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The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health
concern’. In this study, our statistical modelling suggests that Omicron has spread more
rapidly than the Delta variant in several countries including South Africa. Cell culture
experiments showed Omicron to be less fusogenic than Delta and than an ancestral
strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into
two subunits, which facilitates cell-cell fusion*?, the Omicron S protein was less
efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2.
Furthermore, ina hamster model, Omicron showed decreased lung infectivity and was
less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale
investigations reveal the virological characteristics of Omicron, including rapid growth
inthe human population, lower fusogenicity and attenuated pathogenicity.

Newly emerging SARS-CoV-2 variants need to be carefully monitored
for potentially increased transmissibility, pathogenicity and resistance
tovaccine-induced immunity and antiviral drugs. As of December 2021,
the World Health Organization (WHO) has defined five variants of con-
cern (VOCs)—Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2
and AY lineages) and Omicron (originally B.1.1.529, then reclassified
into BA lineages)—as well as two variants of interest, Lambda (C.37)
and Mu (B.1.621)*. These SARS-CoV-2 variants pose an ongoing threat
to humansociety. For example, the Alphavariant, which has an N501Y
substitutioninits S protein, transmits more efficiently than ancestral
SARS-CoV-2% and the Beta, Gamma and Mu variants, which bear the
E484K substitution, exhibit robust resistance to neutralizing antibodies
that are elicited by vaccination and natural SARS-CoV-2 infection® ™.
In addition, we have previously shown that the Delta variant is more
highly pathogenic than the D614G-bearing early-pandemic virusin a
hamster model®.

In January 2022, the Omicron variant (originally B.1.1.529 line-
age) represents the most recently recognized VOC*. The variant was

first detected in South Africa on 24 October 2021 (GISAID ID: EPIL_

ISL_7605742).0n 24 November 2021, the B.1.1.529 lineage, adescendant

of the SARS-CoV-2 B.1.1lineage, was reported to WHO as a novel vari-
antspreadingin South Africa’. On 25 November 2021, this variant was
identified as concerning as aresult of its potential to outcompete the
Delta variant in Gauteng province, South Africa'®". Because of the
potential risk that this newly emerged variant posed to global health,
WHO rapidly classified B.1.1.529 as aVOC and designated it the Omicron
variant on 26 November 2021 (ref.!).

Omicron seems to be spreading rapidly, especially relative to the
spread rate of Delta, which was the predominant variant worldwide
in December 2021. The virological features of Omicron, such as its
pathogenicity and its resistance to antiviral immunity and drugs, are
unclear. Compared to the original SARS-CoV-2 strain (B lineage, strain
Wuhan-Hu-1, GenBank accession no. NC_045512.2)*, Delta (for example,
B.1.617.2 lineage, strain TKYTK1734, GISAID ID: EPI_ISL_2378732) has 45
nucleotide mutations acrossits genome, including 8 nonsynonymous
or insertion and deletion (indel) mutations in its S protein. By con-
trast, Omicron (for example, BA.1lineage, strain TY38-873, GISAID ID:
EPLISL_7418017) contains 97 nucleotide mutations acrossits genome,
including 33 nonsynonymous or indel mutationsinits S protein (Sup-
plementary Table 1). The higher number of mutations in Omicron—and
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Fig.1|Epidemic dynamics of Omicron. a, Top, the seven-day average of new
COVID-19 casesreported per day. Middle, the frequency of the top five viral
lineages in the sequenced samples. Bottom, the frequency of the top five viral
lineages predicted by our Bayesian statistical model. The data are from South
Africa, from1January2021to 24 December2021. The lineage frequency
(middle and bottom) is summarized in three-day bins. The frequencies of all
virallineages are shownin Extended DataFig.1.b, ¢, Estimation of the relative
effective reproduction number of each viral lineage, assuming a fixed
generation time of 5.5 days. Values are shown relative to Delta (the Delta value
issetatl)inSouth Africa (b) and other six countries (Australia, Denmark,
Germany, Israel, the UK and the USA) (c). The posterior distribution (violin),
posterior mean (dot) and 95% credible interval (bar) are indicated.

particularly those inthe S protein—may affect the viral phenotype. Here
we investigate the virological characteristics of Omicronin human cells
invitro and hamsters.

Epidemic dynamics of Omicron

In South Africa, both the number of cases of COVID-19 and the fre-
quency of the Omicron variant increased rapidly in November 2021
(Fig.1a, Extended Data Fig.1). To estimate the relative effective repro-
duction numbers of SARS-CoV-2 lineagesincluding OmicroninSouth
Africa, we constructed a Bayesian statistical model that represents
the dynamics of viral lineage frequency' 2. Our statistical analysis
showed that the effective reproduction number of Omicronin South
Africa was 3.31-fold higher than that of Delta (95% credible interval:
2.95-3.72; Fig. 1b). Our results are consistent with a recent study?®%.
Inaddition, similar to theresultsin South Africa (Fig.1b), the effective
reproduction numbers of Omicronwere greater than those of Deltain
the six other countries in which more than 1,500 Omicron sequences
had been reported (Australia, Denmark, Germany, Israel, the UK and
the USA) (Fig. 1c). As of 7 January 2022, more than 200,000 Omicron
sequences had been reported in approximately 100 countries. These
results suggest that Omicron has spread extremely rapidly and may
outcompete Delta around the world in the near future.

Virological features of Omicroninvitro

To elucidate the virological characteristics of Omicron, we obtained an
Omicronisolate (strain TY38-873). AD614G-bearing early-pandemicB.1.1
isolate (strain TKYE610670)*and a Deltaisolate (B.1.617.2 lineage, strain
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Fig.2|Virological features of Omicroninvitro. a, Growth kinetics of Omicron.
B.1.1virus, Deltaand Omicron wereinoculated into cells, and the copy number
oftheviral RNAin the supernatant was quantified by quantitative PCR with
reverse transcription (RT-qPCR). b, Bright-fieldimages of infected VeroE6/
TMPRSS2 cells (multiplicity of infection (m.o.i.) of 0.01). ¢, Immunofluorescence
staining. Infected VeroE6/TMPRSS2 cells (m.o.i. = 0.01) at 24 h.p.i. were stained
with anti-SARS-CoV-2 N antibody. Higher-magnification views of the regions
indicated by squares are shown on the right. Scale bars,100 um (b, ¢).d, Plaque
assay. Left, representative figures. Right, summary of the diameter of plaques
(15plaquespervirus). e, f, Expression of the S protein on the cell surface. Left,
representative histogram stained with anti-S1/S2 polyclonal antibody (e) or
anti-S2 monoclonal antibody (f). The numberin the histogramindicates the
mean fluorescence intensity (MFI). Grey histogramsindicateisotype controls.
Right, summary of the surface S MFI. g, SARS-CoV-2 S-based fusion assay.

The fusion activity was measured as described in the Methods, and fusion
activity (arbitrary units; AU) isshown. h, i, Left, representative western blots of
S-expressing cells (h) or SARS-CoV-2-infected VeroE6/ TMPRSS2 cells
(m.o.i.=0.01) at48 h.p.i. (i). ACTB (h) or TUBA (i) are internal controls. Right,
theratio of S2to the full-length S plus S2 proteins. Dataare mean +s.d.

(a,d-i). Assays were performedin quadruplicate (a, g-i) or triplicate (e-f).
Each dotindicatestheresult fromanindividual plaque (d) and anindividual
replicate (e, f, h, i). Statistically significant differences versus B.1.1and Delta
through time points were determined by multiple regression (a, g). Familywise
error rates (FWERs) calculated using the Holm method areindicated.
Statistically significant differences (*P < 0.05) versus B.1.1and Delta were
determined by two-sided Mann-Whitney U-test (d) or by two-sided paired
Student’s t-test (e, f, h, i) without adjustment for multiple comparisons.

TKYTK1734)?were used as controls. Although the growth of Omicron
in VeroE6/TMPRSS2 and primary human nasal epithelial cells was com-
parable to that of Delta, Omicron was less replicative than Deltain Vero,
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Fig.3| Time-course dynamics of Omicroninvivo. Syrian hamsters were
intranasally inoculated with saline (n = 6, uninfected control), B.1.1(n = 6), Delta
(n=6) or Omicron (n=6).Six hamsters of the same age were mock-infected.
Body weight (a), Penh (b), Rpef (c), SpO, (d) and viral RNA load in oral swabs (e)
wereroutinely measured. Dataare mean +s.e.m.Ina-d, statistically significant

Calu-3, A549-ACE2 and HeLa-ACE2/TMPRSS2 cells (Fig. 2a, Extended
Data Fig. 2). Omicron and the other isolates replicated in A549-ACE2
cells but did not in A549 cells (Fig. 2a, Extended Data Fig. 2), suggest-
ing that Omicron uses the ACE2 molecule as the receptor for infection.
Althoughthe growthkinetics of Omicronand Deltain VeroE6/TMPRSS2
cellswere comparable (Fig. 2a, Extended Data Fig. 2), the morphology of
infected cells was quite different: Delta formed larger syncytia than the
B.1.1virus, whichis consistent with our previous work?, whereas Omicron
only weakly formed syncytia (Fig. 2b). Immunofluorescence assays at
24 h post-infection (h.p.i.) further showed that VeroE6/TMPRSS2 cells
thatwereinfected with Deltaexhibited larger multinuclear syncytiathan
B.1.1-infected cells, whereas cells infected with Omicron did not (Fig. 2c).
Moreover, the plaque sizein VeroE6/TMPRSS2 cellsinfected with Omicron
was significantly smaller than thatin cells infected with Delta (3.06-fold)
ortheB.1.1virus (2.08-fold) (Fig.2d). These data suggest that Omicronis
less fusogenic than Delta and an early-pandemic SARS-CoV-2.

Todirectly assess the fusogenicity of the S proteins of these variants,
we performed a cell-based fusion assay>?. The expression level of Omi-
cron S on the cell surface was lower than (when stained with an anti-S
polyclonal antibody; Fig. 2e) or comparable to (when stained with an
anti-S2 monoclonal antibody; Fig. 2f) that of the D614G-bearing paren-
tal S, and Omicron S was more highly expressed on the cell surface than
DeltaS (Fig. 2e, ). Nevertheless, our fusion assay showed that Omicron
Sissignificantly less fusogenic than Delta S and the parental D614G S
(Fig.2g, Extended Data Fig. 3a). In addition, coculturing S-expressing
cells with HEK293-ACE2/TMPRSS2 cells showed that Omicron S only
induced multinuclear syncytia at alow level (Extended Data Fig. 3b).

Because Delta infection forms larger syncytia and Delta S exhibits
higher fusogenicity with efficient cleavage between S1and S2 (hereafter,
S1/S2 cleavage)®*, we hypothesized that the poor syncytium forma-
tion and lower fusogenicity of Omicron might be attributable to alow
efficacy of S cleavage. Consistent with our previous studies®?, in the
S-expressingcells, thelevel of the cleaved S2 subunit was higher for Delta
Sthanforthe D614G-bearing parental S (Fig. 2h). In sharp contrast, the
level of cleaved S2 of Omicron S was significantly lower than that of Delta
S (2.5-fold) and parental S (2.2-fold) (Fig. 2h). Similarly, enhanced S1/S2
cleavage was observed in Delta-infected VeroE6/TMPRSS2 cells, whereas
S cleavage was attenuated in Omicron-infected cells (Fig. 2i). Overall, our
datasuggestthat OmicronSis less efficiently cleaved and less fusogenic
than the S proteins of Delta and early-pandemic SARS-CoV-2.

Virological features of Omicronin vivo

Toinvestigate the dynamics of viral replication in vivo and pathogenic-
ity of Omicron, we conducted hamster infection experiments using
B.1.1, Deltaand Omicron strains. Consistent with our previous study?,
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differences versus B.1.1and Delta through time points were determined by
multipleregression. In e, statistically significant differences of the dynamics
versus B.1.1and Deltawere determined by apermutation test. FWERs
calculated using the Holm method are indicated.

hamsters that were infected with B.1.1and Delta exhibited decreased
body weight from 2 days post-infection (d.p.i.) (Fig. 3a). Although the
body weight of Omicron-infected hamsters was significantly lower than
that of uninfected hamsters, it remained significantly higher than that
of B.1.1-infected and Delta-infected hamsters (Fig. 3a). We then quan-
titatively analysed the lung function of infected hamsters as reflected
by three parameters; namely, enhanced pause (Penh) and the ratio
of time to peak expiratory follow relative to the total expiratory time
(Rpef), whichare surrogate markers for bronchoconstriction or airway
obstruction; and subcutaneous oxygen saturation (Sp0,). As shown
in Fig. 3b-d, the B.1.1-infected and Delta-infected hamsters exhibited
respiratory disorders according to these three parameters. By con-
trast, in Omicron-infected hamsters, the Penh value was significantly
lower than thatin B.1.1-infected and Delta-infected hamsters (Fig. 3b),
and the Rpef value was significantly higher than that in the other two
infected groups (Fig. 3c). More specifically, the Rpef and SpO, values
of Omicron-infected hamsters were comparable to those of uninfected
hamsters (Fig.3c, d). These datasuggest that Omicronisless pathogenic
than the B.1.1and Delta viruses.

We next assessed viral production by routinely collecting oral swabs
frominfected hamsters. As shown in Fig. 3e, the dynamics of the viral
RNA load in oral swabs from Omicron-infected hamsters were sig-
nificantly different from those of B.1.1-infected and Delta-infected
hamsters. The viral RNA loads of B.1.1 and Delta peaked at 1d.p.i. and
were relatively stable by 1 week (Fig. 3e). In sharp contrast, the viral
RNAload of Omicron peaked at 2-3 d.p.i., surpassed those of B.1.1and
Delta transiently at this period and then rapidly decreased (Fig. 3e).
A clustering analysis also showed that the dynamics of the viral RNA in
oral swabs of Omicron were clearly separated from those of the other
two viruses (Extended Data Fig. 4). These datasuggest that the dynam-
ics of viral excretion to the oral cavity of Omicron are different from
those of B.1.1and Delta.

To further investigate virus spread in infected hamsters, an immu-
nohistochemistry (IHC) analysis of viral nucleocapsid (N) protein
was conducted using samples from the respiratory system. In the
upper tracheae of infected hamsters, although epithelial cells were
sporadically positive for viral N protein at 1d.p.i. irrespective of the
inoculum, the N-protein positivity became undetectable at 3 d.p.i.
(Fig.4a).Inaddition, the viral RNA loadsin the upper tracheae of all of
theinfected hamsters that were tested decreased over time (Extended
Data Fig. 5a), suggesting that all of the SARS-CoV-2 isolates used in
this study—including Omicron—grow less efficiently in the upper tra-
cheal tissues of hamsters. On the other hand, in lung specimens at
1d.p.i., B.1.1virus and Delta infections exhibited strong positivity for
the SARS-CoV-2 N protein, and this was similar for the bronchial epi-
thelium of the mainbronchus inthe lung hilum (Fig. 4b). By contrast, in



5d.p.i.

a 1dpi 3d.p.i. b 7d.p.i.
3 )

B.1.1
B

Delta
Delta

Omicron
%
Omicron

Upper trachea

Fig.4|Virological features of Omicronin vivo. Syrian hamsters were
intranasally inoculated with B.1.1(n = 3), Delta (n = 3) or Omicron (n = 3).
a,b,IHC of the SARS-CoV-2 N proteininthe upper trachea and the lungs of
infected hamsters. Representative IHC panels of the viral N proteinsinthe
upper partof the trachea fromthe oral entrance at the vertical levels of thyroid
cartilage (a) and the lungs (b) of infected hamsters. Grey arrows inbindicate
the bronchus of eachlunglobe, and higher-magnification views of the regions
indicated by squares are shown at the bottom. Scale bars,1 mm (a); 2.5 mm (b).
¢, Quantification of viralRNA load (top) and viral titre (50% tissue culture
infectious dose (TCIDs,); bottom) in the lung hilum. Broken lines indicate the
slopesbetweenland3d.p.i.d,IHC of viral N proteininthe bronchiolesin the

Omicron-infected hamstersat1d.p.i., N-positive cells were sporadically
detected at the lober portion of the main bronchus, and each N-positive
cell exhibited only sparse N staining (Fig. 4b). At 3 d.p.i., the N protein
was observedinthe alveolar space around the bronchiand bronchioles
intheB.1.1-infected and Delta-infected hamsters, and the DeltaN disap-
peared from the bronchial epithelium (Fig. 4b). In Omicron-infected
hamsters, the positivity for N protein was not observed in the main
bronchial epitheliumbut remainedinthe periphery of the bronchiand
bronchioles (Fig. 4b). At 5 d.p.i., B.1.1 and Delta N-positive cells were
prominently distributed in the alveolar space, whereas only sparse and
weakly stained N-positive cell clusters were detected inlungs infected
with Omicron (Fig. 4b). At 7 d.p.i., N-positive cells remained sporadi-
cally in the alveoli of B.1.1-infected hamsters, whereas few and faintly
stained cells were found in the Delta-and Omicron-infected specimens
(Fig.4b). These datasuggest that although the B.1.1virus and Delta effi-
ciently infect the bronchial epithelium and invade the alveolar space,
Omicron infects only a portion of the bronchial epithelial cells and is
less efficiently transmitted to the neighbouring epithelial cells. Overall,
the IHC data suggest that Omicroninfection spreads relatively slowly
from the mainbronchusto the distal portion of the bronchioles, which
resultsin the sporadic distribution of weakly N-positive clustersin the
lung alveolar space of hamsters infected with Omicron.

Next, the lungs were resected and separated into two regions—the
hilum and the periphery—at different time points (Extended Data
Fig. 6). In the lung periphery, the dynamics of viral spread of B.1.1,
Delta and Omicron at 1-3 d.p.i. showed similar patterns (Extended
Data Fig. 5b). On the other hand, in the lung hilum, although the val-
ues of viral RNA load and viral titre of B.1.1 and Delta at 3 d.p.i. were
approximately 10-fold lower than those at1d.p.i., for Omicron these
values at 3 d.p.i. were comparable to—or even higher than—those at
1d.p.i. (Fig.4c). Our statistical analysis showed that the slopes of viral
RNA and viral titre from 1to 3 d.p.i. for Omicron were significantly

c . 0-o0:28x101" d 3
Z 1% —0: 0.000061 By
€ 0
Z £ °
Z2E 51 3 °
o =
2 4 - 2
=N 1 * - <]
= Q
£ 9 o -CC’
< 2 34 £
z8g o 2
8 % g
2 24 °
sg ® 2
= 7]
e e I
1357 1357 13567 i
B.1.1 Delta Omicron £
Time (d.p.i.) A’
7.
c ® 0-0:0.0041
E= e (% —0155x 107
o
o E 51 T
S 8
=9 41 1 c
o2 o e
= & 34 g
8 S
ST 2
<+ T ~ i
18357 138357 1357 Bronchiole
B.1.1 Delta  Omicron
Time (d.p.i.)

vicinity of the lung hilum. Left, representative IHC panels of the viralN
proteins. Scalebars, 250 um. Right, percentage of N-positive cellsin
bronchiole at3 d.p.i. Values were measured as described in the Methods.
RawdataareshowninExtended DataFig.7.Inc,d, dataaremean +s.e.m.,and
eachdotindicates theresult from anindividual hamster. Statistically
significant differences of the slopes were determined by alikelihood-ratio test
comparing the models with or without the interaction term of time point and
inoculum. FWERs calculated using the Holm method areindicated. Ind,
statistically significant differences (*P < 0.05) versus B.1.1and Deltawere
determined by two-sided unpaired Student’s t-tests without adjustment for
multiple comparisons.

different from those of B.1.1 and Delta (Fig. 4c). These results raise
the possibility that the growth dynamics of Omicron during the acute
phase of infection, particularly at1-3 d.p.i., are different from those of
B.1.1and Delta in the lung hilum. To address this possibility in depth,
we investigated the positivity for N protein, particularly focusing on
the bronchioles that are included in the lung area close to the hilum.
The bronchiolar epithelial cells were relatively strongly positive for
viral N antigen at1d.p.i. (Fig. 4d). At 3 d.p.i., the number of N-positive
epithelial cells decreased in B.1.1-infected hamsters compared with that
at1d.p.i.,and most of the bronchiolar epithelial cellsbecame negative
for the N proteinin Delta-infected hamsters (Fig. 4d). Conversely, the
N-positive epithelial cells remained in Omicron-infected hamsters
at 3d.p.i. (Fig. 4d). Furthermore, a quantitative analysis showed
that, at 3 d.p.i., the percentage of N-positive cells in the bronchioles
of Omicron-infected hamsters was significantly higher than that in
Delta-infected hamsters (Fig. 4d, Extended Data Fig. 7). Overall, these
results—that is, the positivity for viral N protein in the bronchioles in
the vicinity of the lung hilum (Fig. 4d)—correspond well with the viral
RNA load and viral titre in the lung hilum (Fig. 4c), as well as the viral
RNA loadin oral swabs (Fig. 3e).

Pathological features of Omicron

To further investigate the pathogenicity of Omicronin the lung, the
formalin-fixed right lungs of infected hamsters were analysed by care-
fully identifying the four lobes and main bronchus and lobar bronchi,
and sectioning eachlobe along with the bronchial branches (Extended
Data Fig. 6). In B.1.1-infected and Delta-infected lungs, inflammatory
reactions peaked at 5 d.p.i., and inflammationwith type Il alveolar pneu-
mocyte hyperplasia was found to be widely distributed throughout
each lobe (Fig. 5a, Extended Data Fig. 8). By contrast, Omicron infec-
tion was associated with limited inflammatory nodules along with the
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Fig.5|Pathologicalfeatures of Omicron. Syrian hamsters were intranasally
inoculatedwith B.1.1(n = 3), Delta (n=3) or Omicron (n=3).

a, b, Histopathological features of lung lesions. Lung sections frominfected
hamsters were stained with haematoxylin and eosin (H&E). a, Section of all four
lunglobesat5d.p.i.Inthe middle panels, theinflammatory areawith typell
pneumocytesisindicatedinred. The numberinthe panelindicates the
percentage of the sectionrepresented by theindicated area. Right, summary
ofthe percentage of the sectionrepresented by type Il pneumocytes

(3 hamsters per group). Raw data are shownin Extended DataFig. 8.b, H&E
staining of the lungs of infected hamsters. Uninfected lung alveolar space and

bronchioles at the same time point (Fig. 5a, Extended Data Fig. 8), and
the percentage of the area of type Il pneumocyte hyperplasiain the
Omicron-infected lungs was significantly lower than that in the other
twoinfectiongroups (Fig. 5a). In the B.1.1-infected hamsters, mild bron-
chitiswas found at1d.p.i.; disruptions of bronchiand bronchioles were
observed at 3 d.p.i.; and alveolitis and haemorrhage were recognized
at 5 d.p.i. at the peak of inflammation (Fig. 5b, ¢). In the Delta-infected
hamsters, the inflammatory reaction was more prominent than in the
B.L1virusinfection and, as shown previously?, hyperplasticlarge typell
pneumocytes were observed at 5 d.p.i.; at 7 d.p.i., acute inflammatory
features (such as bronchitis or bronchiolitis and haemorrhage) were
resolved and replaced by type Il pneumocytes in these two infection
groups (Fig. 5b, ¢). The observations in these two infection groups
correspond well with our previous report® In the Omicron-infected
hamsters, mild bronchitis was observedat1d.p.i.,and at3 d.p.i.,avague
thickening of the alveolar septaand the peribronchial or peribronchiolar
nodular distribution of type Il pneumocytes were observed (Fig. 5b, ).
Notably, severe alveolitis and haemorrhage were not observed in the
lungs of Omicron-infected hamsters. At 7 d.p.i., the area of nodular
type Il pneumocytes was decreased (Fig. 5b, ¢). Lung lesions were also
quantitatively evaluated by histopathological scoring. The total score
of Omicron-infected hamsters was significantly lower than that of the
B.1.1-infected and Delta-infected hamsters, and each index—such as
bronchitis, alveolitis, type Il pneumocyte hyperplasia and large type Il
pneumocyte hyperplasia—was significantly lower in Omicron-infected
hamsters than in Delta-infected hamsters (Fig. 5¢). Together with the
time-course observations (Fig.3a-d), our results suggest that Omicron
isrelatively less pathogenic than Delta and the B.1.1 virus.

Discussion

Recent studies, including ours, have revealed the pronounced resist-
ance of the SARS-CoV-2 Omicron variant against immunity elicited by
previous infections and vaccination®*?, Here we show that Omicron
is less pathogenic than Delta and its ancestral early-pandemic variant
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bronchioles are shown (left). Scale bars, 250 pm (uninfected lung alveolar
space and bronchioles and infected hamstersat1and 7 d.p.i.); 100 pm (infected
hamstersat3andS5d.p.i.). ¢, Histopathological scoring of lung lesions.
Representative pathological features are shownin our previous study?.
Dataaremean ts.e.m.(a,c).Ina,each dotindicates theresult froman
individual hamster. Statistically significant differences (*P < 0.05) versus B.1.1
and Deltawere determined by two-sided unpaired Student’s t-tests without
adjustment for multiple comparisons. In ¢, statistically significant differences
versus B.1.1and Delta through time points were determined by multiple
regression. FWERs calculated using the Holm method are indicated.

(B.1.1lineage)*inahamster model. Althoughit is not certain that the viral
dynamicsininfected hamsters will completely mirror thosein humans,
ourresultsinanexperimental hamster model suggest that the decreased
viral spread in the lung tissues is one of the reasons for the attenuated
pathogenicity of Omicron. Because Omicron (B.1.1.529 and BA lineages)
is phylogenetically classified as a descendant in the B.1.1lineage™, our
data suggest that Omicron has evolved decreased pathogenicity.

We show that Omicron is less replicative than an early-pandemic
SARS-CoV-2 variant and the Delta variant in cell cultures. This might
appear contradictory to the rapid rate of spread of Omicronin human
society. However, consistent with our previous report? the growth of
Delta—which surpassed other variants and was the dominant causative
agent of the SARS-CoV-2 pandemic in January 2022—was not higher
than that of an early-pandemic strain of SARS-CoV-2, suggesting that
the growth capacity of SARS-CoV-2in cell cultures does not necessarily
reflect rapid viral spread in society. Rather, we showed here that the
dynamics of viral RNA load in oral swabs of Omicron-infected hamsters
during the acute phase of infection are different from those of B.1.1-
and Delta-infected hamsters. These dynamics correspond to those of
viral RNA load and viral titre in the lung hilum as well as positivity for
viral N proteinin the bronchiolar epithelial cells in the vicinity of the
lung hilum of Omicron-infected hamsters. These data suggest that
Omicron-infected cells that are retained in the bronchiolar epithelia
in the vicinity of the lung hilum could be a major source for the viruses
excreted to the oral cavity at 3 d.p.i. The differencesin the dynamics of
viral excretion to the oral cavity and the infection tropism of Omicron
compared with B.1.1and Deltamay perhaps partially explain the rapid
spread of Omicronin the human population.

Although the crystal structure of Omicron S is has been deter-
mined®, the molecular and structural mechanisms that underlie how
Omicron Sis resistant to furin-mediated cleavage remain unclear.
However, when we compared the three SARS-CoV-2 isolates used
in this study—Omicron, Delta and an early-pandemic SARS-CoV-2
(the B.1.1virus)—the efficacy of S cleavage, fusogenicity and patho-
genicity were associated with each other. The association between S



cleavage efficacy and viral pathogenicity is reminiscent of findings in
furin cleavage site (FCS)-deficient SARS-CoV-2; a previous study showed
that the FCS-deleted virus exhibits reduced S protein processing in
cell cultures and attenuated pathogenicity in experimental animal
models®. Although the fusogenicity of the FCS-deleted virus has not
yet been evaluated, the association between higher viral fusogenic-
ity and greater viral pathogenicity has been reported in other viral
infections such as HIV-1** and measles®?*, Furthermore, whereas the
greater severity of COVID-19 and unusual symptoms that are caused by
Deltainfection have been well documented® ¥, areduced risk of severe
COVID-19 inindividuals who are infected with Omicron compared to
those infected with Delta has beenrecently reported®. Therefore, the
fusogenicity and S1/S2 cleavage efficacy of SARS-CoV-2 may be linked
to the degree of its pathogenicity.

The attenuated pathogenicity of Omicron might be considered good
news for human society, because suchemerging variants pose less of a
threatinterms of disease progression. However, as shownin this study
and others?, Omicron spreads more rapidly than Delta; and moreover,
Omicronappears tobe much more resistant to vaccine-induced immu-
nity than other SARS-CoV-2 variants, including Delta***. We should
note that viral pathogenicity has alinear effect on the increase in hos-
pital admissions, severe cases and deaths, whereas the rate at which
thevirus spreadsinthe human population has anexponential effect on
these factors. Therefore, we cannot conclude that the risk of Omicron
forglobal healthis relatively low, and we suggest that this SARS-CoV-2
variant should continue to be monitored in depth.
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Methods

Ethics statement

Allexperiments with hamsters were performedin accordance withthe
Science Council of Japan’s Guidelines for the Proper Conduct of Animal
Experiments. The protocols were approved by the Institutional Animal
Care and Use Committee of National University Corporation Hokkaido
University (approval numbers 20-0123 and 20-0060).

Omicron epidemiological and viral sequence data

The seven-day average of new COVID-19 cases per day in South Africaand
the UK through 24 December 2021 were downloaded from Our Worldin
Data (https://ourworldindata.org/covid-cases) on 4 January 2022. The
numbers of Omicron sequences reported and thecountries that had
reported Omicron sequences as of 7 January 2022 were obtained from
outbreak.info (https://outbreak.info) on 10 January 2022.

Modelling the dynamics of SARS-CoV-2 lineages

To compare the viral spread rate in the human population of each
SARS-CoV-2lineage, we estimated the relative effective reproduction
number of each viral lineage according to the lineage dynamics cal-
culated on the basis of viral genomic surveillance data. The datawere
downloaded from the GISAID database (https://www.gisaid.org/) on
January 4,2022. We analysed the datasets of the seven countries with
more than1,500 Omicron sequences (South Africa, Australia, Denmark,
Germany, Israel, the UK and the USA) (Fig. 1, Extended Data Fig. 1).
The dynamics of the five most predominant lineages in each country
from1January 2021to 24 December 2021, were analysed except for the
USA.Inthe case of the USA, the six most predominant lineages in that
period were analysed because Omicron was the sixth predominant
lineage in this country.

We prepared the input data to estimate the relative effective repro-
ductionnumber of each viral lineage for each country on the basis of
the metadata of the sequenced SARS-CoV-2 strains (that is, the col-
lection date, collection place and PANGO lineage) provided from the
GISAID database (https://www.gisaid.org/). The viral strains belong-
ing tothe predominantlineages were used for the subsequent analy-
sis. The number of strains in each viral lineage isolated on each day
was counted and subsequently summed in three-day bins. Finally,
the count matrix representing the abundance of the respective viral
lineages [viral lineageID k€11, 2, ..., K}; K=5 (for South Africa, Aus-
tralia, Denmark, Germany, Israel and the UK) or 6 (for the USA)] in
therespectivetimebins(t€{l1,2, ..., T}; T=119) for each country was
constructed.

We constructed a Bayesian statistical model to represent the transi-
tionof the relative frequency of Ktypes of viral lineages with a Bayesian
multinomial logistic regression, which is conceptually similar to the
models used in previous studies” . The model is:

u[:b0+blt

0,=softmax(p,)

Ne= zlsksk Yo
Y; ~Multinomial(N,, 0,)

in which by, b, ., 8, and Y, are vectors with K elements, and the
k-th element in the vector represents the value for viral lineage k.
Theexplanatory variableis timebin¢, and the outcome variable Y, rep-
resents the counts of the respective viral lineages at time ¢. Inthe model,
the linear estimator p,, consisting of the intercept b, and the slope b,
fort,isconverted to the simplex @, which represents the probability of
occurrence of eachviral lineage, by the softmax link function defined as:

softmax(x) = %.
zlsjsj EXP(Xj)

Y,is generated from 0,, and N, which represents the total count of all
lineages at ¢, according to a multinomial distribution.

The relative effective reproduction number of each viral lineage
(r, a vector with K elements) was calculated according to the slope
parameter b, in the model above with the assumption of a fixed gen-
eration time. According to the previous study®, the relative effective
reproduction number r was defined as:

r=exp(y/wb,),

inwhich yis the average viral generation time (5.5 days)*’ and wis the
time bin size (3 days). For the parameter estimation, the intercept and
slope parameters of the Delta variant were fixed at 0. Consequently,
the relative effective reproduction number of Delta was fixed at 1,
and those of the respective lineages were estimated relative to that
of Delta.

Parameter estimation was performed by the framework of Bayesian
statistical inference with Markov chain Monte Carlo (MCMC) methods
implementedin CmdStanv.2.28.1 (https://mc-stan.org) with cmdstanr
v.0.4.0 (https://mc-stan.org/cmdstanr/). Noninformative priors were
set for all parameters. Four independent MCMC chains were run with
2,000and 4,000 stepsinthe warmup and samplingiterations, respec-
tively. Inthe MCMC runs, the target average acceptance probability
was set at 0.99, and the maximum tree depth exceeded was set at 20.
We confirmed that all estimated parameters had <1.01 R convergence
diagnostic and more than 1,000 effective sampling size values, indi-
cating that the MCMC runs were successfully convergent. The fitted
model closely recapitulated the observed viral lineage dynamics in
each country (R*> 0.99 in all countries; Extended Data Fig. 1c) The
analyses above were performed in Rv.3.6.3 (https://www.r-project.
org/).

Cell culture

HEK293 cells (a human embryonic kidney cell line; ATCC CRL-1573)
and HEK293-ACE2/TMPRSS2 cells (HEK293 cells (ATCC CRL-1573)
stably expressing human ACE2 and TMPRSS2)* were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) (high-glucose)
(Wako, 044-29765) containing 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin (PS). A549 (a human lung epithelial
cell line; ATCC CCL-185) and A549-ACE2 cells (A549 cells (ATCC
CCL-185) stably expressing human ACE2)?® were maintained in
Ham'’s F-12K medium (Wako, 080-08565) containing 10% FBS
and 1% PS. Vero cells (an African green monkey (Chlorocebus
sabaeus) kidney cell line; JCRBO111) were maintained in Eagle’s
minimum essential medium (EMEM) (Wako, 051-07615) contain-
ing 10% FBS and 1% PS. VeroE6/TMPRSS2 cells (VeroE6 cells sta-
bly expressing human TMPRSS2; JCRB1819)*° were maintained in
DMEM (low-glucose) (Wako, 041-29775) containing 10% FBS, G418
(1 mg ml™; Nacalai Tesque, G8168-10ML) and 1% PS. Calu-3 cells
(ahuman lung epithelial cell line; ATCC HTB-55) were maintained in
EMEM (Sigma-Aldrich, M4655-500ML) containing 20% FBS and 1%
PS. Calu-3/DSP, cells (Calu-3 cells (ATCC HTB-55) stably expressing
DSP,.,)* were maintained in EMEM (Wako, 056-08385) supplemented
with 20% FBS and 1% PS. HeLa-ACE2/TMPRSS2 cells (HeLa229 cells
(JCRB9086) stably expressing human ACE2 and TMPRSS2)* were
maintained in DMEM (low-glucose) (Wako, 041-29775) containing
10% FBS, G418 (1 mg ml™; Nacalai Tesque, G8168-10ML) and 1% PS.
All cell lines were regularly tested for mycoplasma contamination
by PCR and were confirmed to be mycoplasma-free. Primary human
nasal epithelial cells (EP02, batch MP0O010) were purchased from Epi-
thelix and maintained according to the manufacturer’sinstructions.
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SARS-CoV-2 preparation and titration

An Omicron variant (BA.1lineage, strain TY38-873; GISAID ID: EPI_
ISL_7418017)* was obtained from the National Institute of Infectious
Diseases, Japan. An early-pandemic D614G-bearing isolate (B.1.1line-
age, strain TKYE610670; GISAID ID: EPI_ISL_479681) and a Deltaisolate
(B.1.617.2lineage, strain TKYTK1734; GISAID ID: EP1_ISL_2378732) were
used in the previous study?.

Virus preparation and titration was performed as previously
described**. To prepare the working virus stock, 20 ul of the seed
virus was inoculated into VeroE6/TMPRSS2 cells (5 x 10° cells ina T-75
flask). One hour after infection, the culture medium was replaced with
DMEM (low-glucose) (Wako, 041-29775) containing 2% FBS and 1% PS.
At 3 d.p.i., the culture medium was collected and centrifuged, and
the supernatants were collected as the working virus stock. The viral
genome sequences of working viruses were verified as described below.

Thetitre of the prepared working virus was measured as the 50% tis-
sue cultureinfectious dose (TCIDs). In brief, one day before infection,
VeroE6/TMPRSS2 cells (10,000 cells) were seeded into a 96-well plate.
Serially diluted virus stocks were inoculated into the cells and incubated
at 37 °C for four days. The cells were observed under microscopy to
judge the cytopathic effect appearance. The value of TCID, ml™ was
calculated with the Reed-Muench method*.

SARS-CoV-2infection

One day before infection, Vero cells (10,000 cells), VeroE6/ TMPRSS2
cells (10,000 cells), Calu-3 cells (20,000 cells), HeLa-ACE2/ TMPRSS2 cells
(10,000cells), A549-ACE2 cells (10,000 cells) and A549 cells (10,000 cells)
were seeded into a 96-well plate. SARS-CoV-2 (100 TCIDs, for VeroE6/
TMPRSS2 cells (Extended Data Fig. 2);1,000 TCIDs, for Vero cells (Fig. 2a),
VeroE6/TMPRSS2 cells (Fig. 2a), A549-ACE2 cells (Fig. 2a), HeLa-ACE2/
TMPRSS2 cells (Extended Data Fig. 2) and A549 cells (Extended Data
Fig.2); and 2,000 TCID;, for Calu-3 cells (Fig. 2a)) was inoculated and
incubated at 37 °C for 1 h. The infected cells were washed, and 180 pl
of culture medium was added. The culture supernatant (10 pl) was col-
lected at theindicated time points and used for RT-qPCR to quantify the
viral RNA copy number (see below). To monitor the syncytium forma-
tionininfected cell culture, bright-field photos were obtained using an
All-in-One Fluorescence Microscope BZ-X800 (Keyence).

The infection experiment in primary human nasal epithelial cells
(Fig. 2a) was performed as previously described?. In brief, the work-
ing viruses were diluted with Opti-MEM (Thermo Fisher Scientific,
11058021). The diluted viruses (1,000 TCIDs, in 100 pl) were inocu-
lated onto the apical side of the culture and incubated at 37 °C for 1 h.
Theinoculated viruses were removed and washed twice with Opti-MEM.
To collect the viruses on the apical side of the culture, 100 pl Opti-MEM
was applied onto the apical side of the culture and incubated at 37 °C
for10 min. The Opti-MEM applied was collected and used for RT-qPCR
to quantify the viral RNA copy number (see below).

Immunofluorescence staining

Immunofluorescence staining was performed as previously described?.
Inbrief, one day before infection, VeroE6/TMPRSS2 cells (10,000 cells)
were seeded into 96-well, glass bottom, black plates and infected with
SARS-CoV-2 (100 TCIDs). At 24 h.p.i., the cells were fixed with 4% para-
formaldehyde in phosphate-buffered saline (PBS) (Nacalai Tesque,
09154-85) for 1 hat 4 °C. The fixed cells were permeabilized with 0.2%
Triton X-100in PBS for1 hand blocked with10% FBSin PBS for1hat4 °C.
Thefixed cells were then stained using rabbit anti-SARS-CoV-2 N poly-
clonal antibody (GeneTex, GTX135570,1:1,000) for 1 h. After washing
three times with PBS, cells wereincubated with an Alexa488-conjugated
anti-rabbit IgG antibody (Thermo Fisher Scientific, A-11008, 1:1,000)
for1h.Nucleiwere stained with DAPI (Thermo Fisher Scientific, 62248).
Fluorescence microscopy was performed onan All-in-One Fluorescence
Microscope BZ-X800 (Keyence).

Plaque assay

The plaque assay was performed as previously described®?.
In brief, one day before infection, VeroE6/TMPRSS2 cells (100,000
cells) were seeded into a 24-well plate and infected with SARS-CoV-2
(10,000 TCIDs) at 37 °C. At 2 h.p.i., mounting solution containing 3%
FBS and 1.5% carboxymethyl cellulose (Wako, 039-01335) was overlaid,
followed by incubation at 37 °C. At 3 d.p.i., the culture medium was
removed, and the cells were washed with PBS three times and fixed
with 4% paraformaldehyde phosphate (Nacalai Tesque, 09154-85).
Thefixed cells were washed with tap water, dried and stained with stain-
ing solution (0.1% methylene blue (Nacalai Tesque, 22412-14) in water)
for30 min. The stained cells were washed with tap water and dried, and
the size of plaques was measured using Fiji software v.2.2.0 (Image)).

RT-qPCR

RT-qPCR was performed as previously described®?. In brief, 5 pl of
culture supernatant was mixed with 5 pl of 2x RNA lysis buffer (2% Triton
X-100,50 mMKCl,100 mM Tris-HCI (pH 7.4),40% glyceroland 0.8 U ul™*
recombinant RNase inhibitor (Takara, 2313B)) and incubated at room
temperature for 10 min. RNase-free water (90 pl) was added, and the
diluted sample (2.5 pl) was used as the template for real-time RT-PCR
performed according to the manufacturer’s protocol using the One
Step TB Green PrimeScript PLUS RT-PCR kit (Takara, RRO96A) and the
following primers: forward N, 5-AGCCTCTTCTCGTTCCTCATCAC-3’;
and reverse N, 5-CCGCCATTGCCAGCCATTC-3’". The viral RNA copy
number was standardized witha SARS-CoV-2 direct detection RT-qPCR
kit (Takara,RC300A). Fluorescent signals were acquired using a Quant-
Studio 3 Real-Time PCR system (Thermo Fisher Scientific), CFX Con-
nect Real-Time PCR Detection system (Bio-Rad), Eco Real-Time PCR
System (Illumina), qgTOWER3 G Real-Time System (Analytik Jena) or
7500 Real-Time PCR System (Thermo Fisher Scientific).

Plasmid construction

Plasmids expressing the SARS-CoV-2 S proteins of the D614G-bearing
early-pandemic SARS-CoV-2 (pC-SARS2-S D614G) and Delta
(pC-SARS2-S Delta) were prepared in our previous study>?. A plasmid
expressing the SARS-CoV-2 Omicron S protein (pC-SARS2-S Omicron)
was generated by overlap extension PCR using pC-SARS2-S D614G**
and pC-SARS2-S Alpha?as the templates and the primers listed in Sup-
plementary Table 2. The resulting PCR fragment was digested with Kpnl
and Notl and inserted into the Kpnl-Notl site of the pCAGGS vector.
The sequence of constructed plasmid was verified by using Sequencher
software v.5.1 (Gene Codes Corporation).

SARS-CoV-2S-based fusion assay

The SARS-CoV-2 S-based fusion assay was performed as previously
described®?. This assay uses a dual split protein (DSP) encoding Renilla
luciferase and GFPgenes; the respective split proteins, DSPg ; and DSP, ;,
are expressed in effector and target cells by transfection. In brief, on
day 1, effector cells (that is, S-expressing cells) and target cells (see
below) were prepared ata density of 0.6-0.8 x 10° cellsina 6-well plate.
To prepare effector cells, HEK293 cells were cotransfected with the S
expression plasmids (400 ng) and pDSPg ;; (400 ng) using TransIT-LT1
(Takara, MIR2300). To prepare target cells, HEK293 cells were cotrans-
fected with pC-ACE2 (200 ng) and pDSP,, (400 ng). Target HEK293
cellsin selected wells were cotransfected with pC-TMPRSS2 (40 ng)
inaddition to the plasmids above. VeroE6/TMPRSS2 cells were trans-
fected with pDSP,; (400 ng). Onday 3 (24 h post-transfection),16,000
effector cells were detached and reseeded into 96-well black plates
(PerkinElmer, 6005225), and target cells (HEK293, VeroE6/TMPRSS2
or Calu-3/DSP,, cells) were reseeded at a density 0of 1,000,000 cells
per 2 ml per well in 6-well plates. On day 4 (48 h post-transfection),
target cells were incubated with EnduRen live cell substrate (Pro-
mega, E6481) for 3 hand then detached, and 32,000 target cells were
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added to a 96-well plate with effector cells. Renilla luciferase activity
was measured at the indicated time points using Centro XS3 LB960
(Berthhold Technologies). To measure the surface expression level
of S protein, effector cells were stained with rabbit anti-SARS-CoV-2 S
S1/S2 polyclonal antibody (Thermo Fisher Scientific, PA5-112048,
1:100) or mouse anti-SARS-CoV-2 S monoclonal antibody (clone 1A9,
GeneTex, GTX632604,1:100). Normal rabbit IgG (SouthernBiotech,
0111-01, 1:100) or purified mouse IgGlisotype control antibody (clone
MG1-45, BioLegend, 401401, 1:100) was used as a negative control,
and APC-conjugated goat anti-mouse or anti-rabbit IgG polyclonal
antibody (Jackson ImmunoResearch, 115-136-146,1:50 or 111-136-144,
1:50) was used as a secondary antibody. The surface expression level
of S proteins was measured using FACS Canto Il (BD Biosciences) and
the datawere analysed using FlowJo software v,10.7.1 (BD Biosciences).
The gating strategy for flow cytometry is shownin Supplementary Fig. 1.
To calculate fusionactivity, Renillaluciferase activity was normalized
to the MFl of surface S proteins. The normalized value (that s, Renilla
luciferase activity per the surface S MFI) is shown as fusion activity.

Coculture experiment

One day before transfection, effector cells (that is, S-expressing cells)
were seeded on the cover glass and put in a12-well plate, and target
HEK293-ACE2/TMPRSS2 cellswere prepared at a density of 1.0 x 10° cells
inal2-well plate. To prepare effector cells, HEK293 cells were cotrans-
fected with the expression plasmids for the parental D614G S, Deltas,
Omicron S (500 ng) and pEGFP-C1 (500 ng) using PEIMax (Polysciences,
24765-1). To prepare target cells, HEK293 cells and HEK293-ACE2/
TMPRSS2 cells were transfected with pmCherry-C1(1,000 ng). At 24 h
post-transfection, target cells were detached and cocultured with effec-
tor cells. At 24 h post-coculture (at 48 h post-transfection), cells were
fixed with 4% paraformaldehyde in PBS (Nacalai Tesque, 09154-85) for
15 min at room temperature. Nuclei were stained with Hoechst 33342
(Thermo Fisher Scientific, H3570). The coverslips were mounted on
glass slides using Fluoromount-G (Southern Biotechnology, 0100-01)
withHoechst 33342 and observed using an A1Rsi confocal microscope
(Nikon). The size of syncytium (yellow area) was measured using Fiji
software v.2.2.0 (Image))*®.

Westernblot

Western blotting was performed as previously described®?. For west-
ern blots, the HEK293 cells cotransfected with the S expression plas-
mids and pDSPg 4, (see above) (Fig. 2h) and the VeroE6/TMPRSS2 cells
infected with SARS-CoV-2 (m.o.i. = 0.01) at 48 h.p.i. (Fig. 2i) were used.
To quantify the level of the cleaved S2 proteinin the cells, the collected
cellswere washed and lysed inlysis buffer 25 mMHEPES (pH 7.2), 20%
glycerol, 125 mM NaCl, 1% Nonidet P40 substitute (Nacalai Tesque,
18558-54) and protease inhibitor cocktail (Nacalai Tesque, 03969-21)).
After quantification of total protein by protein assay dye (Bio-Rad,
5000006), lysates were diluted with 2x sample buffer (100 mM Tris-HCI
(pH 6.8), 4% SDS, 12% B-mercaptoethanol, 20% glycerol and 0.05%
bromophenolblue) and boiled for 10 min. Then, 10-pl samples (50 pg
oftotal protein) were subjected to westernblotting. For protein detec-
tion, the following antibodies were used: mouse anti-SARS-CoV-2 S
monoclonal antibody (clone 1A9, GeneTex, GTX632604, 1:10,000),
rabbit anti-SARS-CoV-2N monoclonal antibody (clone HL344, GeneTex,
GTX635679,1:5,000), rabbit anti-B-actin (ACTB) monoclonal antibody
(clone13ES, Cell Signalling, 4970, 1:5,000), mouse anti-a-tubulin (TUBA)
monoclonal antibody (clone DM1A, Sigma-Aldrich, T9026,1:10,000),
horseradish peroxidase (HRP)-conjugated donkey anti-rabbit IgG poly-
clonalantibody (Jackson ImmunoResearch, 711-035-152,1:10,000) and
HRP-conjugated donkey anti-mouse IgG polyclonal antibody (Jackson
ImmunoResearch, 715-035-150, 1:10,000). Chemiluminescence was
detected using SuperSignal West Femto Maximum Sensitivity Sub-
strate (Thermo Fisher Scientific, 34095) or Western BLoT Ultra Sensi-
tive HRP Substrate (Takara, T7104A) according to the manufacturers’

instructions. Bands were visualized using an Amersham Imager 600
(GE Healthcare), and the band intensity was quantified using Image
Studio Litev.5.2 (LI-COR Biosciences) or Fiji software v.2.2.0 (Image)J).
Uncropped blots are shown in Supplementary Fig. 2.

Animal experiments

Syrian hamsters (male, 4 weeks old) were purchased fromJapan SLC and
divided into groups by simple randomization. Baseline body weights
were measured before infection. For the virus infection experiments,
hamsters were anaesthetized by intramuscular injection of amixture of
0.15 mg kg medetomidine hydrochloride (Domitor, Nippon Zenyaku
Kogyo), 2.0 mg kg midazolam (Dormicum, FUJIFILM Wako Chemicals)
and 2.5 mg kg™ butorphanol (Vetorphale, Meiji Seika Pharma). The B.1.1
virus, Delta, Omicron (10,000 TCIDs, in 100 pl) or saline (100 pl) were
intranasally inoculated under anaesthesia. Oral swabs were daily col-
lected under anaesthesia withisoflurane (Sumitomo Dainippon Pharma).
Body weight, enhanced pause (Penh, see below), theratio of time to peak
expiratory follow relative to the total expiratory time (Rpef, see below)
and subcutaneous oxygen saturation (SpO,, see below) were moni-
toredatl,3,5,7,10,and 15d.p.i. Respiratory organs were anatomically
collected at1,3,5and 7 d.p.i. (for lung) or 1,3 and 7 d.p.i. (for trachea).
ViralRNA load inthe oral swabs and respiratory tissues was determined
by RT-gqPCR. Viral titres in the lung hilum were determined by TCID,.
These tissues were also used for histopathological and IHC analyses
(see below). No method of randomization was used to determine how
the animals were allocated to the experimental groups and processedin
this study because covariates (sex and age) were identical. The number
ofinvestigators was limited, as most of experiments were performedin
high-containmentlaboratories. Therefore, blinding was not carried out.

Lung function test

Respiratory parameters (Penh and Rpef) were measured by using a
whole-body plethysmography system (DSI) according to the manufac-
turer’sinstructions. In brief, a hamster was placed in an unrestrained
plethysmography chamber and allowed to acclimatize for 30 s, then,
datawereacquired over a5-min period by using FinePointe Station and
Review software v.2.9.2.12849 (STARR). The state of oxygenation was
examined by measuring SpO, using a pulse oximeter, MouseOx PLUS
(STARR).SpO, was measured by attaching a measuring chip to the neck
of hamsters sedated by 0.25 mg kg™ medetomidine hydrochloride.

H&E staining

H&E staining was performed as described in the previous study?.
In brief, excised animal tissues were fixed with 10% formalin neutral
buffer solution, and processed for paraffin embedding. The paraf-
fin blocks were sectioned with 3-um thickness and then mounted on
silane-coated glass slides (MAS-GP, Matsunami). H&E staining was
performed according to a standard protocol.

IHC

IHC was performed using an Autostainer Link 48 (Dako). The deparaffi-
nized sections were exposed to EnVision FLEX target retrieval solution
high pH (Agilent, CK8004) for 20 min at 97 °C to activate, and mouse
anti-SARS-CoV-2 N monoclonal antibody (R&D systems, Clone 1035111,
MAB10474-SP, 1:400) was used as a primary antibody. The sections
were sensitized using EnVision FLEX (Agilent) for 15 min and visualized
by peroxidase-based enzymatic reaction with 3,3’-diaminobenzidine
tetrahydrochloride as substrate for 5 min.

For the evaluation of the N-protein positivity in the bronchioles in
the vicinity of the lung hilum at 3 d.p.i. (Fig. 4d), lung specimens from
infected hamsters (B.1.1, Delta and Omicron; n =3 each) were stained
with mouse anti-SARS-CoV-2 N monoclonal antibody (R&D systems,
clone 1035111, MAB10474-SP, 1:400). All bronchioles were identified
by certificated pathologists, and the full length of the circumference
of each bronchiole (perimeter) and the length of N-protein positivity



were measured using NDRscan3.2 software (Hamamatsu Photonics).
Themainlobarbronchus (morethan 500 pmin diameter) was excluded
from this evaluation. Peripheral branches from lobar bronchus were
referred to as bronchioles (less than 500 pm in diameter) and were
analysed. The N-protein positivity was calculated as the percentage
of the length of N-protein positivity in the full-length bronchioles in
each hamster.

Histopathological scoring of lung lesions
Theareaofinflammationin the infected lungs (Fig. 5a) was measured by
thepresence of typell pneumocyte hyperplasia. Three hamstersinfected
with each virus were euthanized at 5 d.p.i., and all four lung lobes,
including right upper (anterior-cranial), middle, lower (posterior-
caudal)and accessory lobes, were sectioned along with their bronchi.
The tissue sections were stained by H&E, and the digital microscopic
imageswere incorporated into virtual slides using NDRscan3.2 software
(Hamamatsu Photonics). The colour of the images was decomposed
by RGB in split channels using Fiji software v.2.2.0 (ImageJ).

Histopathological scoring (Fig. 5¢c) was performed as described in
the previous study?. In brief, pathological features including bronchitis
or bronchiolitis, haemorrhage or congestion, alveolar damage with
epithelialapoptosis and macrophage infiltration, hyperplasia of type Il
pneumocytes, and the area of the hyperplasia of large type Il pneumo-
cyteswere evaluated by certified pathologists and the degree of these
pathological findings were arbitrarily scored using afour-tiered system
as 0 (negative),1(weak), 2 (moderate) and 3 (severe). The ‘large type Il
pneumocytes’ are the hyperplasia of type Il pneumocytes exhibiting
more than 10-pm-diameter nucleus. We described ‘large type Il pneu-
mocytes’asone of the notable histopathological features of SARS-CoV-2
infection in our previous study? Total histology score is the sum of
these five indices. In the representative lobe of each lung, the inflam-
mation area with type Il pneumocytes was gated by the certificated
pathologists on H&E staining, and the indicated area was measured
by Fiji software v.2.2.0 (Image)).

Viral genome sequencing analysis

The sequences of the working viruses were verified by viral RNA-
sequencing analysis. Viral RNA was extracted using the QIAamp viral
RNA mini kit (Qiagen, 52906). The sequencing library for total RNA
sequencing was prepared using the NEB Next Ultra RNA Library Prep Kit
for lllumina (New England Biolabs, E7530). Paired-end, 76-bp sequenc-
ing was performed using MiSeq (Illumina) with MiSeq reagent kit v.3
(Illumina, MS-102-3001). Sequencing reads were trimmed using fastp
v0.21.0*¢ and subsequently mapped to the viral genome sequences
of alineage B isolate (strain Wuhan-Hu-1; GISAID ID: EPL_ISL_402125;
GenBank accession no. NC_045512.2) using BWA-MEM v.0.7.17¥. Vari-
ant calling, filtering and annotation were performed using SAMtools
v.1.9*® and snpEffv.5.0e*.

For the clinical isolates—an Omicron isolate (strain TY38-873;
GISAID ID: EPLISL_7418017), a Deltaisolate (strain TKYTK1734; GISAID
ID: EPLISL_2378732; ref.?) and a D614G-bearing B.1.1isolate (strain
TKYE610670; GISAID ID: EP1_ISL_479681; ref.%)—the detected variants
thatare presentin the original sequences were excluded. Information
on the detected mutations in the working virus stocks is summarized
inSupplementary Table 3.

Statistics and reproducibility

Statistical significance was tested using a two-sided Student’s ¢-test or
atwo-sided Mann-Whitney U-test unless otherwise noted. The tests
were performed using Excel software v.16.16.8 (Microsoft) or Prism 9
software v.9.1.1 (GraphPad).

In the time-course experiments (Figs. 2a, g, 3a-d, 5¢, Extended Data
Figs.2,3a), amultiple regressionanalysisincluding experimental condi-
tions as explanatory variables and time points as qualitative control vari-
ables was performed to evaluate the difference between experimental

conditions thorough all time points. Pvalue was calculated by atwo-sided
Wald test. Subsequently, FWERs were calculated by the Holm method.
These analyses were performedinRv.3.6.3 (https://www.r-project.org/).

In the time-course data of viral RNA in the oral swab of infected
hamsters (Fig. 3e), significant differences in the dynamics between
Omicron-infected and B.L.1- or Delta-infected hamsters were determined
by a permutation test. In the observed data, the average value at each
time point was calculated in each group, and the Euclidean distance of
the average dynamics between the two groups was calculated. Next,
the permutated data were generated by shuffling the viral group label
among hamster individuals for all combinations. As each viral group has
six hamsters, a total of ;,C, (= 924) combinations of the data were gen-
erated. Subsequently, the Euclidean distance of the average dynamics
between the two groups was calculated ineach permuted data. Finally,
the Euclidean distance in each permutated data was compared to that
of the observed data, and the Pvalue was calculated by dividing the
number of permutated data in which the distance was greater than or
equaltothatinthe observed databy the totalnumber of the permutated
data. FWERs were calculated by the Holm method. These analyses were
performedin Rv3.6.3 (https://www.r-project.org/).

Inthe hierarchical clusteringanalysis of infected hamsters based on the
dynamics of viral RNA load in the oral swabs (Extended Data Fig. 4), the
Euclidean distances of the log,,-transformed viral RNA dynamics were
calculated amongindividual hamsters. Subsequently, adendrogramwas
reconstructed by Ward’s method according to the distance matrix. Clusters
were defined by cutting the dendrogram ataheight of cluster number =2.
Theassociationbetween the clustering result and Omicron-infected ham-
sters was examined by two-sided Fisher’s exact test. These analyses were
performedinRv.3.6.3 (https://www.r-project.org/).

Thesslopes of viral RNA load (Fig. 4c, top, Extended Data Fig. 5b) and
viraltitre (Fig. 4c, bottom) from1d.p.i. to 3 d.p.i. were statistically com-
pared between Omicron-infected and B.1.1-infected or Delta-infected
hamsters using a likelihood-ratio test. In the likelihood-ratio test, the
following full and reduced models were used: the full model included
inoculum, time point, and the interaction term of inoculum and time
point. Thereduced modelincludedinoculumandtime point. The Pvalue
was calculated by chi-squared test. FWERs were calculated by the
Holm method. These analyses were performed in R v.3.6.3 (https://
www.r-project.org/).

InFigs.4a,b,d, 5a, b, Extended DataFigs. 7,8, the photographs shown
are the representative areas of two independent experiments using
three hamsters at each time point.InFig.2b-d, Extended Data Fig. 3b,
assays were performed intriplicate. Photographs shown are the repre-
sentatives of more than 20 fields of view taken for each sample.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The raw data of the viral sequences analysed in this study have been
deposited in the Gene Expression Omnibus (accession number:
GSE192472). All databases and datasets used in this study are available
from GISAID (https://www.gisaid.org), GenBank (https://www.ncbi.
nlm.nih.gov/genbank/), Our World in Data (https://ourworldindata.
org/covid-cases) or outbreak.info (https://outbreak.info). The acces-
sion numbers of the viral sequences used in this study are listed in the
Methods section. Source data are provided with this paper.

Code availability

The computational code to estimate the viral spread rate inthe human
population (Fig. 1) isavailable in the GitHub repository (https://github.
com/TheSatoLab/Estimation_of_transmissibility of each_viral_lineage).
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Extended DataFig.2|Growth of Omicron, DeltaandB.1.1indifferent cells.
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VeroE6/TMPRSS2 cells, 1,000 TCIDs, (m.o.i.=0.1) for HeLa-ACE2/TMPRSS2
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inthe supernatant was quantified by RT-qPCR. Assays were performedin
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versus B.1.1and Delta through time points were determined by multiple
regression. FWERs calculated using the Holm method areindicated in the
figures.
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Extended DataFig. 6 | Analysed regions of thelung. The entire lung (left) and
acoronalsectionof therightlungandits cutsurface (right) are shown. Inthe
left panel, four lunglobes, the upper (anterior/cranial) lobe (U), milled lobe (M),
lower (posterior/caudal) lobe (L) and accessory lobe (A), are respectively
indicated. Arrow indicates the main bronchus. The hilum and periphery of the
lung, whichwere used for the viral RNA quantification and titration (Fig. 4c and
Extended DataFig.5b), are alsoindicated inyellow.
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mouse anti-SARS-CoV-2 S monoclonal antibody (clone 1A9, GeneTex, Cat# GTX632604, 1:10,000)
rabbit anti-SARS-CoV-2 N monoclonal antibody (clone HL344, GeneTex, Cat# GTX635679, 1:5,000)
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HRP-conjugated donkey anti-mouse IgG polyclonal antibody (Jackson ImmunoResearch, Cat# 715-035-150, 1:10,000)
For immunofluorescence staining:
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statements are available on the manufacturers' website.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK293 cells (a human embryonic kidney cell line; ATCC CRL-1573)
HEK293-ACE2/TMPRSS?2 cells [HEK293 cells (ATCC CRL-1573) stably expressing human ACE2 and TMPRSS2; Motozono et al.,
Cell Host & Microbe, 2021)
A549 cells (a human lung epithelial cell line; ATCC CCL-185)
A549-ACE2 cells [A549 cells (ATCC CCL-185) stably expressing human ACE2; Motozono et al., Cell Host & Microbe, 2021]
Vero cells [an African green monkey (Chlorocebus sabaeus) kidney cell line; JCRB0111]
VeroE6/TMPRSS2 cells (JCRB1819)
Calu-3 cells (a human lung epithelial cell line; ATCC HTB-55)
Calu-3/DSP1-7 cells [Calu-3 cells (ATCC HTB-55) stably expressing DSP1-7; Yamamoto et al., Viruses, 2020)
Hela-ACE2/TMPRSS2 cells [HeLa229 cells (JCRB9086) stably expressing human ACE2 and TMPRSS2; Kawase et al., Journal of
Virology, 2012]
Primary human nasal epithelial cells (Cat# EP02, Batch# MP0O10, Epithelix)
Vero cells, VeroE6/TMPRSS2 cells, and HelLa-ACE2/TMPRSS2 cells are commercially available at JCRB Cell Bank (https://
cellbank.nibiohn.go.jp/english/). Primary human nasal epithelial cells were purchased from Epithelix.

Authentication None of the cells used were authenticated.
Mycoplasma contamination All cell lines were regularly tested for mycoplasma contamination by using PCR and were confirmed to be mycoplasma-free.

Commonly misidentified lines  No commonly misidentified cell lines were used.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Syrian hamsters (male, 4 weeks old) were purchased from Japan SLC Inc. (Shizuoka, Japan).

Wild animals No wild animal was used in this study.




Field-collected samples  No field collected sample was used in the study.

Ethics oversight All experiments with hamsters were performed in accordance with the Science Council of Japan’s Guidelines for Proper Conduct of
Animal Experiments. The protocols were approved by the Institutional Animal Care and Use Committee of National University
Corporation Hokkaido University (approval numbers 20-0123 and 20-0060).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
|Z The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|Z All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation HEK293 cells were cotransfected with S expression plasmids (400 ng) and pDSP1-7 (400 ng) using TransIT-LT1 (Takara, Cat#
MIR2300).
Instrument FACS Canto Il instrument (BD Biosciences)
Software FlowJo software v10.7.1 (BD Biosciences)
Cell population abundance 10,000 cells gated in the FSC-A/SSC-A plot (Supplementary Fig. 1) were acquired for each condition.
Gating strategy Live cell population was gated based on the FSC-A/SSC-A plot. The starting gating strategy is shown in Supplementary Fig. 1.

Then, to define the boundary between "positive" and "negative" staining of the surface S protein, isotope control IgG was
used instead of primary anti-S antibodies. Grey histograms in Fig. 2e and 2f indicate isotype controls of the assay.

g Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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