
DBP rs7041 andDHCR7 rs3829251 are
Linked to CD4+ Recovery in HIV
Patients on Antiretroviral Therapy
Salvador Resino1,2*, María Ángeles Jiménez-Sousa1,2, Julià Blanco2,3, YolandaM. Pacheco4,
Jorge del Romero5, Joaquim Peraire2,6, Ana Virseda-Berdices1,2,
María José Muñoz-Gómez1,2, Carlos Galera-Peñaranda7, Lucio Jesus García-Fraile2,8,
José M. Benito9,10†, Norma Rallón9,10† on behalf of CoRIS and the HIV Biobank integrated
in the Spanish AIDS Research Network Project RIS/EPICLIN 10_2015

1Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain,
2Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain, 3Virología e
Inmunología Celular, IrsiCaixa AIDS Research Institute, Badalona, Spain, 4Laboratorio de Inmunología, Instituto de Biomedicina
de Sevilla (IBiS), Sevilla, Spain, 5Centro Sanitario Sandoval, Hospital Clínico San Carlos, Madrid, Spain, 6Departamento de
Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain, 7Departamento de Medicina Interna, Hospital
Universitario Virgen de la Arrixaca, Murcia, Spain, 8Departamento de Medicina Interna, Hospital Universitario de La Princesa,
Madrid, Spain, 9Laboratorio de Investigación Del VIH y la Hepatitis Viral, Instituto de Investigación Sanitaria Fundación Jiménez
Díaz, Universidad Autónoma deMadrid (IIS-FJD, UAM), Madrid, Spain, 10Hospital Universitario Rey Juan Carlos, Móstoles, Spain

Background: The lack of the recovery of CD4+ T-cells (CD4+ recovery) among
immunodeficiency virus (HIV)-infected patients on antiretroviral therapy (ART) is not well
known. We aimed to analyze the association between single nucleotide polymorphisms
(SNPs) underlying vitamin D metabolism and the CD4+ recovery in naïve HIV-infected
patients who started ART with low baseline CD4+.

Methods: We conducted a retrospective study in 411 naïve individuals with plasma HIV
load >200 copies/mL and CD4+ <200 cells/mm3. During 24 months of follow-up, all
patients had plasma HIV load <50 copies/mL. DNA genotyping was performed using the
Sequenom MassARRAY platform. The outcome variable was the change in CD4+ during
the study.

Results: CD4+ recovery was higher in patients carrying DBP rs7041 AA genotype (AA
versus CC/AC) and DHCR7 rs3829251 AA genotype (AA versus GG/AG) (p-value <
0.05). DBP rs7041 AA genotype was linked to increase in CD4+ (adjusted arithmetic
mean ratio (aAMR) � 1.22; q-value � 0.011), increase in CD4+ ≥P75th [adjusted odds
ratio (aOR) � 2.31; q-value � 0.005], slope of CD4+ recovery (aAMR � 1.25; q-value �
0.008), slope of CD4+ recovery ≥ P75th (aOR � 2.55; q-value � 0.005) and achievement
of CD4+ ≥500 cells/mm3 (aOR � 1.89; q-value � 0.023). Besides, DHCR7 rs3829251
AA genotype was related to increase in CD4+ (aAMR � 1.43; q-value � 0.031), increase
in CD4+ ≥P75th (aOR � 3.92; q-value � 0.030), slope of CD4+ recovery (aAMR � 1.40;
q-value � 0.036), slope of CD4+ recovery ≥ P75th (aOR � 3.42; q-value � 0.031) and
achievement of CD4+ ≥500 cells/mm3 (aOR � 5.68; q-value � 0.015).
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Conclusion: In summary, DHCR7 rs3829251 and DBP rs7041 polymorphisms were
associated with CD4+ recovery in HIV-infected patients who started cART with low CD4+

T-cell counts.
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INTRODUCTION

Combination antiretroviral therapy (cART) tends to achieve
undetectable plasma viral load levels in the vast majority of
the human immunodeficiency virus (HIV)-infected patients
treated. This control of viral replication allows the recovery of
CD4+ T-cells (CD4+ recovery) in peripheral blood, and many
immune functions are restored (Panel de expertos de Gesi, 2011;
Thompson et al., 2012). Despite this, there is still a significant
percentage (around 30%) of HIV-infected patients who fail to
have complete CD4+ recovery (≥500 CD4+ T-cell count/µl) after
long periods of cART (Yang et al., 2020). Those patients who
maintain low CD4+ counts remain at risk of acquired
immunodeficiency syndrome (AIDS) progression, developing
non-AIDS-related morbidity, and dying (Baker et al., 2008;
Kelley et al., 2009; Helleberg et al., 2013).

The causes of this lack of CD4+ recovery among cART-treated
patients are not well known, but it appears to be a complex and
multifactorial phenomenon (Yang et al., 2020). In this regard,
many factors involved in CD4+ recovery have been described,
among which include age, low CD4+ T-cells nadir, severe
immunodeficiency at the time of cART initiation, low baseline
CD4/CD8 ratio, immune exhaustion, abnormal immune
activation, reduced output in the bone marrow and thymic,
increased senescence and apoptosis of T-cells, lymphoid tissue
fibrosis, imbalance in Treg and Th17 cells, microbial
translocation, persistent HIV replication, and host genetic
background, among others (Yang et al., 2020). However, all
these factors do not fully explain the great variability of
immune reconstitution in cART-treated patients.

Vitamin D (VitD) deficiency is common in HIV-infected
patients (around 70–85%) (Mansueto et al., 2015; Gois et al.,
2017). VitD regulates different antimicrobial pathways of
immunity that can be crucial against HIV infection (Jiménez-
Sousa et al., 2018). Besides, VitD deficiency has been related to
higher HIV viral load values in plasma, inflammation, immune
activation, decreased CD4+ T-cells, rapid AIDS progression in
cART-naïve patients, and impaired CD4+ recovery in HIV-
infected patients on cART (Jiménez-Sousa et al., 2018).

Most VitD is produced in the body, and only a small
percentage is ingested in the diet. In the first step, pro-VitD
(7-dehydro-cholesterol) is transported to the skin, where it is
isomerized to pre-VitD (cholecalciferol) by ultraviolet irradiation
(Herrmann et al., 2017). However, 7-dehydrocholesterol
reductase (DHCR7) may oxidate 7-dehydro-cholesterol to
cholesterol, decreasing the amount of 7-DHC available for
photochemical conversion to VitD in the skin (Prabhu et al.,
2016). Next, pre-VitD is hydroxylated to 25-hydroxy-VitD
[25(OH)D] in the liver by cytochrome P450 enzymes
(CYP27A1 and CYP2R1). Then, 25 (OH)D is transported to

the kidneys by the vitamin D-binding protein (DBP), where the
25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27B1) forms
calcitriol [1,25 (OH)2D], which is the metabolically active
form (Herrmann et al., 2017; Jiménez-Sousa et al., 2018).
Besides, 25 (OH)D is catabolized by CYP3A4, and CYP24A1
catabolizes 1,25 (OH)2D. In the nucleus, VitD binds to vitamin D
receptor (VDR) and promote the formation of a heterodimer with
the retinoid X receptor alpha (RXRA), which binds to vitamin D
response elements (VDRE), initiating the transcription of more
than 4,000 genes (around 5% of the human genome) (Herrmann
et al., 2017; Jiménez-Sousa et al., 2018) (Figure 1).

Several single nucleotide polymorphisms (SNPs) in genes
related to VitD metabolism (DHCR7, CYP2R1, CYP27A1,
CYP27B1, CYP3A4, CYP24A1, DBP, VDR, and RXRA, among
others) have been associated with plasma levels of 25(OH)D and
infectious diseases (Jolliffe et al., 2016). In HIV infection, VDR
SNPs have been related to protection against HIV infection (de la
Torre et al., 2008; Alagarasu et al., 2009; Torres et al., 2010). Also,
DHCR7, DBP, VDR, and CYP27B1 SNPs were associated with
AIDS progression in ART-naïve HIV-infected patients of
European origin (Eales et al., 1987; Nieto et al., 2004; Moodley
et al., 2013; Laplana et al., 2014; Jiménez-Sousa et al., 2019a;
Jiménez-Sousa et al., 2019b; Jiménez-Sousa et al., 2020). However,
there is no data about the relationship between these SNPs in
genes related to VitD metabolism and immune recovery in
patients on cART.

OBJECTIVE

We aimed to analyze the association between genetic variants
underlying VitD metabolism (DHCR7, CYP2R1, CYP27A1,
CYP27B1, CYP3A4, CYP24A1, DBP, VDR, and RXRA genes)
and the CD4+ recovery in naïve HIV-infected patients who
started cART with low baseline CD4+ T cells (<200 cells/mm3).

MATERIAL AND METHODS

Study Population
We carried out a retrospective study in 411 naïve HIV-infected
patients who started cART, included in two cohorts, the
Spanish AIDS Research Network cohort (CoRIS, see
Appendix 1) and the AIDS Research Institute IrsiCaixa-
HIVACAT cohort. This cohort study has been previously
described (Restrepo et al., 2019). Patients signed informed
consent before participating in the study. The Ethics
Committee of the “Fundación Jiménez Díaz” approved the
research project (Ref.: PIC 52/2015_FJD). This study was
performed under the Declaration of Helsinki.

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 7738482

Resino et al. VitD Genetic Variant in CD4+ Recovery

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 1 | Summary of single nucleotide polymorphisms (SNPs) analyzed for this study in genes related to the synthesis, transport, and mechanism of action of
vitamin D in the body.; Abbreviations: DHCR7, 7-dehydrocholesterol reductase; CYP2R1, cytochrome P450 enzymes; CYP27A1, cytochrome P450 enzymes;
CYP27B1, cytochrome P450 enzymes; CYP3A4, cytochrome P450 enzymes; CYP24A1, cytochrome P450 enzymes DBP, vitamin D-binding protein; VDR, vitamin D
receptor; and RXRA, retinoid X receptor alpha.
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The inclusion criteria were: 1) at baseline: naïve-ART, plasma
HIV-RNA >200 copies/mL, CD4+ <200 cells/mm3, and DNA
sample available; 2) during the follow-up period (2 years): plasma
HIV-RNA <50 copies/mL, periodic monitoring of CD4 and
plasma HIV-RNA. The two cohorts totaled 6,160 HIV-
infected patients, of which 4,000 started cART, but only 1,259
had CD4+ <200 cells/mm3 before cART initiation. Of them, only
503 patients had a minimum follow-up period of 24 months, but
92 patients had no undetectable viral load (VL, HIV-RNA <50
copies/mL) after cART or DNA sample available. Finally, 411
patients met all the inclusion criteria. Besides, 145 healthy donors
from the “Centro de Transfusión de la Comunidad de Madrid”
were used as Control-group (HIV, HCV, and HBV seronegative
subjects).

Clinical Data
Demographic, clinical, virological, and laboratory data were
collected from medical records. Gender was by self-
identification and there were no transgender people. Time
since HIV diagnosis was calculated from the first positive
blood test for HIV. The mode of transmission (injecting drug
use and sexual behavior) was inferred from the medical record.
Hepatitis C and hepatitis B coinfection were determined by a
standard laboratory test. The clinic management of patients was
carried out following national clinical guidelines (Panel de
expertos de Gesi, 2011).

DNA Genotyping
Blood samples were collected by venipuncture in EDTA tubes.
The blood samples were then sent to the HIV HGM BioBank
(http://hivhgmbiobank.com/?lang�en), where the samples were
processed and frozen immediately upon receipt. DNA isolation
was performed from peripheral blood mononuclear cells using a
QIAamp DNA kit (Qiagen, Spain).

We selected 17 SNPs of VitD metabolism [DHCR7 (rs3829251
and rs12785878), CYP2R1 (rs1993116), CYP27A1 (rs17470271),
CYP27B1 (rs10877012), CYP3A4 (rs2740574), CYP24A1
(rs6013897), DBP (rs12512631, rs16846876, and rs7041), VDR
(rs11568820, rs1544410, rs2228570, rs4516035, rs2238136,
rs7970314), and RXRA (rs7861779)] (Figure 1), which have
been related to circulating concentrations of VitD and non-
skeletal diseases (Jolliffe et al., 2016). DNA genotyping was
performed using the iPLEX® Gold technology and Agena
Bioscience’s MassARRAY platform (San Diego, CA,
United States) in the Spanish National Genotyping Center
(CeGen; http://www.cegen.org/). All SNPs had a DNA
genotyping success rate greater than 95%.

The validation and quality control of the genotyping process
was performed using: 1) Negative controls, no template controls
(NTC). The NTCs were used to confirm that no artifacts
associated with design or chemistry were generated during the
genotyping assays; 2) Positive controls. As positive controls, a trio
of Coriell samples from the Human Genetic Cell Repository
(NA10861, NA11994, and NA11995) was included in each
genotyping assay. These Coriell samples were included in the
set of genotyped samples in 1000GENOMES_phase_3 (EUR), so
we could confirm the concordance of our results with those

obtained for the 1000 Genomes Project. During the genotyping
assays, we have replicated more than 18% of obtained genotypes,
and we have observed a total concordance among replicated
samples. Additionally, a phenotype-blind genotyping process was
followed, since all patients who met the inclusion criteria were
genotyped anonymously without information on their
phenotype.

Outcome Variables
Outcome variables were related to changes in CD4+ values during
the 24 months of the study. The outcome variables analyzed were:
1) increases in CD4+ (ΔCD4+, continuous), which is the
difference between the baseline and end of follow-up (month
24). 2) increases in CD4+ ≥P75th (dichotomous). 3) slope or
gradient of CD4+ recovery (continuous), which is the ratio
between the change in CD4+ and the time elapsed. 4) slope of
CD4+ recovery ≥ P75th (dichotomous). 5) achieving CD4+ at the
end of follow-up ≥500 cells/mm3 (dichotomous).

Statistical Analysis
Both SPSS 22.0 (IBM Corp., Chicago, United States) and Stata
15.0 (StataCorp, Texas, United States) were used to carry out the
statistical analysis. P-values < 0.05 were considered significant,
and all tests were two-tailed.

For the descriptive study, the Chi-squared test or Fisher´s
exact tests were used to compare categorical data and evaluate the
Hardy-Weinberg equilibrium (HWE). Mann-Whitney U test and
Kruskal-Wallis tests were used to compare continuous variables.
The genetic association study between SNPs and clinical
outcomes was assessed according to dominant, recessive, and
additive models by Generalized Linear Models (GLMs).

TABLE 1 | Clinical and epidemiological characteristics at baseline of HIV infected
patients who started cART with very low CD4+T-cells count (<200 cells/mm3).

Characteristics Values

n 411
Male (n � 411) (%) 323 (78.6%)
Age (n � 411) (years) 40 34; 48)
Coinfections (n � 411) (%)
Hepatitis C infection 32 (7.8%)
Hepatitis B infection 20 (4.9%)
Caucasian origin (n � 394) (%) 317 (80.5%)
Time since HIV diagnosis (n � 411) (years) 1 (1; 1)
CD4+ cell count (n � 411) (cells/mm3) 104 (41; 159)

cART regimen (n � 411) (%)
PI-based 127 (31%)
NNRTI-based 205 (50%)
PI + NNRTI-based 53 (12.9%)
Others 25 (6.1%)

HIV transmission route (n � 384) (%)
Homosexual transmission 189 (49.2%)
Heterosexual transmission 139 (36.2%)
IDU 56 (14.6%)

Statistical: Values were expressed as absolute number (percentage) and median
(percentile 25; percentile 75), which were calculated with respect to the available data (in
parentheses).
HIV, human immunodeficiency virus; cART, combination antiretroviral therapy; PI, HIV
protease inhibitor; NNRTI, non-nucleoside analogue HIV reverse transcriptase inhibitor;
IDU, intravenous drug users.
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Specifically, we used a GLM with a gamma distribution (log-link)
for continuous variables and a GLM with a binomial distribution
(logit-link) for dichotomous variables, which reported the
arithmetic mean ratio (AMR), and the odds ratio (OR),
respectively. Additionally, the raw p-values were corrected
using the false discovery rate (FDR) with Benjamini and
Hochberg (q-values), a widely used multiple comparison
adjustment method. The selected SNPs with q-values < 0.05
were evaluated by multivariate regression using GLM models
adjusted by the main clinical characteristics at baseline: age,
gender, Caucasian origin, hepatitis C and hepatitis B
coinfection, HIV transmission by intravenous drugs use
(IDU), cART regimen with protease inhibitors (PI), time since
HIV diagnosis, and baseline CD4+ T cell count.

In addition, pairwise linkage disequilibrium (LD) analysis was
computed by Haploview 4.2 software (Barrett et al., 2005).
Haplotype-based association testing was performed using the
PLINK package (Purcell et al., 2007).

RESULTS

Population Characteristics
Table 1 shows the baseline characteristics of HIV-infected
patients, whose median age was 40 years, around 79% were
male, and 13% were coinfected with HCV or HBV. All
patients were naïve ART and had CD4+ <200 cells/mm3 and
detectable plasma HIV-RNA.

Distribution of Genetic Single Nucleotide
Polymorphisms
The distribution of SNPs related to the VitD pathway in healthy
controls and HIV-infected patients is shown in Supplementary
Table S1. All SNPs had values for minor allelic frequency (MAF)
higher than 5%, and they were in HWE (q-value > 0.05). Healthy
controls and HIV-infected patients had similar genotypic
frequencies. All SNPs’ genotypic and allelic frequencies were
in line with the NCBI SNP database for the European
population (http://www.ncbi.nlm.nih.gov/projects/SNP/).

We also analyzed the LD between SNPs of the same gene
(Supplementary Figure S1), finding very high LD values (D’ �
1.0) for VDR SNPs (rs4516035, rs11568820, and rs7970314) and
DHCR7 SNPs (rs12785878 and rs3829251). However, r2 values
were low for all SNPs (except rs11568820 vs rs7970314),
indicating that each SNP provides different information.

Association Between SNPs and CD4+

Recovery
Supplementary Table S2 shows the association between SNPs
and CD4+ recovery by unadjusted GLMs. Overall, after correcting
the p-values for multiple testing (FDR - Benjamini–Hochberg
procedure), CD4+ recovery was higher in patients carrying DBP
rs7041 AA genotype (AA versus CC/AC; recessive model) and
DHCR7 rs3829251 AA genotype (AA versus GG/AG; recessive
model) (q-value <0.05).

Specifically, DBP rs7041 AA and DHCR7 rs3829251 AA
carriers had higher values of CD4+ T-cell count increased
(p-value � 0.013 (Figure 2A) and p-value � 0.011
(Figure 2B), respectively), CD4+ T-cell count increased ≥
P75th (p-value � 0.001 (Figure 2C) and p-value � 0.011
(Figure 2D), respectively), slope of CD4+ recovery (p-value �
0.017 (Figure 2A) and p-value � 0.008 (Figure 2B), respectively),
slope of CD4+ recovery ≥ P75th (p-value � 0.001 (Figure 2C) and
p-value � 0.012 (Figure 2D), respectively), and percentage of
patients achieving CD4+ ≥500 cells/mm3 (p-value � 0.002
(Figure 2C) and p-value � 0.005 (Figure 2D), respectively)
than patients with other genotypes.

Then, the association of DBP rs7041 and DHCR7 rs3829251
polymorphisms with CD4+ recovery was evaluated by adjusted
GLMs (Table 2). DBP rs7041 AA genotype was linked to increase
in CD4+ (adjusted arithmetic mean ratio (aAMR) � 1.22; q-value
� 0.011), increase in CD4+ ≥P75th (adjusted odds ratio (aOR) �
2.31; q-value � 0.005), slope of CD4+ recovery (aAMR � 1.25;
q-value � 0.008), slope of CD4+ recovery ≥ P75th (aOR � 2.55;
q-value � 0.005) and achievement of CD4+ ≥500 cells/mm3 (aOR
� 1.89; q-value � 0.023). Besides,DHCR7 rs3829251 AA genotype
was related to increase in CD4+ (aAMR � 1.43; q-value � 0.031),
increase in CD4+ ≥P75th (aOR � 3.92; q-value � 0.030), slope of
CD4+ recovery (aAMR � 1.40; q-value � 0.036), slope of CD4+

recovery ≥ P75th (aOR � 3.42; q-value � 0.031) and achievement
of CD4+ ≥500 cells/mm3 (aOR � 5.68; q-value � 0.015).

Association Between Haplotypes and CD4+

Recovery
Supplementary Table S3 shows the association of VDR, DBP,
DHCR7 haplotypes with CD4+ recovery. We found some
significant associations for the three genes and three
dichotomic outcomes analyzed (p-value < 0.05), but these
disappeared after FDR adjustment (q-value > 0.05).

DISCUSSION

Genetic background variability may confer differences in
CD4+recovery in cART-treated HIV-infected patients
(Guzmán-Fulgencio et al., 2013; Hartling et al., 2014; Yong
et al., 2016; Hartling et al., 2017; Masson et al., 2018; Medrano
et al., 2018; García et al., 2019). Our study found HIV-infected
patients carrying the DBP rs7041 AA and DHCR7 rs3829251 AA
genotypes had a better CD4+ recovery after starting cART with
low CD4+ T-cells count (<200 cells/mm3). We analyzed five
outcome variables related to CD4+ recovery, and we found
that rs7041 and rs3829251 were significantly associated with
all outcome variables, which seems to indicate a clear impact
on immune reconstitution. To our knowledge, this is the first time
that these two SNPs (DBP rs7041 AA andDHCR7 rs3829251 AA)
have been linked to CD4+ recovery.

Multiple mechanisms have been reported by which VitD could
influence the immune system (Jiménez-Sousa et al., 2018). VitD
induces antiviral response against HIV by promoting antiviral
gene expression, reducing the CCR5 expression on CD4+ T-cells,
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promoting an HIV-1-restrictive CD4+HLA-DR- phenotype, and
decreasing the impact of TNF-α in upregulating HIV replication
in latently infected CD4+ T-cells (Aguilar-Jimenez et al., 2016;
Nunnari et al., 2016). Interestingly, DBP rs7041 and DHCR7
rs3829251 polymorphisms contribute to variation in plasma VitD
level (Ahn et al., 2010; Lu et al., 2012), which has also been related
to CD4+recovery (Jiménez-Sousa et al., 2018). Therefore, DBP
rs7041 and DHCR7 rs3829251 polymorphisms may be genetic
variants to be further explored to increase our current knowledge
of the mechanistic pathways involved in the poor immune
recovery status and, also, assessing them as a potential target
for improving immune reconstitution and prevent disease
progression and death.

The DBP is a highly polymorphic gene that contains 13
exons and 12 introns and encodes an α2-glycosylated globulin.
DBP SNPs have been associated with plasma VitD levels,
affecting the function of VitD (Jolliffe et al., 2016). DBP
rs7041 polymorphism is a missense variation of
GAT→GAG, which changes aspartic acid at position 416 to
glutamic acid. Rs7041 has been implicated in the generation of
different DBP isoforms with different affinity for VitD
metabolites (Speeckaert et al., 2006; Sinotte et al., 2009),
which seem to affect the VitD delivery in the cell (Hibler
et al., 2012). Additionally, DBP rs7041 polymorphism is
related to the pathogenesis of various infectious diseases,
such as coronavirus disease 2019 (COVID-19) (Karcioglu

FIGURE 2 | Summary of outcome variables of CD4+ recovery in HIV-infected patients who started ART with very low CD4+ T-cells count (<200 cells/mm3)
according toDBP rs7041 andDHCR7 rs3829251 polymorphisms. Statistics: Values were expressed as percentages andmedian (percentile 25; percentile 75). P-values
were calculated by Chi-square and Kruskal-Wallis Tests.; Abbreviations: DBP, vitamin D binding protein; DHCR7, 7-Dehidrocolesterol reductase; HIV, human
immunodeficiency virus.

TABLE 2 | Association of DBP rs7041 and DHCR7 rs3829251 single nucleotide polymorphisms with CD4+ T-cells recovery under a recessive inheritance model in HIV-
infected patients who started ART with very low CD4+T-cells count (<200 cells/mm3).

Outcome variables DBP rs7041 AA genotype DHCR7 rs3829251 AA genotype

Exp(b) 95%CI p Exp(b) 95%CI p

CD4+ T-cell count increased 1.22 (1.05; 1.42) 0.009 1.43 (1.05; 1.95) 0.023
CD4+ T-cell count increased ≥ P75th 2.31 (1.34; 3.95) 0.002 3.92 (1.35; 11.39) 0.012
Slope of CD4+ T-cells recovery 1.25 (1.06; 1.45) 0.005 1.40 (1.02; 1.92) 0.036
Slope of CD4+ cells recovery ≥ P75th 2.55 (1.47; 4.41) 0.001 3.42 (1.17; 9.96) 0.025
Achieve ≥500 CD4+T-cells/mm3 1.89 (1.09; 3.28) 0.023 5.68 (1.81; 17.76) 0.003

Statistical: Values were calculated bymultivariate regressions adjusted by themost important clinical and epidemiological characteristics (see statistical analysis section). Significant values
are shown in bold.
Exp(b), exponentiation of the beta coefficient, which was arithmetic mean ratio (AMR) for continuous variables and odds ratio (OR) for categorical variables; DBP, vitamin D-binding protein;
DHCR7, 7-Dehidrocolesterol reductase; HIV, human immunodeficiency virus; 95%CI, 95% of confidence interval; p, level of significance.
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Batur and Hekim, 2020), susceptibility to HCV infection (Xie
et al., 2018), chronic hepatitis C progression (Petta et al., 2013;
Azevedo et al., 2017), respiratory syncytial virus bronchiolitis
(Randolph et al., 2014) and AIDS progression in ART-naïve
HIV-infected patients (Eales et al., 1987), as well as the
response to antiviral therapy in HCV-infected patients
(Falleti et al., 2012). However, the association with the
cART response in HIV-infected patients has not yet been
described. In our study, we found a positive impact of DBP
rs7041 AA genotype on CD4+ recovery in naïve patients who
started cART, but due to the high variability of the DBP
protein (Jolliffe et al., 2016), we do not rule out that other
DBP SNPs may be involved in the observed effect on CD4+

recovery.
The DHCR7 gene encodes 7-dehydrocholesterol reductase

that catalyzes the transformation of pro-VitD (7-dehydro-
cholesterol) into cholesterol, acting as a switch between
cholesterol and vitamin D synthesis (Prabhu et al., 2016).
Regarding the genetic factors, several studies have reported
that DHCR7 rs3829251 contributes to variation in plasma
VitD levels (Ahn et al., 2010; Wang et al., 2010; Lu et al.,
2012), although its functional role is still unknown. Rs3829251
SNP is located within an intronic region of the NADSYN1 gene
and upstream of the DHCR7 gene. Using the rVarBase
database (Guo et al., 2016), we observed that rs3829251
SNP is implicated in changes in the chromatin state in
different cell lines and tissues. These chromatin
modifications can affect the DNA accessibility to
transcription factors and thus, contribute to changes in the
expression of both NADSYN1 and DHCR7 genes. In fact,
rs3829251 has been associated with the DHCR7 expression
in the literature (Strawbridge et al., 2014). It seems to have a
regulatory role on NADSYN1 gene as expression and to splice
quantitative trait loci (eQTL and sQTL), as described in
numerous tissues by the Genotype-Tissue Expression Portal
(GTEx Portal, https://gtexportal.org). Additionally, it is also
important to note that a large number of SNPs between the
nicotinamide adenine dinucleotide (NAD) synthetase-1
(NADSYN1) gene and DHCR7 gene (NADSYN1/DHCR7
locus) are in high linkage disequilibrium (LD). Thus, we
cannot rule out that other SNPs in high LD with rs3829251
SNP could be the causal polymorphism. Further studies would
be needed to corroborate its functional role.

All newly diagnosed HIV-infected patients should initiate
cART, regardless of CD4+ T cell count, to decrease the risk of
HIV transmission and prevent the progression of AIDS and the
occurrence of AIDS-related events (Saag et al., 2018). Late
presentation to HIV care is a significant and persistent
problem worldwide (Kranzer et al., 2012; Suárez-García et al.,
2016; Croxford et al., 2018), even in developed countries with
good healthcare access (Croxford et al., 2018). Due to the delay in
the diagnosis of HIV infection, late presenters are a significant
group of patients (Mocroft et al., 2013; Darling et al., 2016), who
tend to have CD4+ T cell below 200 cells/mm3 in many cases and
start cART late (Antinori et al., 2011), and thus, having worse
CD4+ recovery rates (Negredo et al., 2010; Pérez-Molina et al.,
2012).

Many reports have shown the inability to have a CD4+

recovery after long periods of cART, evaluating the outcomes
in terms of immunological response and disease progression
(Yang et al., 2020). There is no consensus on the definition of
incomplete immune reconstitution. Our study analyzed the
threshold for CD4+ T-cell count >500/µL, which is one of the
most accepted as an adequate immune response to cART since
HIV-1-infected patients with >500 CD4+ T-cells/µl have
morbidity and mortality rates similar to those of HIV-negative
people (Yang et al., 2020). Moreover, we also analyzed other
immunological outcomes that indicate efficient CD4+ recovery
but have a difficult clinical interpretation. However, we have not
evaluated the relationship between poor immune recovery and
clinical outcomes.

Strengths and Limitations of the Study
Strengths: 1) We studied a very representative sample of the
Spanish population infected with HIV because our cohort comes
from a large number of hospitals spread throughout Spain. 2) We
analyzed patients who had a baseline CD4+ T-cells <200 cells/
mm3 and undetectable viral load during the whole follow-up
period, strict criteria that help better define profiles of patients
who recover and do not recover CD4+ T-cells. 3) The study
period was the same in all patients (24 months after starting
cART). 4) We evaluated different threshold values of CD4+

recovery that allow greater certainty when confirming the
statistical association with CD4+ recovery.

Limitations: 1) Selection bias due to retrospective design and
restrictive inclusion criteria. 2) Low statistical power due to the
relatively small sample size, which may have affected the detection
of less strong associations. 3) Our study was mostly performed on
Caucasian individuals and more studies should be done in other
populations. 4) Genotyping of more polymorphisms within genes
involved in the VitDmetabolim could provide additional insight into
CD4+ T-cells recovery. 5) We have not performed functional assays
to confirm the effect of DHCR7 rs3829251 and DBP rs7041
polymorphisms on CD4+ T-cells recovery.

CONCLUSION

In summary, DHCR7 rs3829251 and DBP rs7041 polymorphisms
were associated with CD4+ recovery in HIV-infected patients
who started cART with low CD4+ T-cell counts. These SNPs in
the VitD pathway could help detect HIV-infected patients with
lower likelihood of CD4+ recovery after cART. However, further
studies with more polymorphisms, in different ethnicities, and
with larger samples are needed about the role of VitD genetic
variants on CD4+ recovery in late presenters initiating cART.
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