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Abstract

AL (amyloid light chain) amyloidosis is a rare hematologic disorder characterized by the 

accumulation of a misfolded monoclonal immunoglobulin light chain (LC) as fibrillar protein 

deposits. Current treatments, including cytotoxic chemotherapy and immunomodulatory therapy, 

are directed at killing the plasma cells that produce the LCs, but have significant toxicity for other 

cell types. We have designed small interfering RNAs (siRNAs) targeting the amyloidogenic LC 

mRNA in order to reduce expression of the amyloid precursor protein. Using nanomolar 

concentrations of siRNAs, we have inhibited synthesis of LC in transfected cells in vitro in a dose-

dependent fashion. Furthermore, in an in vivo plasmacytoma mouse model of AL amyloidosis, we 

have demonstrated that these siRNAs can significantly reduce local production and circulating 

levels of LC. This model system highlights the therapeutic potential of siRNA for AL 

amyloidosis.
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Introduction

AL amyloidosis is a rare hematologic disease characterized by the accumulation of 

misfolded immunoglobulin light chains (LC) as fibrillar amyloid deposits, usually occurring 
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in the setting of a clonal plasma cell dyscrasia in the bone marrow1. These extracellular 

deposits cause organ failure and eventually death; in untreated patients, the median survival 

is 1.5 years following diagnosis2. Current treatments are directed at the LC-producing clonal 

plasma cells and include oral melphalan and dexamethasone, immunomodulatory drugs 

(IMiDs), proteasome inhibitors, multi-drug regimens, and in selected patients, intravenous 

high dose melphalan followed by autologous stem cell transplantation (HDM/SCT)2. These 

therapies can reduce or eliminate the plasma cell clone, allowing recovery of organ function 

and amelioration of disease. However, each of these therapies is potentially toxic in patients 

compromised by organ dysfunction due to the protein deposition disease. In addition to the 

myelosuppressive and immunosuppressive effects of chemotherapy, treatment with 

corticosteroids can exacerbate symptoms of nephrotic syndrome or congestive heart failure 

often present in patients with AL amyloidosis. Moreover, IMiDs are often poorly tolerated3, 
4 and HDM/SCT has a much higher rate of complications compared to patients with other 

hematologic conditions5.

In addition to treatment strategies aimed at obliterating the source of the amyloid protein, 

there have been other approaches which focus on the fibril protein or the circulating 

precursors. The first effective targeted therapy for a protein deposition disorder was 

eprodisate. This is a small molecule that binds directly to amyloid fibrils composed of serum 

amyloid A protein, those that occur in patients with AA (formerly called secondary or 

reactive) amyloidosis. In a recent multicenter clinical trial, the use of eprodisate was 

correlated to slower progression of renal failure in patients with AA amyloidosis6. In 

amyloid diseases associated with transthyretin (TTR), agents that stabilize the native form of 

the protein are being tested as a potential therapeutics in several clinical trials. Diflunisal and 

other related compounds have been shown to prevent dissociation of tetrameric TTR in 

vitro, thereby blocking misfolding, aggregation, and amyloid fibril formation7.

An alternative to these protein-based strategies is a regimen that reduces production of the 

fibril precursor protein by using siRNA. Components of the endogenous RNA interference 

(RNAi) pathway, siRNAs are non-coding RNAs that regulate protein expression at the 

translational level by binding to mRNA. This interaction can block protein synthesis directly 

by interfering with mRNA translation and/or by promoting mRNA degradation8. Synthetic 

siRNAs have proven to be a powerful tool for investigating cellular gene function in vitro, 

and a Nobel prize was awarded for the development of this technology9. At present, there is 

a great deal of interest in siRNAs as potential therapeutics in a variety of diseases. One 

example is the use of RNAi to reduce liver-targeted TTR expression either through antisense 

nucleotides10 or siRNAs encapsulated with stable nucleic acid lipid particles (SNALP)11; 

clinical trials are planned using these methodologies. Other studies include the use of 

siRNAs to prevent the production of amyloid fibril precursor proteins in models of 

Alzheimer’s disease (targeting APP)12, 13, Huntington’s disease (targeting Huntington 

protein)14, 15, Parkinson’s disease (targeting alpha-synuclein)16 and prion diseases (targeting 

PrP)17, 18. Here, we report the development and preclinical testing of siRNAs that are 

targeted to amyloidogenic immunoglobulin LC mRNA.
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Results

Design of siRNA against amyloidogenic light chains

Among the sequences in AL-Base derived from patients seen in our center, the most 

frequently expressed LCs are from the κ1 family, comprising 21.1% of the sequences in the 

database19. Thus, we chose to utilize a κ1 LC as a paradigm for these studies. The LC 

sequence was amplified by reverse transcription PCR and the products were cloned into 

pcDNA3 for subsequent expression in cell lines.

Two publicly available tools were used to identify siRNA sequences targeted towards the κ1 

LC sequence. siRNAs targeting either the constant region (CL) of the LC to be “family 

specific” or the variable (VL) region to be “patient specific” were designed. The locations of 

the siRNA target sequences are depicted in Figure 1.

In vitro knock down of amyloidogenic light chains

In order to test the LC siRNAs in vitro, we created stable NIH-3T3 cell lines expressing the 

AL-009-κ1 LC. The siRNAs were transfected by lipofection into the stably expressing κ1-

NIH-3T3 cells at a concentration of 20 nM. By 48 hours, cells with two of the three siRNAs 

showed decreased amounts of LC mRNA; mean relative mRNA levels with CK1.4 and 

VK1.2 were significantly different (p <0.05) compared to untreated (Figure 2A). 

Concentration effects were investigated in κ1-NIH-3T3 cells transfected with siRNAs by 

lipofection. LC protein amounts, analyzed by immunoblot and normalized to actin, were 

assessed over a broad concentration range of siRNA from 0.1 to 200 nM. When cells were 

treated with increasing doses of siRNAs, there was a dose dependent decrease in LC protein 

expression. This effect is demonstrated both in a representative blot and graphically seen in 

Figure 2, panels B and C, respectively. The IC50 was between 1 and 10 nM for VK1.2 and 

CK1.4 and 50 nM for VK1.1, with maximal protein reduction of >70% for two of the 

siRNAs, VK1.2 and VK1.4. Of note, once the maximal inhibition is reached, increased 

doses of siRNA have no additional effect; this phenomenon is not abnormal for siRNA 

efficacy and has been reported by others8. Time course studies over a 7 day (168 hour) 

period were conducted using κ1-NIH-3T3 cells transfected with 20 nM siRNA. As can be 

seen in Figure 2, panels D and E, maximal inhibition of LC expression occurred between 48 

and 96 hours, after which protein levels begin to rise again slightly. Concentrations of LC 

did not return to baseline by 7 days.

In vivo knock down of amyloidogenic light chains

Having demonstrated that siRNAs can reduce the expression of amyloidogenic LC in cell 

culture, we investigated whether siRNA delivered to cells in vivo could similarly reduce LC 

expression and secretion. For these studies, a plasmacytoma transplantation model was used. 

Briefly, in this model, SP2/0 mouse plasmacytoma cells stably expressing human 

amyloidogenic AL-009-κ1 LC were injected subcutaneously into RAG−/− recipient mice. 

The cells form plasmacytomas that continuously secrete light chain for several weeks. 

During this time period, LC can be detected in the circulation, as well as, in the kidney 

where amorphous aggregates and casts are present. Generally, after 25 days, the mice are 

sacrificed due to tumor burden. While amyloid fibrils are not observed in this model, some 
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mice eventually become bradycardic, consistent with a toxic effect of prefibrillar aggregates 

upon the heart20. We used this in vivo model to assess the efficacy of siRNA in reducing LC 

expression. The delivery of siRNA was accomplished with in vivo electroporation21–23.

By qRT-PCR, the relative levels of amyloidogenic LC mRNA in the plasmacytomas 

electroporated with VK1.2 were reduced almost 80% compared with plasmacytomas 

electroporated with control siRNA (n = 10 per group, p = 0.0016, Figure 3A). Immunoblots 

of plasmacytoma protein extracts were quantitated and normalized to actin amounts. LC 

protein levels were decreased in 7 of 10 of the samples electroporated with κ1 siRNA 

compared with controls (Figure 3B). For all 10 samples, the mean reduction in κ1 LC 

protein was 50%, and in 5 samples, protein was undetectable after treatment with the VK1.2 

siRNA. Compared to the control group, the experimental group had a statistically significant 

reduction in tumor LC protein levels (p = 0.0051, n = 10 per group). As a further assessment 

of LC protein expression, representative sections from the plasmacytomas were 

immunohistochemically stained for human κ1 LC and scored in a blinded fashion based 

upon the percentage of cells with high, moderate, or low LC expression (Figure 3C). The 

weighted score in the treated samples was 1.69, compared with a control score of 2.24 (p = 

0.033, n = 6 per group).

To determine whether the reduction in plasmacytoma LC mRNA and protein expression led 

to a reduction in circulating serum levels of LC, equal volumes of pre- and post-treatment 

sera were compared by immunoblotting. In the controls, the mean serum LC ratio level was 

2.71 over the two day experiment, while in the κ1 siRNA treated mice, LC ratio levels were 

reduced to 0.23 (p = 0.0003, n = 10 per group, Figure 4).

Discussion

The purpose of the present study was to explore the use of siRNAs as a potential treatment 

for AL amyloidosis in vitro and in vivo. It has been shown that a reduction in serum LC 

levels leads to organ function improvement in patients with AL amyloidosis24, 25. Thus, it is 

plausible that reducing LC levels through an siRNA-mediated mechanism, alone or in 

combination with other therapies, could halt AL disease progression and enable patients to 

recover organ function.

We designed siRNAs that were directed at either the variable (VL) or the constant (CL) 

regions of the LC in order to reduce amyloidogenic precursor protein expression. The basis 

of our strategy for targeting the unique VL domain was to develop sequence- and patient-

specific siRNAs for treatment directed specifically at the amyloidogenic LC; one aim of this 

approach was to spare other LCs, i.e. non-amyloidogenic proteins from same LC family that 

might contribute to immune competence in a patient. Alternatively, by targeting shared 

sequences in the CL domain, siRNAs might target many populations of LC proteins and 

could be effective for many patients. All three siRNAs, designed against the amyloidogenic 

AL-009-κ1 protein, caused a significant reduction in LC levels compared to controls in 

vitro. The most potent siRNAs had IC50s between 1 and 10 nM, and were effective at 

reducing LC levels by 75–80% at concentrations of 20 nM. In kinetic studies, LC reduction 

Hovey et al. Page 4

Gene Ther. Author manuscript; available in PMC 2012 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in vitro was maximal at 48–96 hours and persisted for at least 7 days, suggesting a weekly 

dosing regimen might be feasible.

In addition to our in vitro studies, we sought to provide proof of concept in vivo. For these 

studies, an innovative electroporation technique was used for delivery of siRNA to 

plasmacytomas secreting human amyloidogenic LC. In this model, we were able to reduce 

mRNA and protein levels in the plasmacytomas and also in the circulation with a single dose 

of siRNA. In these short-term experiments limited by plasmacytoma growth kinetics, we 

were not able to study the effects of siRNA treatment on amorphous LC deposition in the 

kidney or on the LC-induced bradycardia. Nonetheless, these results provide a proof-of-

concept for this approach of reducing LC message and protein levels. Another recent 

publication has made use of siRNA against AL LC in vitro 26, and antisense RNA against 

LC has also been explored using multiple myeloma cell lines 27.

Advantages of the siRNA approach include high specificity and low toxicity. There is 

minimal sequence homology between immunoglobulin LC and other genes; therefore, there 

should be few off target effects on other mRNAs and proteins. A consequence of LC 

knockdown could be a reduction in the humoral immune repertoire. By testing siRNA 

targeting both the variable and constant domains of the LC, we explored the balance 

between a sequence-specific, patient-specific therapy and subfamily therapy. VL-targeted 

sequences would affect only the pathologic LC sequence, but each siRNA would be 

different and would have to be designed and tested for each patient. Development of CL-

directed siRNA sequences would have broader specificity, but still should not significantly 

impair immune responses, as anti-pathogen antibody responses are not confined to particular 

subfamilies. This is an advantage over current chemotherapy and non-specific 

immunomodulatory therapy, which is broadly myelo- and immuno-suppressive.

While our studies indicate that a LC-directed siRNA approach to treatment for AL 

amyloidosis is feasible, several issues are yet to be addressed in translating this technology 

to a clinical application. Patients will need to have their amyloidogenic LC isotype, 

subfamily, and possibly even specific sequence determined to select an appropriate siRNA. 

In our database of LC sequences, AL-Base, 26% (124/477) of the AL light chain sequences 

are κ and of those 81% (100/124) are κ1 light chain with 40% (47/124) derived from the κ1 

018 germline gene donor19. Thus, a single effective κ1 siRNA targeted toward the 

framework regions of the variable domain could be used for almost half of κ patients. 

Patients with λ light chain AL amyloidosis have more genetic diversity. Thus, the specific 

light chain subfamily would have to be targeted, unless an siRNA could be identified that 

targeted all λ V regions. This seems an almost impossible requirement due to the sequence 

dissimilarity of the framework regions. In the lambda family, λ1, λ2, λ3, and λ6 are found at 

similar frequencies (19.4%, 15.7%, 19.9%, and 17.6% respectively) in our AL clinic 

population19. Though not been synthesized or validated, several siRNAs have been designed 

in silico to target the λ constant domains from λ1, λ2, λ3, and λ6, the highest represented AL 

λ light chain families. These siRNAs have 100% identity in the seed region and minor 

mismatches in the remainder of the oligonucleotides28, and can be tested in future 

experiments in vitro. Additionally, of the lambda sequences, λ6 is of particular interest 

because it is rarely found in non-AL settings and represents <2% of sequences from patients 
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with multiple myeloma or from polyclonal B cells. Preliminary results from in vitro studies 

indicate that, like those siRNAs targeting κ1 LC, λ6 targeting siRNAs are effective in 

reducing LC mRNA and protein levels (data not shown).

Further preclinical studies aimed at optimizing the pharmacokinetics and improving the 

delivery of LC-directed siRNA are necessary prior to testing in patients with AL 

amyloidosis. We have shown in vitro that siRNA knockdown can persist for up to 7 days. 

This suggests that intermittent therapy is possible in vivo. Nonetheless, it is likely that 

siRNA oligonucleotides will need to be altered to extend their duration in the circulation as 

unmodified oligonucleotides typically have a serum half-life of minutes to hours. By 

modifying the oligonucleotides, half-life can be extended to days29. Approaches include 

encapsulating the oligonucleotides in liposomes, nanoparticles, or other substances that are 

non-toxic and non-immunogenic30.

Another requirement in the development of siRNA as an AL therapeutic is for a delivery 

system that specifically targets plasma cells in the bone marrow, since amyloidogenic 

plasmacytomas are rare in patients. Possible technologies to direct siRNA delivery include 

conjugation with aptamers, lipophilic substances, peptides, or antibodies31. For example, 

antibodies against CD138 could be employed for targeted delivery to plasma cells, although 

CD138 (syndecan-1), a heparan sulfate-bearing proteoglycan, is also expressed on epithelial 

cells32. There would presumably be no effect of targeting LC siRNA to epithelial cells; 

however, these cells would provide a “sink” for the injected siRNA.

In summary, siRNA directed against amyloidogenic light chain can reduce light chain 

synthesis and secretion in cells in culture and in vivo. With the development of improved 

delivery and targeting techniques, siRNA therapeutics hold promise as an effective and less 

toxic approach for treatment of AL amyloidosis and possibly as a therapy in other protein 

misfolding and deposition diseases.

Materials and Methods

Design of siRNA against amyloidogenic light chains

A κ1 LC sequence was chosen from those available publicly in AL-Base19. This database, 

developed with the approval of the Boston University Medical Campus Institutional Review 

Board, is comprised of over 400 amyloidogenic and non-amyloidogenic immunoglobulin 

LC gene sequences, including more than 250 that were cloned and sequenced from patients 

seen at the Boston University School of Medicine/Boston Medical Center Amyloid 

Treatment & Research Program. A well-characterized κ1 sequence, AL-009-κ1, Genbank 

ID EF589383 (Kappa1 O18 family), was chosen for these studies and will be referred to as 

AL-009-κ1.

Online design algorithms from the Thermo Scientific siDESIGN® Center and the GenScript 

Corp siRNA Target finder were used to search for sequences targeting either the constant 

region to be “family specific” or the variable region to be “patient specific.” Synthetic 

siRNAs were purchased from Thermo Scientific Dharmacon RNA Technologies (Lafayette, 

CO), brought up in sterile nuclease free water, and stored at −20 °C until used. The siRNA 
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sense sequences are as follows: VK1.1 5′ GAUCUACGAUGCUUCCAAU 3′; VK1.2 

5′CUGUCAACAAUAUGCUUCU 3′; CK1.4 5′ CAAAGCAGACUACGAGAAA 3′; and 

control siRNA GG1.1 5′ GAAUUCACUCUCACAAUCA 3′. All were synthesized as 

complimentary sequences with 3′ UU overhangs.

Generation of stable cell lines and in vitro siRNA transfection

The LC sequences were amplified by reverse transcription PCR and the products were 

cloned into pcDNA3 for subsequent expression in cell lines. The pcDNA3 plasmid 

containing AL-009-κ1 LC was linearized and transfected NIH-3T3 cells Lipofectamine™ 

2000 (Invitrogen). Stable clones were generated. Clones were tested for LC expression using 

immunoblot analysis of cell lysates. Those expressing LC were used for siRNA transfection 

experiments. Similar lines of the transfected and cloned SP2/0 mouse plasmacytoma cells 

with AL-009-κ1 have been previously described33.

siRNA was transfected into 70% confluent AL-009-κ1 expressing NIH-3T3 cells using 

Lipofectamine, following manufacturer’s instructions. Transfected cells were grown in 

DMEM media supplemented with 10% FCS, 5% L-glutamine, and 1% penicillin/

streptomycin for 24–120 hours at 37 °C, 5% CO2, depending upon the experiment. Cells 

were lysed in Laemmli SDS loading buffer(Boston BioProducts).

Plasmacytoma transplantation and In vivo electroporation

All mouse experiments were carried out under protocols approved by the Boston University 

Medical Campus Institutional Animal Care and Use Committee. RAG1−/− mice34 (>8 weeks 

of age) were anesthetized with isoflurane and injected subcutaneously with 107 SP2/0 cells 

expressing AL-009-κ1 light chain. Mice were monitored bi-weekly for the development of 

subcutaneous plasmacytomas. When plasmacytomas reached 0.75 cm in greatest diameter, 

the mice were anesthetized with 100 mg/kg ketamine, 16 mg/kg xylazine, and 75–100 μL 

blood was collected; at the same time, the fur over the plasmacytoma area was depilated 

using Nair© (Church & Dwight Co., Inc) or Veet® (Reckitt Benckiser). Fifty μL of sterile 

PBS containing 12 μg siRNA (Thermo Scientific) and 40 units rRNasin (Promega) was 

injected into the center of the plasmacytoma. Thirty seconds following injection, 70 mm 

Tweezertrodes (Harvard Apparatus) were applied and the plasmacytoma was pulsed with 

four square waves of alternating polarity (480 V, pulse duration 5 ms, pulse frequency 1 

Hz). The mice were anesthetized and sacrificed by exsanguination/cardiac puncture 

followed by cervical dislocation 48 hours later. The plasmacytomas were removed and 

saved for immunohistochemistry (IHC), and protein and RNA analyses. Serum was prepared 

from the blood samples.

mRNA isolation and qPCR

Cells were harvested and RNA prepared using TRIzol® (Invitrogen) according to the 

manufacturer’s instructions. Plasmacytoma samples were frozen in RNAlater (Ambion) and 

stored at −80 °C until use. Tissues were homogenized in TRIzol; RNA isolation was 

performed per manufacturer’s instructions. Quantitation of mRNA was performed on a 

SmartSpec™ Plus spectrophotometer (BioRad) and samples were stored at −80 °C until 

further analysis. RNA samples were treated following manufacturer’s instructions (RQ1 
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RNase Free DNase (Promega)). DNase-digested samples were run over Purelink RNA mini 

kit columns (Invitrogen) to remove DNA fragments. Subsequently, cDNA was synthesized 

using the iScript™ cDNA Synthesis Kit (Bio-Rad) following the manufacturer’s instructions.

qPCR was performed on a BioRad C1000 Thermocycler using Sybr green (BioRad) with 

primers for AL-009-κ1 LC (forward primer: CACCCTGACGCTGAGCAAA, reverse: 

TGACTTCGCAGGCGTAGACTT, product size 59 nt), GAPDH, used as a housekeeping 

gene control (forward primer: CAACGGGAAGCCCATCAC, reverse: 

GCCTCACCCCATTTGATGTTA, product size 63 nt), and mouse Blimp1, used as a 

plasma cell specific control (primers: AAAGGACATGGATGGCTTTCG and 

GTGCCCGGATAGGATAAACCA, product size 80 nt). LC primers were designed by 

Primer Express (Applied Biosystems); GAPDH and Blimp1 primers were designed using 

Primer Blast (NCBI). All primers were synthesized by Invitrogen. Relative amounts of RNA 

were quantitated using the ΔΔCt method35, 36. ΔCt values were normalized to Blimp1 or 

GAPDH expression. Statistics were performed using GraphPad Prism v.5.

SDS-PAGE and immunoblotting

10% SDS polyacrylamide gels with 5% stacking gels were used to separate samples. For cell 

lysate and plasmacytoma homogenate samples, equal protein amounts were loaded; for 

serum samples, equal volumes (5 μL) were loaded. Gels were run in 1X TGS running buffer. 

The proteins were transferred to PVDF Immobilon-P transfer membranes (Millipore). After 

transfer, the membrane was blocked in 5% milk in TBS-T for at least one hour. For 

detecting K1 LC proteins, polyclonal goat anti-human kappa immunoglobulin (Ig) LC 

(Strategic Biosolutions) and polyclonal donkey anti-goat IgG (Santa Cruz) antibodies were 

used. For actin blots, the mouse anti-beta actin (Sigma) and goat anti-mouse IgG (Santa 

Cruz) antibodies were used. Samples were detected using chemiluminescence (Enhanced 

Chemiluminescence, Pierce) with film (Kodak) or visualized on the Kodak Image Station 

4000MM (Kodak). Plasmacytoma homogenate and cell lysate LC values were normalized to 

actin. Serum LC values were not normalized, as equal volumes of samples were loaded. 

Band mean intensities were quantitated using ImageJ software (NIH). Serum membranes 

were visually inspected for proper loading using Ponceau staining (data not shown).

Immunohistochemistry

Tissues were fixed in 10% formalin, dehydrated, and embedded in paraffin. Five μm 

sections were cut, baked at 60 °C for 1 hour, deparaffinized, and washed in dH2O. To block 

endogenous peroxide reactivity, the sections were placed in 0.3% hydrogen peroxide in 

methanol for 10 minutes. The antigen was retrieved with Citra plus solution (BioGenex) in a 

microwave for 3 minutes on high and 8 minutes on medium. Immunostaining was 

performed on an Autostainer (Dakocytomation, Carpinteria, CA) using polyclonal rabbit 

anti-human LC antibodies (Dako). Sections were incubated in primary antibody and 

secondary antibody, each for 30 minutes, and followed by exposure to DAB substrate for 5 

minutes. Buffer washings were carried out between incubations; dH2O washing after DAB 

substrate (Dako) incubation was performed to stop the reaction. After completion of 

immunostaining, the sections were counterstained with Harris hematoxylin for 1 minute, 
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washed with dH2O until clear, dipped in 0.25% acid alcohol, washed with distilled water, 

blued in 1% ammonia for 30 seconds, dehydrated, and mounted for microscopy.

Immunohistochemistry Scoring

The immunohistochemical staining was reviewed and scored in a blinded fashion by a 

hematopathologist (C.O.). The percentage of cells with strong cytoplasmic staining (3+), 

moderate staining (2+), and weak or no staining (1+) were estimated and a weighted score 

was assigned as the sum of the percentage x score for each. Weighted scores were compared 

by Student’s t-test and plotted as an average score for each group.

Statistics

All statistical analyses were performed in GraphPad Prism v.5. For immunoblots, 

quantitation was performed with ImageJ software. Mean band intensities were compared 

between groups using a one-tailed Student’s t-test. Immunohistochemisty weighted scores 

were compared between groups with a one-tailed Student’s t-test. qPCR samples were 

compared using the ΔΔCt method. ΔCt values were normalized to mouse BLIMP1 

expression and compared with a one-tailed Student’s t-test.
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Figure 1. siRNA target sites on a prototype κ1 LC
Diagram of siRNA target sites on patient amyloidogenic κ1 immunoglobulin LC, AL-009-

κ1. Two siRNAs were designed to target different regions of the light chain variable (VL) 

domain and one to target the light chain constant (CL) domain. One siRNA, GG1.1, was 

designed as a control directed at the κ1 germline gene, but not the AL-009-κ1 sequence.
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Figure 2. In vitro κ1 mRNA and protein expression after siRNA treatment
(A) NIH-3T3 cells stably expressing AL-009-κ1 were treated for 48 hours with 20nM of 

either VK1.1, VK1.2, or CK1.2 siRNAs; mean relative mRNA levels are depicted (* 

indicates p < 0.5). Reduction in cellular LC protein at 48 hours with increasing 

concentrations of siRNA are plotted in (B); representative immunoblots are shown in (C). 

Time course of reduction of protein levels cells following treatment with 20 nM of VK1.1, 

VK1.2 or CK1.2 siRNA are plotted in (D); representative immunoblots are shown (E).

Hovey et al. Page 13

Gene Ther. Author manuscript; available in PMC 2012 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Effect of siRNA, delivered by in vivo electroporation, on plasmacytoma LC mRNA and 
protein levels
Plasmacytomas were formed over 2–3 weeks in mice by subcutaneous injection of SP2/0 

cells transfected with human amyloidogenic LC. The plasmacytomas were then injected 

with 12 μg of control or experimental (VK1.2) siRNA and in vivo electroporation was 

performed. 48 hours later, the mice were sacrificed for analysis and plasmacytoma tissue 

was collected. (A) Plasmacytoma κ1 LC mRNA expression levels relative to Blimp1, a 

plasma cell specific marker, are depicted (** indicates p = 0.0016, n = 10 per group). (B) 

Plasmacytoma lysates immunoblotted for human κ1 LC; each lane represents an individual 

plasmacytoma, control treated samples underlined and in italics. Data depicted as the mean 

for control siRNA vs. VK1.2 siRNA treated plasmacytoma LC protein levels (** indicates p 

= 0.0051, n = 10 per group). (C) Representative sections of plasmacytomas treated with 

control or experimental siRNA, brown staining for human κ1 LC.
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Figure 4. Effect of siRNA, delivered by in vivo electroporation, on circulating LC protein levels
(A) Comparison by immunoblot of κ1 LC levels in sera taken from the same mouse pre- and 

post-treatment (48 hours). Control-treated samples are underlined and italicized. (B) Graph 

depicting the ratio of post-treatment to pre-treatment circulating κ1 Ig LC levels (post/pre) 

quantitated from the associated immunoblot for control and experimental siRNA treatment 

(*** p = 0.0003, n = 10 per group).
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