volume 12 | Art
FIGURE 7 | Schematic representation of a human secretory IgA subtype 2 (sIgA2). All components and possible glycosylation sites of sIGA2 as well as the changes
occurring under acidic conditions are shown. The IgA dimer compose of four heavy chains (orange and yellow Ca1-3 and VH), four light chains (red and pastel-red), and
a joining chain (J chain in dark blue) that connects dimers and a secretory component (blue I-V) by disulfide bridges (brown line) (45, 46). Created with BioRender.com.
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fragment. Further, they investigated the glyosidic linkage
between Neu5Ac and Gal using MALDI-TOF MS, which was
in most cases a2,6-linkages. Feeney et al. used lectins to
determine the linkage. The lectin MAA (from Maackia
amurensis) detects mainly a2,3-linked Neu5Ac, whereas SNA
(from Sambucus nigra) preferentially binds a2,6-linked Neu5Ac
residues. The signal intensity using SNA indicated a higher
abundance of a2,6-linked Neu5Ac residues, which is also in
line with the results of Takimori et al. (49, 50) and suggest that,
during first days of lactation, higher amounts of anti-
inflammatory IgGs are present in bovine milk (24, 51, 52). In
contrast to the sialylation status, the amounts of fucose and
galactose residues at IgG stay constant within the first three days
of lactation and slightly increase at day 10 (Figure 8) (50).
GlcNAc and Man are stable throughout the first 10 days. The
roles of individual glycan structures on IgG in milk are unknown.
In Takimnori et al.’s study, the glycosylation status does not
influence the binding to FcRn (49).

The results of Feeney et al. were obtained using the milk of
Holstein Frisian cows representing high-performance dairy cows
(50). The breed used by Takimori et al. was unfortunately not
named. Breeds with lower level of milk production might have
another glycosylation status during lactation. The few existing
studies on buffalo milk could provide a first clue here. Two
studies analyzed the glycan patterns of IgG in buffalo (Bubalus
bubalis) milk at one single time point during lactation. The work
of Bhanu et al. investigated a colostrum sample, and the work of
Jineshet analyzed milk 14 days after parturition (53, 54). Bhanu
et al. identified 54 different N-glycans, including oligomannose,
neutral complex, and hybrid N-glycans, in addition to sialylated
N-glycans (Neu5Ac and Neu5Gc). More than 20 of these glycans
were fucosylated and the oligomannose N-glycans represented
only a marginal ratio. However, the amount of sialylated N-
glycans outweighed that of neutral structures. The high amount
Frontiers in Immunology | www.frontiersin.org 8
of sialylated and low amounts of fucosylated N-glycans are
comparable to the results of Feeney et al. using bovine
colostrum (50). The analysis of buffalo IgG glycans in mature
milk (from day 10 of lactation) revealed the following
distribution: 14% sialylated, 19% bisecting and 34% fucosylated
glycans (54). However, in contrast to mature bovine milk, in
which Neu5Ac was not detectable and only minor amounts of
Neu5Gc were present, in buffalo milk, significant amounts of
Neu5Ac and Neu5Gc were also detectable on day 14 of lactation
(54). Thus, the dramatic loss of sialylated N-glycans does not
take place in buffalo milk. Whether this glycosylation allows a
broader panel of immunomodulatory mechanism is unknown so
far. Nevertheless, the studies demonstrate that striking
differences between various animal species exist.
RELATION BETWEEN IGG
GLYCOSYLATION AND
PATHOPHYSIOLOGY

Notably, the glycosylation patterns of Igs change also during
pathophysiological processes. Previous studies indicate that
glycosylation patterns alter during inflammatory processes like
alloimmune thrombocytopenia (55) and active infections with
pathogens such as HIV (56) or tuberculosis (57). On the other
hand, changed glycosylation patterns can be detected in patients
with chronic diseases like inflammatory bowl disease (58);
autoimmune diseases like rheumatoid arthritis (RA) (59) and
systemic lupus erythematosis (60); and neurological disorders
such as multiple sclerosis (61, 62), Alzheimer’s disease (63), or
Myasthenia gravis (64). In chronic diseases, it is mostly unknown
where these changes come from and what their cause is. It is
important to investigate whether pathological effects lead to an
altered glycosylation or an altered glycosylation leads to
FIGURE 8 | Monosaccharide composition during lactation from day 1-10. 1 mg IgG were analyzed at each time point. The monosaccharides ratios were calculated
to 1 mol Man. Values are from (50).
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pathological effects. In the latter case, it would be necessary to
examine the cause for a changed glycosylation. This knowledge
would be helpful to treat the diseases properly.

However, in some cases, such as RA, first insights have been
described. About 0.5-1% percent of adults are affected by RA
(65). Women are affected three times as often as men (66).
Increased incidences of agalactosylated antibodies were earlier
associated with higher disease activity (67). In 75-90% of
patients, the disease activity reduces during pregnancy and
increases again after delivery (68). As described above,
pregnancy comes with changes in the glycosylation of
antibodies. One study determining the glycosylation status
during pregnancy revealed altered galactosylation and
sialylation at the Fc of IgG (69). Furthermore, significant
changes in bisecting N-glycans and fucosylation were observed
for several IgG subclasses (69). Other studies have investigated
the N-glycans of proteins from the whole serum and observed,
for instance, decreased bisection N-glycans but an increase of
galactosylation (70, 71). Reduced levels of pro-inflammatory
bisection N-glycans, for instance, suggest an association with
the reduced disease activity of RA patients during pregnancy.

In sum, a number of examples demonstrate that, in humans,
sialylated N-glycans on IgG lead to immunosuppressive effects,
whereas high levels of IgG without terminal sialic acid, galactose,
and fucose residues but carrying bisecting N-glycans enhance
inflammatory disorders and their severity. Thus, it is surprising
that, with farm animals, studies investigating potential alteration
in the glycosylation status of Ig during various physiological and
pathophysiological processes are rare or completely missing so
far. Knowledge about such glycan-dependent mechanisms might
help develop novel strategies to increase welfare of farm animals.

Vaccination Induced Immunization and Its
Impact on Glycosylation of Ig
Since lack of terminal sialic acid, galactose, and fucose residues
on N-glycans of the Fc region and higher amounts bisecting N-
glycans increases the inflammatory capacity of IgGs, such
glycosylation patterns are preferred after vaccination against
pathogens (72). Bartsch et al. (73) recently examined how
adjuvants influence the glycosylation of IgG with a special
focus on sialic acid and galactose residues. In this study, mice
were immunized for the first time with 100 µg ovalbumin (Ova)
with different adjuvants and boosted second time with an Ova-
PBS solution. The applied adjuvants included, among others,
incomplete Freund adjuvant (IFA), complete Freund adjuvant
(CFA), and alum. Interestingly, remarkable differences were
found concerning the glycosylation of IgG. The application of
eCFA (enriched CFA), IFA, and Montanide led to a significant
reduction of galactosylation and sialylation. This effect was
noticeably weaker when the adjuvants Alum, Adju-Phos,
AddaVax, LPS, MPLA, R848, Poly (I:C) were applied. It should
be noted that the stronger effectors - eCFA, IFA and Montanide -
are “water in oil adjuvants”. The highest impact of all tested
adjuvants were observed when eCFA was used. CFA was
enriched with heat-killed Mycobacterium tuberculosis (Mtb).
The effects might be mediated by the cord factor (glycolipid
trehalose dimycolate) in Mtb extracts (57, 74). Whether
Frontiers in Immunology | www.frontiersin.org 9
comparable effects can be also achieved in farm animals
is unknown.

Glycoengineered Monoclonal Antibodies
Monoclonal antibodies (mAb) are an important and growing
group of biotherapeutics for the treatment of cancer and chronic
diseases. The Food and Drug Administration (FDA) approved
more than 60 different mAbs and fusion molecules in the last few
decades, which target in the most cases cancer cells (75). An
optimized glycosylation has also already moved into the focus for
therapeutic treatments with mAb. As mentioned above, the
glycosylation status depends on many physiological conditions
within an organism. Consequently, the glycosylation status is
significantly influenced by the incubation and growing
conditions of the IgG-producing cells and their genotype. To
get a defined glycosylation pattern, the glycosylation-machinery
of a cell lines can be manipulated using knock-out or knock-in
strategies. For example, to obtain mAbs with nonfucosylated
glycan structures, it is possible to knock out the a-1,6-
fucosyltransferase (FUT8) (76) or overexpress b1,4-N-
acetylglucosaminyltransferase III (GnTIII) (77). GnTIII
catalyzes the addition of bisecting GlcNAc, which subsequently
inhibits core-fucosylation. In both cases, the unfucosylated mAbs
would enhance the ADCC, for example (17–19). Another option
is to treat the mAbs in vitro using glycosidases. For instance,
sialidases and galactosidases can be used to release sialic acid and
galactose residues to obtain proinflammatory sets of antibodies
(78). Consequently, the glycoengineering of therapeutic Abs is a
powerful strategy to significantly improve their targeted
application, such as with passive immunization.

Avian Egg Yolk Antibodies (IgY)
A further interesting type of antibody is the avian IgY. These Igs
are of importance in various scientific fields. The number of
publications l isted on PubMed under the keyword
“immunoglobulin y” increased steadily in the last years (see
Figure 9A). Among others, it is gaining great interest for its
application as a potential tool in diagnostic, therapeutic and
biotechnology, since IgYs formed in poultry are very specific
against mammalian proteins and have a high binding affinity.
This is based on the phylogenetic distance between birds and
mammals, thus, immunization works very well (79–82). The
production of IgY is a further advantage. IgY can be easily
isolated from the egg yolks of one and the same chicken. This
is a non-invasive method and no blood has to be taken from
the animals.

Compared to the mammalian IgG the avian IgY has one more
constant domain in the heavy chain (CH3) and no hinge region.
Further, there are two potential N-glycosylation sites. One at the
CH2 and one at CH3 domain (83) (see Figure 9B). The analysis of
the glycosylation status of IgY revealed mainly two types of N-
glycans: oligomannose and complex type (see Figure 3A) with
37.2% and 62.8% respectively (83). Other studies detected also
few hybrid glycans types at IgY (84, 85). The main structures,
which were detected, in addition to their distribution are listed in
Table 2. The CH3 domains contain only oligomannose structures,
and the CH2 domain only complex-type structures (83).
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Further studies confirmed these results (85). For instance, Gilgunn
et al. find on IgY originating from serum mainly complex, bi-, tri-
and tetra-antennary glycans, which were partially bisected,
fucosylated and sialylated. Besides these complex and high
mannose structures, also hybrid structures were detected.
Surprisingly, the impact of the glycosylation status on the
activation of the host immune system and regulatory as well as
signalling pathways have not been investigated so far and might
represent a novel immunomodulatory tool improve animal
welfare in poultry farming.
CONCLUSION AND OUTLOOK

The outlined importance of N-glycans for the structure of Igs
and the resulting immunomodulatory capacities explain the
rapidly growing interest in glycan-mediated mechanisms
during the last decade and the application of highly defined
glycoengineered Ig in human medicine (75–77). Thus, it is even
more surprising that, in veterinary medicine, such studies are still
limited or completely missed.

It would be interesting to determine, whether feeding, social
environment and vaccination have an impact on the Ig
glycosylation status, since these factors influence the general
metabolism of the animals. In addition, the knowledge of the
relationship and influence of different adjuvants on vaccination
success might increase the protection of farm animals against
pathogens. Moreover, in the case of maternal vaccination, the
offspring would be better protected during lactation, when milk
Frontiers in Immunology | www.frontiersin.org 10
IgGs contain optimized glycosylation patterns. The offspring of
species with a hemochorial placenta, like humans, primates and
rodents benefit during the pregnancy by a passive immunization,
because here IgG can pass the blood-placenta barrier and protect
the offspring. Species with an epitheliochorial placenta, like
ruminants, including cattle, pigs, goat and sheep, but also
horses, whales, and lower primates are not able to immunize
their offspring passively through the placenta. Newborns of these
species especially depends on a passive immunization from milk.
Therefore, it would be interesting to examine if the glycosylation
pattern of Ig changes during its transport from dams blood into
the milk, and further through the stomach and gut of the
offspring, until it reaches the blood system (Figure 10). This
aspect is under present investigation in our lab. The knowledge
about this could promote the development of vaccines and
adjuvants to shift glycan structures to increase the efficiency of
the immunisation. It would also promote the development and
application of Ig with specific glycan patterns. In conventional
farming it is common that calves are not suckled by their
mothers. The colostrum given is usually from a colostrum
pool, frozen colostrum or commercially available colostrum
powder. At this point, glycoengineered antibodies could be
additionally supplemented.

In sum, farm animals would benefit from a more detailed
knowledge about all these aspects. Furthermore, animals in
zoological gardens or species whose population sizes are small
could have better chances of survival for their offspring. Thus, we
propose that the glycosylation of Abs might represent a powerful
target or tool to develop novel strategies to support the health
and welfare of animals.
A B

FIGURE 9 | Avian egg yolk antibodies. (A) Entries of publications in PubMed with the keyword “immunoglobulin y” since 1990. (B) Structure of IgY. Shown are the
domains of IgY with the two heavy chains (light blue) containing four constant domains (CH1-4) and one variable domain (VH), and two light chains (light grey) with
one constant (CL) and one variable domain (VL). The heavy and light chains are covalently connected by disulfide bonds. The IgY is further subdivided in the antigen
binding fragment (Fab) and fragment crystallisable (Fc). On the right the glycosylation sites are indicated with the detected glycan types. M9 is depicted as a
representative of oligomannose type. Representative glycans for complex types are listed in Table 2 and depicted in Figure 3B. Created with BioRender.com.
TABLE 2 | Distribution of glycan types, calculated due to the molar basis of total N-glycans (83).

Oligomannose type Monoglucosylated 26.8% Others 10.5%
Complex type Neutral 29.9% Monosialylated, 29.3% Disialylated 3.7%
Structures corresponding Figure 3B G1F; G1b; G1Fb; G2Fb G1S1Fb, G2S1Fb, G2FS G2S2Fb
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