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The prediction of transcription factor (TF) activities from the gene expression of their targets (i.e., TF regulon) is becoming a

widely used approach to characterize the functional status of transcriptional regulatory circuits. Several strategies and data

sets have been proposed to link the target genes likely regulated by a TF, each one providing a different level of evidence.

The most established ones are (1) manually curated repositories, (2) interactions derived from ChIP-seq binding data, (3) in

silico prediction of TF binding on gene promoters, and (4) reverse-engineered regulons from large gene expression data

sets. However, it is not known how these different sources of regulons affect the TF activity estimations and, thereby, down-

stream analysis and interpretation. Here we compared the accuracy and biases of these strategies to define human TF reg-

ulons by means of their ability to predict changes in TF activities in three reference benchmark data sets. We assembled a

collection of TF–target interactions for 1541 human TFs and evaluated how different molecular and regulatory properties of

the TFs, such as the DNA-binding domain, specificities, or mode of interaction with the chromatin, affect the predictions of

TF activity. We assessed their coverage and found little overlap on the regulons derived from each strategy and better per-

formance by literature-curated information followed by ChIP-seq data. We provide an integrated resource of all TF–target

interactions derived through these strategies, with confidence scores, as a resource for enhanced prediction of TF activities.

[Supplemental material is available for this article.]

The regulation of gene expression programs is fundamental for cell
development, differentiation, and tissue homeostasis. Dysregula-
tion of such programs is responsible for most aberrant cell pheno-
types, including cancer and other complex diseases. Because of
their ability to interact with specific DNA regulatory regions, tran-
scription factors (TFs) are key proteins in linking signaling trans-
duction networks to gene-specific transcriptional regulation.
Consequently, TFs have been proposed as downstream readouts
of pathway activities, and the assessment of their activity status
has gainedmuch attention in the last years. Noteworthy examples
are their use in the characterization of driver somatic mutations,
the identification of newmarkers of drug response in cancer (Alva-
rez et al. 2016; Gonzalez-Perez 2016; Osmanbeyoglu et al. 2017;
Garcia-Alonso et al. 2018), and the reconstruction of the regulato-
ry processes dictating cell differentiation (Carro et al. 2010;
Schacht et al. 2014; van de Peppel et al. 2017).

Because high-throughput measurements of TF activities are
not available, a commonpractice is to estimate themcomputation-
ally from the gene expression levels of their direct targets (the so-
called TF regulon).Multiple in silicomethods exist to infer TF activ-
ity,with limited overlap in the results (Trescher et al. 2017). The ge-
neral assumption behind thosemethods is that the level of protein
activity of a TF is reflected on the transcript levels of its target genes
(Essaghir et al. 2010). Accurate TF activity quantifications will,
therefore, depend on the availability of high-confidence sets of

functional targets, in which the TF has a direct regulatory effect
on the transcription of the target gene, and the specificity of the
TF–target interaction, so that the regulation of the target’s tran-
scription can be unambiguously assigned to the TF. Moreover, if
the TF activity quantification approach is intended to be generally
applicable to any cell type, context-independent TF–target interac-
tions are preferred so that the predictions are consistent and com-
parable across cell types (Ding et al. 2018; Garcia-Alonso et al.
2018). This context-independence is key for systematic studies us-
ingheterogeneous populations of cell types, such as cell line panels
spanning different tumor types or differentiation stages.

Several strategies and resources have been proposed to define
the set of target genes directly regulated by a TF. These can be
grouped according to the strength of evidence supporting a TF–tar-
get interaction. The first types are resources collectingmanually cu-
rated interactions from peer-reviewed literature. Literature-curated
resources are expected to contain high-quality TF–target regulatory
interactions with experimental evidence. To our knowledge, there
are around a dozen literature-curated databases collecting interac-
tions for humans (Kolchanov et al. 2002; Jiang et al. 2007;
Portales-Casamar et al. 2009; Essaghir et al. 2010; Gronostajski
et al. 2011; Kawaji et al. 2011; Bovolenta et al. 2012; Kanehisa
et al. 2012; Yusuf et al. 2012; Orchard et al. 2014; Lesurf et al.
2016;Hanet al. 2018).However, thesedatabasesdiffer in their cura-
tion protocols, literature selection criteria, and quality controls
(Tripathi et al. 2016). Consequently, there is a small overlap
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between resources, which generates uncertainty about which ones
should be used (Han et al. 2018). In addition, literature-curated re-
sources have a biased coverage toward well-studied TFs, in particu-
lar those involved in diseases. Another strategy is high-throughput
measurements of TF-DNA binding such as chromatin immunopre-
cipitation (ChIP) (Johnson et al. 2007; Lachmann et al. 2010) or
DNase I hypersensitivity (DNase) (Crawford et al. 2006) assays cou-
pled to DNA sequencing (ChIP-seq or DNase-seq). These provide
high-resolution maps of in vivo DNA-binding regions. Still, most
binding events represent nonfunctional interactions, meaning
that TFbindingdoesnot always correspondwith changes in the ex-
pression levels of the targetedgene (Li et al. 2008; Fisheret al. 2012).
As for the literature-curated resources, TF binding peaks derived
through these in vivomethodologies are relative to the experimen-
tal conditions and cell types used and are biased toward well-stud-
ied TFs. To overcome part of the limitations inherent to the
mentionedexperimental conditions, a third strategy is to computa-
tionally predict TF–target interactions using models of TF binding
sites (TFBSs). In silico identification of TFBSs on gene regulatory re-
gions relies on the assumption thatTFshavebindingpreferences to
specific DNA sequences, referred to as “binding motifs” (Stormo
2000; Khan et al. 2018; Kulakovskiy et al. 2018). TF bindingmotifs,
generally modeled as position weight matrices (PWMs), are then
used to scan the regulatory sequences in a genome to identify can-
didate target genes (Sinha 2006). Consequently, predictions are re-
stricted to TFs for which binding motifs are known. Additionally,
these methods suffer from a significant number of false positives
because the binding never occurs in vivo or is nonfunctional, or
because of the uncertainty in which site is regulating which
gene. Finally, TF–target interactions can also be reverse-engineered
in silico from large-scale gene expression profiles derived from a
condition of interest (Rice et al. 2005;Margolin et al. 2006). The as-
sumption is that the transcript levels of a TF are informative for the
expression levels of their targeted genes. This approach overcomes
several limitations of the previous TFBS predictionmethod such as
the cell type specificities (i.e., predictions are tailored toward the
underlying expression profile) and the TF coverage (i.e., regulons
can be inferred for any TF whose expression varies sufficiently in
the corresponding gene expression data set). Still, the approach
may fail to infer TF–target interactions for TFs regulated at amolec-
ular level other than transcription (such as posttranslational mod-
ification and protein–protein interactions) (Tootle and Rebay
2005), and their power to distinguish direct and indirect regulation
is controversial (Margolin and Califano 2007; Marbach et al. 2010,
2012). Taken together, currently there is no universal strategy to
identify all bona fide targets of the full collection of TFs across all
possible cell conditions.

Despite their broad use, there is no systematic evaluation of
the impact of the evidence supporting the TF–target interactions
on the estimation of TF activities. However, the evidence used
can substantially affect the results and, thereby, downstream anal-
ysis and interpretation. To address this problem, we performed a
comprehensive evaluation. First, we retrieved human TF–target in-
teractions for 1541 TFs using themost established strategies: (1) lit-
erature-curated resources, (2) ChIP-seq binding data, (3) TFBS
predictions on human promoters, and (4) reverse-engineered reg-
ulons inferred from normal tissue gene expression profiles from
theGenotype-Tissue Expression (GTEx) (Carithers et al. 2015) pro-
ject (hereafter inferred regulons). We then evaluated to what ex-
tent the evidence supporting the TF–target interactions affects TF
activity estimations in three different benchmark data sets: two in-
volving gene expression measurements after TF perturbations and

one derived from cell-specific essentiality profiles in cancer cell
lines. We also investigated the limitations and benefits of the dif-
ferent TF–target data sets and how these relate to several TF prop-
erties such as the mode of regulation (MoR) or regulatory effects
on their targets, the mode of interaction with the chromatin, the
DNA-binding domains, and specificity, dimerization, or tissue of
expression. Finally, we provide general guidelines for the quantifi-
cation of TF activities across heterogeneous populations of samples
together with the retrieved TF regulons as a resource for the
community.

Results

TF–target data sets description and overview

First, we retrieved putative direct transcriptional targets for 1541
human TFs, as defined by TFClass (Supplemental Table S1; Wing-
ender et al. 2013), usingdifferent strategies thatwegroupedaccord-
ing to the evidence type: (1) literature-curated collections from
publicly available databases (Kolchanov et al. 2002; Jiang et al.
2007; Portales-Casamar et al. 2009; Essaghir et al. 2010; Gronostaj-
ski et al. 2011; Kawaji et al. 2011; Bovolenta et al. 2012; Kanehisa
et al. 2012; Yusuf et al. 2012; Orchard et al. 2014; Lesurf et al.
2016;Han et al. 2018), (2) ChIP-seq interactions fromReMap (Chè-
neby et al. 2018), (3) TFBS predictions on gene promoters using TF
binding motifs from HOCOMOCO (Kulakovskiy et al. 2018) and
JASPAR (Khan et al. 2018), and (4) transcriptional regulatory inter-
actions across normal human GTEx tissues (Carithers et al. 2015)
and The Cancer Genome Atlas (TCGA) cancer types inferred from
expressiondata (Alvarez et al. 2016)usingARACNE (Fig. 1A;Margo-
lin et al. 2006). From the literature-curated resources, we directly
retrieved all the TF–target interactions as indicated in the
corresponding databases. For ChIP-seq, we downloaded the bind-
ing peaks from ReMap and scored the interactions between each
TF and each gene according to the distance between the TFBSs
and the genes’ transcription start sites. We evaluated different fil-
tering strategies that consisted of selecting only the top-scoring
100, 200,500, and1000 target genes foreachTF. ForTFbindingpre-
dictions on promoters, we used the FIMO scanning tool (Grant
et al. 2011) with TFmotifs fromHOCOMOCO and JASPAR, identi-
fying 16 and 13 million binding events (P-value<0.0001), res-
pectively. Again, we studied different filtering strategies to select
the top 100, 200, 500, or 1000 unique hits and filter these accord-
ing to the conservation of the promoter binding sequence or
chromatin accessibility annotations from Ensembl. Finally, for
the inference of transcriptional interactions, we ran ARACNE
and VIPER on each GTEx tissue independently to build tissue-spe-
cific regulatory networks. Similarity between tissue-specific regu-
lons was generally low (Supplemental Fig. S1A). Cancer-specific
inferred networks were directly downloaded from the aracne
.networks R package (https://bioconductor.org/packages/release/
data/experiment/html/aracne.networks.html). Interactions iden-
tified in at least two, three, five, or 10 tissues or cancer types were
aggregated to derive normal and cancer consensus-inferred TF reg-
ulons, respectively. Normal consensus regulons were larger than
pancancer consensus regulons owing to the larger number of tis-
sues considered (27 from GTEx versus 14 cancer types from
TCGA aracne.networks) (Supplemental Fig. S2). See the Methods
section for more details.

Collectively, our data set contains 1.5million interactions be-
tween 1399 TFs and 27,976 target genes (Supplemental Table S2).
For 101 TFs (6.7%), we retrieved no targets using the mentioned
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strategies. Comparison of the TFs covered per evidence type (Fig.
1B) revealed that 638 TFs (42.4%)were covered by a single strategy,
withmost of these single-evidence TFs reported by transcriptional-
ly inferred regulons alone (578 TFs, 38.4%). On the opposite side,
for 462 TFs (30.7%), we were able to identify targets via three or
more lines of evidence. Overlap between curated resources was
highly variable, with 26% of the TFs being covered by the
TRRUST database alone (Supplemental Fig. S3A).

Enrichment analysis revealed that the TFs covered by at
least three strategies were expressed across the majority of human
tissues (>90% GTEx tissues; Fisher’s exact test, FDR=1.77×10−6)
(Supplemental Fig. S4A) and enriched in Cancer Pathways
(KEGG; Fisher’s exact test, FDR=2.41×10−18) (Supplemental Fig.

S4B). Moreover, these TFs were enriched
in well-known DNA-binding domain
families such as (1) basic helix–loop–he-
lix factors (bHLHs), including MYC and
E2F TF families; (2) basic leucine zipper
factors (bZIP), including JUN-, FOS-, and
ATF-relatedAP1 TFs; (3) nuclear receptors
with C4 zinc fingers; and (4) tryptophan
cluster factors (Fisher’s exact test, FDR<
0.05). Conversely, C2H2 zinc finger fac-
tors were underrepresented (Fig. 1C) and
only covered by the GTEx-inferred regu-
lons (Fisher’s exact test, FDR=1.91×
10−12) (Supplemental Fig. S4C). When
we zoomed into the different evidence
types, manually curated, ChIP-seq, and
also interactions predicted from TFBS
models suffer from the same bias toward
disease-related pathways and prominent
TFs.

We subsequently compared the TF–
targets covered across the different strate-
gies (Fig. 1D). The majority of TF–target
interactions (96.3%) were supported by
a single line of evidence (51.7%, inwhich
the evidence was a computational pre-
diction); 37,220 (3.4%) are supported
by two, 1933 (0.2%) by three, and only
56 by all four lines of evidence. The
same sparsity at the TF–target level is ob-
served between curated resources, where,
again,most of the interactions are report-
ed by a single resource (Supplemental
Fig. S3B).

TF–target data sets’ benchmark

Next, we attempted to evaluate the strat-
egies to define TF–target regulons accord-
ing to their ability to predict changes in
TF activities. We reasoned that if the set
of targets retrieved for a TF is reliable
(i.e., their expression is directly regulated
by the TF), the collective expression level
of the regulon should be informative of
the transcriptional activity of the TF. To
determine whether a TF–target data set
provides accurate TF regulons for activity
inference, we evaluated the changes in

TF activities in three benchmark data sets. First, wemanually curat-
ed gene expression experiments from the Gene Expression
Omnibus (GEO), including TF knockouts, TF overexpression, or
TF modulation using a targeted compound. We argued that these
experiments are expected to lead to the perturbation of TF activi-
ties and, therefore, could be used as benchmark data sets. In total,
we collected 189 low-throughput (benchmark data set B1) and two
high-throughput (benchmark data set B2) perturbation experi-
ments (Fig. 2A). Because perturbation experiments are likely to
be biased toward well-studied TFs, which may have been thor-
oughly evaluated in the curated resources, we decided to include
a third benchmark data set (which we called B3) in which the pos-
itive controls are defined in a data-drivenway from a genome-wide

Figure 1. TF–target resources overview. (A) Summary of the resources and strategies used to derive hu-
man TF–target interactions classified according to the evidence level: manually curated resources (yel-
low), ChIP-seq binding experimental data (orange), prediction of TF binding motifs based on gene
promoter sequences (green), or inference from GTEx data (blue). All the resources were used in the
benchmark, except NFIRegulomeDB, which has too low coverage. (B) TF coverage and overlaps across
the different evidence classes, represented via UpSet plots (Lex and Gehlenborg 2014). Left bar plot rep-
resents the total number of TF per evidence class. Top bar plot represents the number of overlapping TFs
in the intersection. Dark circles in the matrix indicate the evidence class that is part of the intersection.
(C) TF classes (from TFClass) enriched in the TFs covered by more than two lines of evidence. Dots indi-
cate the log odds ratio; error bars, the confidence interval. Colors indicate the FDR. (D) UpSet plot rep-
resenting the TF–target’s coverage and overlaps across the different evidence classes (similar as in B).
Note that for regulons inferred from GTEx, only TF–targets or three or more tissues are shown. For
TFBSs and ChIP-seq, only top 500 unique hits are shown; P<0.0001.
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analysis. Specifically, for B3 we used two recently published high-
throughput gene essentiality screens in cancer cell lines (for which
basal gene expression data is available) (McDonald et al. 2017;
Tsherniak et al. 2017) to identify putatively active TFs. The bench-
marks covered 222 unique TFs, with 94, 33, and 135 TFs in B1, B2,
and B3, respectively. Thirty-two of these TFs are covered by two
benchmarks and only six by all three benchmarks (Supplemental
Fig. S5). No TF is covered by all the benchmark and all the regulon
data sets.

With the data in hand, the first step in our benchmark strat-
egy (Fig. 2B) consisted of estimating TF regulon activities from the
gene expression signatures (i.e., expression-level statistic). These
gene expression signatures are derived differently across the
benchmark data sets because of their differences in the experimen-
tal design. For the B1 data set, because it contains replicates for
control and perturbed samples (knockout, overexpression, etc.),
we defined the gene expression signature of the perturbation as
the differential expression between the positive (with expected
higher TF activity) and the negative samples (with expected lower
TF activity). In contrast, the B2 data set does not contain perturba-
tion replicates. Here, we normalized the gene expression profiles
using z-score transformation to derive the expression-level statis-
tic, which quantifies whether a gene in a sample is more or less ex-
pressed in the context of the B2 population distribution. B3 does
not contain perturbation data, only basal gene expression from
unperturbed samples. Here, the gene expression signatures are de-
rived as for B2. With the gene expression signatures in hand, our
second step applied the analytic rank-based enrichment analysis
(aREA) method to infer the TF regulon normalized enrichment
scores (NESs) that we used as estimates of TF activities. Finally,
NES values were used to rank, for each TF regulon, the experiments
or samples within each benchmark data set. The estimated TF ac-
tivities were then evaluated against our benchmarks using a preci-
sion-recall analysis (see Methods); we compared the ranked TF
activities estimated for our positive samples (i.e., the perturbed
TF–sample pairs in B1 and B2 and the essential TF–sample pairs
in B3) against the negative samples (i.e., samples with a different
perturbed TF in B1 and B2 and the inactive TF–sample pairs in
B3) and quantified the AUPRC and AUROC for each TF–target
data set.

The predicted TF activities derived frommost of the resources
performed better than random (AUPRC>0.5, AUROC>0.5) (Fig.
3A; Supplemental Figs. S6, S7). Overall, there is an inverse relation-

ship between the coverage and the accuracy across regulon data
sets (Fig. 3A). TF regulons manually reviewed by experts, such as
those listed in TF-centric review papers or in the TFe resource,
reached the highest accuracy levels. In contrast, TF regulons deter-
mined in silico from TF binding motifs or inferred from data
reached higher TFs coverage but lower accuracy. ChIP-seq–derived
regulons display intermediate performances and coverage. Better
accuracy for curated and ChIP-seq regulons was also observed on
the overlapping TFs covered by all four types of evidences (Fig. 3B).

Weobserved a high variability formost of the curated resourc-
es that cover few TFs, such as Fantom4, ORegAnno, PAZAR, or
TFact (Supplemental Fig. S6, S7). PAZAR seems to be a special
case (Supplemental Fig. S3) because it is the largest curated re-
source in terms of number of interactions (n=174,439) but not
in terms of number of TFs covered (n=77). Looking at the regulon
sizes, PAZAR is the only database containing regulons with more
than 1000 targets (n=24). This is likely because of the way
PAZAR incorporates TF–target interactions, with some of them ex-
tracted from binding experiments. In contrast, the performance of
TRRUST, the resource with the highest TF coverage, is robust across
all three benchmark data sets. Finally, TF–target interactions man-
ually curated by experts in TFe or in specific reviews consistently
displayed the highest performances.

We also explored how the use of different filters and/or pa-
rameters in the generation of the ChIP-seq and in silico data sets
would impact their performance. Comparisons across the three
different benchmarks revealed distinct performances (for AUPRC
and AUROC, see, respectively, Supplemental Figs. S6, S7). We rea-
soned that these divergences may likely be owing to either the dif-
ferent cell models and conditions used or to the differences in
number and type of TFs covered in each experiment. Still, we ob-
served a global tendency when comparing some filtering features.
For example, for the regulons inferred from ChIP-seq and TF pro-
moter binding, we evaluated different size cutoffs (top 100, 200,
500, and 1000 targets) and observed that intermediate cutoffs
reached higher AUC values overall (Supplemental Figs. S6A,B,
S7A,B). The use of chromatin accessibility information to further
filter TF binding hits on promoters decreased their performance,
whereas the inclusion of sequence-based conservation reached
similar or better performances (Supplemental Figs. S6C, S7C). TF
binding motifs from HOCOMOCO performed generally better
than the ones from JASPAR, considering only TFs covered by
both resources (Supplemental Figs. S6B,C, S7B,C), likely because

Figure 2. Benchmark data sets. (A) Description of the three benchmark data sets. (B) Benchmark analysis scheme.
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Figure 3. Comparison of TF activity prediction performances by TF–target resource for each benchmark data set. (A) Performance comparison of the
regulon data sets, in terms of TF activity prediction, against the three benchmark data sets. Confidence versus coverage plots in which the x-axis represents
the average AUPRC from the activity rank’s position of the perturbed/essential TF with respect to the negative controls; y-axis represents the number of TFs
(with five or more targets) in the benchmark covered by each regulon data set. Dot colors indicate the evidence type (single data sets/evidence). Linked
dots represent different filtering strategies in the generation of transcriptionally inferred and TFBS-derived regulons. (B) Performance comparison of the
regulon data sets on the overlapping TFs. The x-axis indicates the AUPRC from the activity rank’s position of the perturbed/essential TF against the
same number of randomly selected negatives; y-axis represents the regulon data set. The number of overlapping TFs is indicated at the top right corner.
(C) Similar to A but comparing GTEx-inferred (green) versus TCGA-inferred (red) regulons. Results for both tissue/cancer-specific (dark color) and the re-
spective normal and pancancer consensus regulons (light) are shown. (D) Similar to A but here the regulons are built as a combination of the initial regulon
data sets (i.e., TF–target supported by an agreement of two (or three) of any of the four mentioned strategies). Dot colors indicate the nature of the com-
bination (combined evidence). The label accompanying the “consensus within curated resources” dots indicates the number of resources supporting the
TF–target interaction.
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the former is based on human experiments whereas the latter also
includes data from other vertebrates. Regarding the TF regulons in-
ferred from GTEx transcriptomics data, tissue-specific regulons
(i.e., derived from the GTEx tissue matching the tissue lineage of
the perturbed samples) performed similarly to tissue-consensus
regulons (i.e., interactions detected inmore than oneGTEx tissue),
where the performance increased for consensus TF–target interac-
tions observed in more GTEx tissues (Supplemental Figs. S6D,
S7D). No relationship was observed between the number of sam-
ples per tissue type used to infer the tissue-specific regulons and
the accuracy of the benchmarking (Supplemental Fig. S8).

Because some of the samples used in the benchmark are can-
cer cell lines, we askedwhether networks inferred fromTCGA rath-
er than GTEx normal gene expression data could improve the
performance of this type of regulon. For this purpose, we down-
loaded 14 cancer-type-specific networks constructed with
ARACNE from Alvarez et al. (2016) and tested these cancer specific
regulons against our benchmark data sets. Our results suggest a
slightly better performance of the TCGA regulons for the B1 and
B3 (Fig. 3C). Cancer-specific networks covered fewer TFs from
the benchmarks, either because the samples used in the bench-
mark are noncancerous (such as the case of B1) or because the can-
cer type is not covered in the TCGA. When the comparison is
restricted to the overlapping TFs (five overlapping TFs in B1 and
B3; results for B2 not shown because of the lack of data)
(Supplemental Fig. S9), the consensus pancancer regulons includ-
ing TF–target interactions found in at least five cancer types per-
formed better than the corresponding GTEx in both B1 and B3.
However, when we used regulatory networks matching either
the underlying normal tissue (GTEx) or cancerous tissue (TCGA),
we observed opposite results: Whereas in B3 cancer-type-specific
regulons performed better than the normal ones, the opposite
was observed in B1. We hypothesize that the differences may arise
from the different cancer types and TFs included in B1 and B3.

We also asked whether the inclusion of theMoR provided for
some TF–target interactions in some literature-curated databases
had an impact on the prediction of the TF activities. The compar-
ison of signed and unsigned versions of the same regulons revealed
similar performances, with the exception of TRRUST database
(Supplemental Figs. S6E, S7E). The signed version of TRRUST regu-
lons significantly improved the TF activity predictions (Wilcoxon
test; P<0.05) for all three benchmark data sets.

Finally, we selected the TF–target interactions supported by
more than one line of evidence and recomputed the activities for
the resulting TF regulons across the benchmark data sets (Fig.
3D). Globally, regulons containing TF–targets supported by at least
two literature-curated resources displayed the best performances
across the three benchmark data sets. In contrast, regulons built
by intersecting in silico predictions performed poorly, with no im-
provement compared with the use of regulons uniquely derived
from each single strategy alone. Interactions supported by at least
one literature-curated resource and ChIP-seq, or supported by any
three lines of evidence, showed an intermediate performance.

TF properties affecting inference of regulon activities

Not all of the TFs function in the same way nor are they regulated
by the same mechanisms. TFs may differ in their MoR, the way in
which they interact with the chromatin, the conditions upon
which they are expressed, the regulation by posttranslationalmod-
ification, or the interactionwith cofactors. To characterize if any of
these properties affect the power to infer accurate TF activities, we

annotated, when possible, our list of human TFs according to their
global regulatory effect on the targets (i.e., activators, repressors, or
dual) in UniProt (The UniProt Consortium 2017), whether these
operate as complexes (i.e., heteromers or homomers) according
to UniProt or the method of Lambert et al. (2018), the DNA-bind-
ing specificity (Lambert et al. 2018), the mode of interaction with
the chromatin (pioneers, settlers, and migrants) (Ehsani et al.
2016), and their classification based on their DNA-binding do-
mains from TFClass (Fig. 4A). Additionally, we classified the TFs
as tissue-specific or widely expressed if their transcripts were de-
tected in <10% or >90% of the tissues in GTEx (for details, see
Methods) (Supplemental Table S1).

To evaluate any potential bias in the accuracy of TF activity
estimations in each regulon data set, we ranked the perturbed
TFs in the benchmark according to their NES and ran a gene set en-
richment analysis (Subramanian et al. 2005). Our results revealed
that, indeed, certain TF properties associate with better and worse
TF activity predictions in the context of certain benchmarks and
TF regulon data sets (Fig. 4B). For example, when evaluating the
DNA-binding specificity of the TFs, those classified as having low
specificity are worse predicted than those with higher DNA-bind-
ing specificity, using ChIP-seq and expression-inferred regulons.
Focusing on the MoR of their targets, TFs that are expected to act
only as activators or repressors are better predicted than TFs with
dual MoR, using regulons from ChIP-seq, TFBS, and literature-cu-
rated sources. This is probably caused by the incomplete knowl-
edge on the MoR of TF–target interactions in these data sets. In
contrast, TFs with a dual MoR are better predicted using consensus
regulons inferred fromGTEx, likely because of the inference of the
TF–target interaction sign from the gene expression patterns. Also,
we observed that the properties related to the regulation of the TF
function strongly impact the performance of the predictions. For
example, TFs binding the DNA as heteromers were poorly predict-
ed using regulons inferred from expression data, likely because the
inference approach does not consider interactions between TFs in
their model. Similarly, when studying the impact of DNA accessi-
bility, our results showed that “settler TFs,” which bind to all the
accessible DNA sites matching their DNA-binding motifs, display
better predictions across all regulon types except for those inferred
from gene expression. In contrast, TFs withmore complex interac-
tions with the chromatin and cofactors, called “migrant TFs”
(binding only to part of the accessible DNA sites matching their
DNA-binding motifs), are worse predicted using ChIP-seq and
literature-curated regulons. Finally, TFs ubiquitously expressed
across GTEx tissues are likely involved in awider range of processes
and intricate regulatory mechanisms (Vaquerizas et al. 2009) and
are worse predicted than TFs with tissue-specific expression (one
or twoGTEx tissues). Taken together, these results indicate that ac-
tivity predictions are less accurate for TFs under complex molecu-
lar control.

An integrated resource of scored TF–target interactions

With the aim of providing a comprehensive resource of regulatory
TF–target interactions, we have integrated all the collected interac-
tions from the four lines of evidence and assigned a confidence
score to each one based on the benchmark results. This resource in-
corporates (1) all the interactions derived from the literature-curat-
ed resources, (2) the top 500 scoring interactions per TF identified
from the collection of ChIP-seq experiments from ReMap, (3) the
top 500 interactions per TF identified by scanning the humangene
promoters with JASPAR and HOCOMOCO motifs (P<0.001), and
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(4) the regulons inferred by ARACNE in at least three GTEx normal
tissues. Given that on cancer samples cancer-specific regulons in-
ferred by ARACNE performed better than regulons inferred from
normal tissues, we have generated a pancancer version of the re-
source in which GTEx TF–target interactions are substituted by
those observed in at least three TCGA cancer types. These resources
are available in OmniPath (Türei et al. 2016; www.omnipathdb
.org) and at https://saezlab.github.io/DoRothEA/. The normal col-
lection comprises 1,077,121 TF–target candidate regulatory inter-
actions between 1402 TFs and 26,984 targets. The pancancer
collection includes 636,753 TF–target candidate regulatory inter-
actions between 1412 TFs and 26,939 targets.

Here, for each TF–target interaction, we assigned a confidence
score based on the observations from our benchmark. The score
comprises five categories, ranging from A (highest confidence)
to E (lowest confidence). The scoring criteria are described in
Figure 5A. Briefly, interactions that are supported by all the four

lines of evidence, manually curated by
experts in specific reviews, or supported
in at least two curated resources are con-
sidered to be highly reliable and were as-
signed an A score. Scores B through D are
reserved for curated and/or ChIP-seq in-
teractions with different levels of addi-
tional evidence. Finally, an E score is
used for interactions that are uniquely
supported by computational predictions.
To provide the most confident regulon
for each TF, we aggregated the TF–target
interactions with the highest possible
confidence score that resulted in a regu-
lon equal to or greater than 10 targets.
The final confidence score assigned to
the TF regulon is the lowest confidence
score of its component targets. Figure
5B describes the TFs and interactions cov-
erage per scoring category in the normal
and the pancancer data sets (Sup-
plemental Tables S3, S4).

Finally, we used the scored regulons
to characterize TF activities on our
benchmark data sets. As expected, TF ac-
tivities derived from A- to B-scored target
regulons perform better than activities
estimated using E-scored targets in the
three benchmark data sets (Fig. 5C).
Similar results are observed with the pan-
cancer scored regulons. These results
highlight the importance of the integra-
tion of TF target regulatory relationships
frommultiple sources for an accurate and
comprehensive inference of human TF
activities.

Discussion

Inference of TF activities from the ex-
pression levels of their putative targets
is becoming a widespread approach to
extract functional insight from transcrip-
tomic data (Carro et al. 2010; Schacht
et al. 2014; Alvarez et al. 2016; Falco

et al. 2016; Osmanbeyoglu et al. 2017; van de Peppel et al. 2017;
Garcia-Alonso et al. 2018). Although several strategies exist to
define the TF targets (i.e., TF regulon), their potential to predict
changes in TF activities has not yet been systematically compared.
To use these data conveniently, a critical evaluation of their reli-
ability (i.e., quality), coverage (i.e., quantity), and bias is needed.
Here we evaluated the impact of the four major types of evidence
supporting the human TF–target interactions in the estimation of
TF activities: literature-curated repositories, ChIP-seq binding data,
in silico predictions of TFBSs on gene promoters, and inference by
reverse engineering from large gene expression data sets.

Overall, we observed that for almost half of the TFs, only one
of the four strategies report targets. We also found low overlap at
the TF–target interaction level, at which the greatmajority are sup-
ported by a single line of evidence. This low overlap, along with
different algorithmic strategies to estimate TF activities from regu-
lons, can lead to large variation in the estimations (Trescher et al.

Figure 4. TF properties biasing the inference of TF activities across the TF regulon data sets.
(A) Overview of the TF properties annotated for the 1541 human TFs under study. (B) TF properties en-
riched (FDR <0.01) in the benchmark results B1, B2, and B3. Bar length is proportional to the enrichment
score (ES), whereas color represents the significance strength (P-value). Properties enriched in more than
one benchmark data set are labeled with an asterisk.
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2017). Therefore, it seems that to have a complete picture of the
human TF–target regulatory map, integration of different strate-
gies is essential.

Comparing the quality of TF–target interaction data sets is
complex owing to their relatively low coverage and overlap. In ad-
dition, these data sets need to be benchmarked against a reliable
and comprehensive reference set. To our knowledge, there is no
systematic experiment directly measuring the protein-level activi-
ties of hundreds of human TFs in several conditions. Under these
limitations, in order to compare the different TF–target resources
and detection strategies, we collected three alternative benchmark
data sets in which changes in TF activities are assumed indirectly.
In general, although there is a trend (curated regulons are better
than ChIP-seq, which in turn are better than predicted ones), we
noticed differences in the performance of each TF–target strategy
across the benchmark data sets. These differences can be because
of various experimental and biological factors. Among the experi-
mental factors, we note the low coverage and low overlap of the
TFs included in each benchmark experiment, as well as the differ-
ent experimental conditions and assumptions used to derive these
control data sets. In fact, in the perturbation-based benchmark
data sets B1 and B2, some TFs in the negative controls (i.e., not
directly perturbed TFs) can be indirectly affected and, therefore,
not represent true negatives. These could involve, for instance,
TFs coregulated by the perturbed TFs. Moreover, some of the TFs
in the positive set (i.e., perturbed TFs) may not be effectively mod-
ulated by the perturbation strategy used (overexpression or knock-
out). For example, the experiments overexpressing a TF gene may

not translate into an efficient activation of the coded protein if the
regulatory elements (e.g., posttranslational modifications) or ex-
ternal stimulus (e.g., viral infection) needed for such activation is
not present. In fact, when comparing TFs with different regulatory
properties, performances are generally challenged when predict-
ing activities for TFs with dual MoR (which can act as activators
or repressors of their targets) or under complex molecular control,
such as those working as heterodimers, interacting with cofactors,
or other chromatin regulators. In these cases, the combination of
complementary strategies to define TF—targets can enhance the
TF activity predictions. Additionally, other biological factors influ-
ence the estimation of TF activities such as the modulation of TFs
other than the perturbed ones owing to cooperativity, feedback
regulation, or redundancy mechanisms in the regulation of tran-
scriptional programs,which are used to buffer loss-of-function per-
turbations or inappropriate activation of specific TFs. All together,
we hypothesize that the limitations of the benchmark data sets are
masking and underestimating the potential of these TF–target
resources.

Still, our results highlight the importance of the literature-
curated regulons to infer accurate TF activities, with the highest
precision achieved for interactions supported by more than one
resource or expert’s review.However, their systematic use is limited
by low coverage, which requires the integration of multiple re-
sources. Among literature-curated resources, the TRRUST database
displays the best balance between regulon performance and cover-
age, the latter likely boosted by the systematic sentence-based text
mining search of regulatory interactions before manual curation

Figure 5. Scoring TF–target interactions from different evidence. (A) Scoring scheme. (B) TF and TF–target interaction coverage per score cutoff for the
normal (dark green) and pancancer (red) collections. (C) Performance of scored regulons in the B1, B2, and B3 benchmark data sets.
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and incorporation of theMoR. Focusing on high-throughput strat-
egies, ChIP-seq binding regulons displayed the highest perfor-
mance with a coverage comparable to that of TF binding motifs
on gene promoters. In general, in silico predictions based on
TFBSs on gene promoters or inferred fromGTEx displayed the low-
est performance among all strategies. This result is likely because of
the higher ratio of false positives intrinsic to the technical biases of
each strategy (Yang et al. 2006; Farnham2009). Tissue-specific reg-
ulons inferred from GTEx data perform similarly to inferred con-
sensus regulons (i.e., selecting TF–target interactions detected in
several tissues). A reason may be the inherent differences between
the gene expression regulatory programs in the samples used to in-
fer the regulatory networks (normal tissues fromGTEx) and in the
samples in the benchmark (cell lines, mostly cancer derived).
Indeed, the use of cancer-specific instead of healthy GTEx-inferred
regulons improves the performance in our benchmark data sets.

When combining TF–target interactions supported by both
curated databases and ChIP-seq or any three lines of evidence,
the performance increases with respect to the use of interactions
only reported by literature-curated resources, suggesting that these
can be further refined by integrating other lines of evidence. In
contrast, regulons detected by the two in silico predictionmethods
did not improve the performancewith respect to the use of curated
databases alone.

With these observations in mind, we have integrated TF–
target interactions derived from the aforementioned strategies,
accompanied with a confidence score, to generate a normal
(1,076,628 interactions) and a pancancer (636,753 interactions)
consensus set of regulons. To our knowledge, this is the largest col-
lection of human TF–target interactions from heterogeneous
sources and strategies. This integrated resource has broad applica-
bility for approaches requiring the inference of the regulatory ac-
tivity of TFs, in which researchers can decide the level of
confidence and coverage they want to use in their studies.

The use of regulons to estimate TF activities hasmany applica-
tions and can be particularly powerful to extract signal robustly
from noisy or low coverage expression data such as in the case of
single-cell RNA data (Ding et al. 2018; Garcia-Alonso et al. 2018).
In addition, TF activities can be linked to upstream signaling path-
ways. Pathway activities are often inferred by the transcription
levels of their members, ignoring the hard-to-measure posttran-
scriptional and posttranslational regulation.However, considering
gene expression to be a downstream effect of pathway activity in-
stead leads to more accurate estimations (Cantini et al. 2018;
Schubert et al. 2018). Furthermore, TF activities can be used to infer
the activity of upstreamproteins using knowledge of pathways and
how they affect TFs (Melas et al. 2015; Tuncbag et al. 2016; Clarke
et al. 2018). The resources and confidence estimates that we pro-
posewill support the development of suchmethods.More general-
ly, we expect the presented comparative assessment of the TF
regulon resources to contribute to the establishment of guidelines
for the quantification of human TF activities.

Methods

TF census and classification

Here we consider a TF as a protein that binds DNA in a sequence-
specific manner and regulates the expression level of the target
gene (Vaquerizas et al. 2009). We used the census of human TFs
from the TFClass database (version 2014) (Wingender et al.
2013) involving 1541 human TFs, classified according to their

DNA-binding domain. Moreover, we annotated each TF according
to (1) the mode of interaction with the chromatin (pioneers, set-
tlers, and migrants) using the results from Ehsani et al. (2016)
and Lambert et al. (2018), (2) the number of GTEx tissues
(Carithers et al. 2015) in which the gene is expressed (i.e., average
expression >2 fpkm), (3) the DNA-binding mode (monomer,
homomer, or heteromer) that we manually curated from UniProt
(version November 2017) (The UniProt Consortium 2017) and
complemented with the annotation provided by Lambert et al.
(2018), and (4) the DNA-binding specificity, also from Lambert
et al. (2018). Finally, we used the UniProt “Function CC” field to
manually classify TFs into activators, repressors, activators and re-
pressors, or unknown MoRs. TF annotations are provided as in
Supplemental Table S1.

TF–target data sources

Literature-curated resources

We downloadedmanually curated TF–target relationships from 12
sources—Fantom4 (Kawaji et al. 2011), HTRIdb (Bovolenta et al.
2012), IntAct (Orchard et al. 2014), KEGG (Kanehisa et al. 2012),
ORegAnno (Lesurf et al. 2016), NFIRegulomeDB (Gronostajski
et al. 2011), PAZAR (Portales-Casamar et al. 2009), TFacts (Essaghir
et al. 2010), TFe (Yusuf et al. 2012), TRRD (Kolchanov et al. 2002),
TRED (Jiang et al. 2007), TRRUST (Han et al. 2018)—and a manual
curation of targets fromTF-centric papers (Zeller et al. 2003;Massie
et al. 2007; Riley et al. 2008; Boros et al. 2009; Chan et al. 2015).
From Fantom4, we downloaded the “edge.GoldStd_TF.tbl.txt”
file. From HTRIdb (v052016), we excluded interactions derived
from large-scale experiments such as ChIP-chip and ChIP-seq.
From IntAct, we collected all human protein–DNA interactions in-
volving a TF protein and a gene. FromKEGG,weused KEGGRESTR
library to download allHomo sapiens pathways and retrieve regula-
tory interactions classified as “GErel.” FromORegAnno,we separat-
ed the interactions from PAZAR and NFIRegulomeDB. The
remaining interactions were classified as ORegAnno, keeping the
interaction sign (i.e., MoR). From TFacts catalog, we extracted hu-
man interactions and separated TFacts-specific interactions from
TRRD interactions using the REF field. TRED interactions were re-
trieved via the RegNetwork database (Liu et al. 2015). From TFe,
we downloaded the manually curated targets and the interaction
sign. From TRRUST, we extracted all human interactions. When
the same TF–target interaction was assigned with more than one
sign (activation or repression), we kept the interaction sign with
more PubMed references. If the same number of references was ob-
served,weprioritized the sign as follows: activation> repression> un-
known. Finally, we manually extracted the canonical targets listed
in several TF-specific revision papers (Zeller et al. 2003; Massie
et al. 2007; Riley et al. 2008; Boros et al. 2009; Chan et al. 2015).

ChIP-seq interactions

We downloaded the merged ChIP-seq binding peaks provided by
ReMap (Chèneby et al. 2018), which contains ChIP-seq data sets
from ENCODE and other public resources. We chose ReMap
because it provides ChIP-seq peaks analyzed in a homogeneous
way. Other ChIP-seq databases collect interactions from the origi-
nal research articles and vary in the way they processed the ChIP-
seq data, the quality controls, and the peaks-to-genes mapping.
Regulatory proteins other than TFs in our census were excluded.
For each TF, each binding site is assigned to the closest trans-
cription start site (TSS) using the function bedtools closest of
BEDTools (Quinlan and Hall 2010). We obtained human TSSs
from GENCODE version 26 (GRCh38) (Harrow et al. 2012). For
all genes that have multiple transcripts, we chose the closest
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binding site–transcript pair. Therefore, each binding site is as-
signed to one gene, but each gene may have zero or more binding
sites for a given TF. For each binding site–gene pair, we assigned a
binding site-gene score between zero and one based on the dis-
tance between the binding site and TSS, similar to the method of
Ouyang et al. (2009):

Site Score[g] = e−d/(md×10),

wheremd denotes the median distance between the TSS and bind-
ing site for each TF, and d is the distance between each binding site
and the TSS of each gene, g. Therefore, the same score can be as-
signed a different distance for each TF depending on whether it
tends to bind proximally or distally. The score for each TF–target
gene assignment is the sum of the scores for all binding sites of
the TF assigned to that gene. Finally, for each TF, all TF–target
scores are scaled to a value between one and 1000.

TFBS predictions in promoters

For each transcript, we scanned human promoter sequences (ver-
sion GRCh38) for TFBSs. These were defined as the genomic se-
quence that comprises 1000 bp upstream (5′ direction) and 200
bp downstream (3′ direction). Mononucleotide PWMswere down-
loaded from the HOCOMOCO (version 11) (Kulakovskiy et al.
2018) and JASPAR (version 2018) (Khan et al. 2018) repositories.
HOCOMOCO-core (excluding low-quality models, i.e., “D” cate-
gory) comprised 402, whereas JASPAR (Vertebrates, nonredun-
dant) comprised 572 PFMs (position frequency matrices). The
prediction of potential TFBSs in the promoter sequences (on
both strands) was performed using the motif discovery tool
FIMO (Grant et al. 2011) from the MEME suite (version 4.12)
(Bailey et al. 2015) with the default parameters. We selected
FIMO predictions with a P-value <0.0001. Duplicatedmatches (ex-
act binding sites found in different transcripts of the same gene)
have been removed.

Next, we annotated the conservation and epigenetic regulato-
ry features of the TFBSs. Base-level phastCons (Siepel et al. 2005)
andphyloP (Pollard et al. 2010) scoreswere extracted fromCellBase
database (Bleda et al. 2012). phyloP version “hg38.100way.phy-
loP100way” and phastCons version “hg38.100way.phastCons”
were downloaded in October 2016. phastCons scores range be-
tween zero and one and indicate the posterior probability that
the site is in its most-conserved state at that base position. phyloP
score is the −log(P-value) under a null hypothesis of neutral evolu-
tion, in which a positive sign indicates greater conservation. In
both cases, binding site–level scores were defined as the 75% per-
centile of the single base-level scores of the binding region. To
call a region conserved, phastCons and phyloP scores have to be
equal or larger than 0.95 or three (corresponding to a P-value
threshold=0.001), respectively. Finally, we aligned the genomic
coordinates of the TFBSs with Ensembl regulatory features
(GRCh38.p10) (Zerbino et al. 2015) using CellBase to extract the
feature ID and type. We considered the TFBSs aligned to “open_
chromatin_region” or “ChIP_seq_region” to be a regulatory site.

Regulons inferred by reverse engineering from gene expression

We used GTEx v6 human gene expression data (Carithers et al.
2015) from control donors to infer transcriptional regulatory net-
works for healthy tissues. We downloaded gene-level raw counts
for 18,737 samples from the Expression Atlas (Petryszak et al.
2014). One hundred forty-four samples with >30% of zero raw
counts were discarded. Also, we removed genes with an average
log counts per million (CPM) lower than zero. Next, we normal-
ized the data using the TMM method implemented in the edgeR

R package (version 3.14.0) (Robinson et al. 2010). Then, we used
the voom function in the limma package (version 3.28.21)
(Ritchie et al. 2015) to obtain fitted log2 CPM. To account for
potential sample batch effects, we downloaded the annotation
file GTEx_Data_V6_Annotations_SampleAttributesDS.txt from
the gtexportal.org and extracted the isolation batch field
“SMNABTCH” and corrected it, keeping the histological type as a co-
variate, usingComBat function from sva R package (version 3.20.0)
(Leek et al. 2012). We also assessed regulons based on noncor-
rected data (Supplemental Fig. S10). Samples from cell lines were
discarded. Finally, replicates (i.e., samples from the same tissue
and donor) were averaged. These data cover 9407 samples from
30 tissues (histological types) (Supplemental Fig. S1B). Next, we
used the ARACNE software (version 1.4) (Margolin et al. 2006) to
reverse engineer tissue-specific networks. For each tissue with at
least 15 donors, we first precalculated the ARACNE threshold
with a fixed seed with the ‐‐calculateThreshold parameter. Second,
we ran 100 reproducible bootstraps with a controlled seed and,
with the ‐‐consolidate parameter, derived the tissue-specific net-
work. Finally, we used the aracne2regulon function in VIPER R
package (version 1.12.0) (Alvarez et al. 2016) to infer the sign of
each TF–target interaction (i.e., MoR; activation or inhibition).
We also downloaded cancer regulatory networks from the aracne.
networks R package (version 0.99.7) covering 14 cancer types
from TCGA (https://bioconductor.org/packages/release/data/
experiment/html/aracne.networks.html).

Finally, we also aggregated the data fromall the tissue-specific/
cancer-specific regulons to infer four healthy and pancancer con-
sensus regulons by selecting TF–target signed interactions appear-
ing in at least two, three, five, and 10 GTEx tissues or TCGA cancer
types, respectively.

Benchmark data

Three different benchmark data sets (B1, B2, and B3) were used to
evaluate the TF–target resources: B1 and B2 based on gene expres-
sion data upon TF perturbation and B3 based on combining basal
gene expression with essentiality profiles in cancer cell lines.

TF perturbation experiments

Benchmark B1

We downloaded microarray expression data corresponding to 189
manually curated TF perturbation experiments in human cell lines
from 130 GEO studies. We considered only experiments that ful-
filled two requirements: (1) providing comparable control and per-
turbed samples and (2) having at least two replicates per condition.
In each experiment, controls and perturbed samples were manual-
ly classified into positive (with higher expected activity for the per-
turbed TF) or negative (with lower expected activity) samples.
Overexpression and knockout-based experiments, in which the
perturbed TF was not differentially expressed, were excluded. A to-
tal of 94 unique TFs were covered across the collected experiments
(Supplemental Table S5). When CEL files were available for exper-
iments performed with Affymetrix platforms, we used the func-
tions ReadAffy and rma from the affy R package (version 1.50.0)
to load and normalize the raw data. Otherwise, we used the expres-
sion matrix provided by the investigators and applied a quantile
normalization for nonnormalized data. Finally, for each experi-
ment, we performed a differential expression analysis between
the positive and the negative samples using the limma R package
(version 3.28.21) (Ritchie et al. 2015). Each perturbation experi-
ment was analyzed independently.
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Benchmark B2

Also, we considered two additional high-throughput shRNA per-
turbation experiments knocking-down several TFs with no repli-
cates: one in an A375 cell line (GSE31534) and another in an
MCF-7 breast cancer cell line (GSE31912) (Wang et al. 2012). The
corresponding microarray expression data sets were downloaded
and normalized as described for the benchmark data set B1.
Normalized expression values were z-transformed to bring the
expression from different genes to a common scale. To remove un-
successful shRNA cases, knocked-down TFs whose expression was
in the top 20th percentile (TF-wise) were excluded. Ultimately, 13
and 28 TFs fromGSE31534 andGSE31912, respectively, were used.

Basal cancer cell line data: benchmark B3

Additionally, we retrieved basal gene expression data from a panel
of cancer cell lines that we combined with phenotypic data from
two gene shRNA essentiality screens and copy number alterations
(CNAs) to define likely active and inactive TFs. Specifically, we
used gene expression data from our previous publication (Garcia-
Alonso et al. 2018), which included basal RNA-seq measurements
from three cancer cell line panels: Genomics of Drug Sensitivity in
Cancer (GDSC) (Iorio et al. 2016), Cancer Cell Lines Encyclopedia
(CCLE) (Barretina et al. 2012), and Genentech (Klijn et al. 2015).
Data are available to download from the Expression Atlas
(Petryszak et al. 2014) under the accessions E-MTAB-3983, E-
MTAB-2770, and E-MTAB-2706, respectively. Regarding the gene
essentiality screens, we downloaded the DEMETER scores from
Achilles data set (version 2.20.2) (Tsherniak et al. 2017) and
ATARiS scores from the project DRIVE (McDonald et al. 2017). A
TFwas considered to be essential in a cell line (i.e., positive control)
if the DEMETER or ATARiS z-scores were less than −4 and nones-
sential (i.e., negative control) if the z-scores were more than
4. TFs carrying homozygous deletions were also used as negative
controls. CNA for the cell lines were downloaded from the GDSC
portal (Iorio et al. 2016).

TF-activity scoring methods

We estimated TF activities as a proxy of the expression levels of the
targeted genes using the aREA method from the VIPER R package
(Alvarez et al. 2016), a statistical test based on the average ranks
of the targets. For perturbation experiments in B1, changes in
TF activities for each perturbation were derived from the dif-
ferential expression signatures via the aREA-msviper function. For
GSE31534 and GSE31912 experiments in B2 and the cancer cell
lines in B3, TF activities were derived from the z-transformed ex-
pression values via the aREA-viper function. In both cases, we
used the default parameters, with the exception of ges.filter/eset.fil-
ter, which was set to false to avoid limiting the expression signa-
tures to the genes represented in the regulons. The NES was used
as a measure of relative TF activity. NESs were estimated for each
TF in each individual regulon data set independently (e.g., TP53
regulon from IntAct, TP53 regulon from ReMap, etc.). To avoid
confounding effects, self-regulatory interactions were removed.
Also, overrepresented targets (regulated by >10% of the TFs in
the regulon data set) were discarded. Only TF regulons with at least
five targets (n>4) were tested. NFIRegulomeDB was excluded from
the benchmark because of the low coverage.

The aREA method takes into account the sign of each TF–
target interaction. Here, when the MoR of the TF–target interac-
tion was not defined by the original data set (i.e., those derived
from TFBS predictions, ChIP-seq data and most of the curated da-
tabases), we assumed a positive regulatory effect of the TF on the
target. However, if the TF is known to be a global repressor (data

extracted from UniProt) (Supplemental Table S1), the interactions
are assumed to have a negative regulatory effect.

Comparing regulons performance

To evaluate the performance of each regulon resource, we com-
pared the estimated activities of the TFs in each benchmark data
set. In the context of the perturbation-based benchmark data
sets B1 and B2, our assumption is that if the TF regulon defined
by a given source (e.g., TP53-IntAct) is accurate, then the experi-
ment perturbing such TF (positive controls) should display lower
activity than the rest of the perturbations (negative controls) and
rank at the top. In the same way, in our benchmark data set B3,
we expect that a sample in which a TF is essential (and therefore
active; positive controls) should display the highest activity scores,
whereas the inactive TFs (negative controls) should take the lowest
values. Thus, for each TF regulon under study, we rank the samples
according to the TF’s NES. Next, to evaluate the ranking values of
the positive and negative controls we performed precision-recall
and receiver operating characteristic (ROC) analyses by the
PRROC R package (version 1.3) (Grau et al. 2015) and we used
the areas under the curves (AUPRC and AUROC) as performance
metrics. Because the number of positive and negative controls is
unbalanced for the benchmark data sets B1 and B2 (in favor of
the negatives), we down-sampled the negatives 100 times to equal
the number of positives and took the average metric values.

Data access

The regulons and code to estimate transcription factors activities
are available at https://saezlab.github.io/DoRothEA/. The regulons
are also available as Supplemental Tables S3 and S4 or as part of
OmniPath (www.omnipathdb.org) and can be browsed in Omni-
path’s Cytoscape Plugin. TF activity scores can also be computed
and visualized in a user-friendly web application available at
https://saezlab.shinyapps.io/funkiapp/. The code to benchmark
the regulon’s TF activities can be found at https://github.com/
saezlab/TFbenchmark and as Supplemental Code. Benchmarking
code is written in R (R Core Team 2017). All the data used in
this study are available at Zenodo (https://zenodo.org/record/
2646279).
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