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Abstract: Extracellular vesicles (EVs) play an important role in intercellular communication. They are
naturally released from cells into the extracellular environment. Based on their biogenesis, release
pathways, size, content, and function, EVs are classified into exosomes, microvesicles (MVs),
and apoptotic bodies (ApoBDs). Previous research has documented that EVs, specifically exosomes
and MVs, play an important role in HIV infection, either by promoting HIV infection and pathogenesis
or by inhibiting HIV-1 to a certain extent. We have also previously reported that EVs (particularly
exosomes) from vaginal fluids inhibit HIV at the post-entry step (i.e., reverse transcription, integration).
Besides the role that EVs play in HIV, they are also known to regulate the process of wound healing by
regulating both the immune and inflammatory responses. It is noted that during the advanced stages
of HIV infection, patients are at greater risk of wound-healing and wound-related complications.
Despite ongoing research, the data on the actual effects of EVs in HIV infection and wound healing
are still premature. This review aimed to update the current knowledge about the roles of EVs in
regulating HIV pathogenesis and wound healing. Additionally, we highlighted several avenues of
EV involvement in the process of wound healing, including coagulation, inflammation, proliferation,
and extracellular matrix remodeling. Understanding the role of EVs in HIV infection and wound
healing could significantly contribute to the development of new and potent antiviral therapeutic
strategies and approaches to resolve impaired wounds in HIV patients.
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1. Introduction

The prevalence of HIV/AIDS has expanded and spread across the globe since its first detection in
the early 1980s [1,2]. The inability to find a cure made HIV one of the most dreaded pathogens ever
known. However, the introduction of highly active antiretroviral therapy (HAART) immensely reduced
the morbidity and mortality rate among HIV-infected individuals [3,4]. Continuous use of HAART
inhibits viral replication, controls new infections, and increases life expectancy [5]. Even though the
current HAART treatment regimens have greatly improved the life expectancy of HIV/AIDS patients,
they fail to eliminate the virus from the body completely, and HIV persists in cellular reservoirs because
of latency establishment, cryptic ongoing replication, and poor drug penetration [6].

HIV replication weakens the immune system, reducing the ability to fight back against invading
foreign pathogens. Consequently, following immunodeficiency, HIV-infected individuals succumb to
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common infections, such as tuberculosis (TB), hepatitis C virus (HCV), and other opportunistic infections.
At advanced stages of HIV infection, patients are also at risk of wound-healing complications [7,8] and
other wound-related issues. Moreover, HIV patients experience an increased incidence of perioperative
complications, such as infection, poor healing, and mortality [9–11]. Many perceive that any kind of
surgery poses greater risks to HIV-infected individuals than to uninfected individuals due to their
susceptibility to super-infections and poor wound healing.

Recently, research has shown that extracellular vesicles (EVs) play an important role in HIV
replication and its associated complications. EVs are small plasma-membrane-derived particles
that carry a complex cargo of nucleic acids, lipids, and proteins [12–16] and are known to have a
variety of important physiological effects [17]. Almost all cell types secrete EVs into the extracellular
environment [18,19]. Vesicles secreted from platelets, leukocytes, and endothelial cells are known to
play a crucial role in activating several fundamental cells, including vascular smooth muscle cells.
The intrinsic activity and immunomodulatory properties of EVs contribute to regulating vascular
inflammation, tissue regeneration, and vascular repair. Studies have shown that EVs may be involved
in wound healing by controlling cellular processes, including cell proliferation and migration in ways
that accelerate the wound-healing process [20–22]. EVs have been shown to play a role in a variety of
viral infections, with EVs released from the infected cells influencing the spread of viruses. For example,
the Epstein–Barr virus (EBV), which can cause tumors in humans, uses EVs to transfer viral oncoprotein,
latent membrane protein 1 (LMP-1), and virus-encoded miRNAs to normal cells. EVs released from
EBV-infected cells show the presence of latent-phase viral proteins LMP2, Epstein–Barr nuclear antigen
1 (EBNA1), and EBNA2 [23]. EVs released from Coxsackievirus-B1-infected cells can spread the virus
to the secondary site [24]. EVs are also considered carriers for Flavivirus transmission from arthropod
to human cells [25]. HIV has also been shown to alter EV content and utilize the EV-secretion pathways
to modulate its pathogenesis. Recently, research on the role of EVs in HIV in particular has been
expanding at a rapid pace. This review aimed to update the current knowledge about the roles of
EVs in HIV infection and wound healing. We have detailed the underlying molecular mechanisms
that govern wound healing and how exosomes contribute to wound healing. Subsequently, we have
described the impact of HIV infection on perturbing both exosomal and wound-healing pathways.

2. Extracellular Vesicles and Their Types

EVs are membrane-enclosed vesicles that are naturally released from cells as part of their normal
physiology and during acquired abnormalities. They play an important role in intracellular and
intercellular communication [18,19,26], including regulating the immune response, cell proliferation, cell
migration, blood vessel tube formation, and cancer progression, among other biological processes [27].
The transport and transfer of EVs influence various physiological and sometimes pathological functions
within their target cells [27]. The significance of EVs depends on the delivery of their contents to
recipient cells, thereby altering the cellular and biological process [27]. EV contents vary depending on
the generating cells, from which they acquire lipids, nucleic acids, and proteins [28,29]. Based upon
their biogenesis, release pathways, size, content, and function, EVs may be broadly classified into
exosomes, microvesicles (MVs), and apoptotic bodies [17,27,30–32].

2.1. Exosomes

Exosomes are a type of EV generated by inward budding of the limited multivesicular body
(MVB) membrane. Even though this mechanism of exosome formation is poorly understood, it is
widely accepted that exosomes are formed and developed via the endocytic pathway [33]. Invagination
of late-endosomal membranes leads to the formation of intraluminal vesicles (ILVs) within large
MVBs. These ILVs are then released into the extracellular environment upon fusion with the plasma
membrane. These are referred to as exosomes and are typically 30–100 nm (average ~100 nm) in
diameter [26,28,29,34]. They contain RNAs, including messenger RNAs (mRNAs) and microRNAs
(miRNAs), lipids (cholesterol, sphingomyelin, ceramide, phospholipids, and glucans), and protein
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from the cells [35]. Exosomes are taken up by distant cells, where they influence the function and
behavior of the cells. The content of exosomes (e.g., nucleic acids, protein, metabolites) affects the
biological responses of recipient cells. Exosomes are believed to be involved in removing excess
and/or unnecessary constituents from cells to maintain cellular homeostasis. They are also associated
with immune responses, cardiovascular diseases, viral pathogenicity, central-nervous-system-related
diseases, and progression of cancer. Exosomes are secreted from a variety of cells and may either
promote or restrict the development of disease [35]. Exosomes could potentially be used as biomarkers
of infectious diseases and for preventing infections. The intrinsic properties of exosomes have advanced
their potential use in the therapeutic control of many diseases [35].

2.2. Microvesicles (MVs)

MVs are a type of EV that form by direct outward budding, or pinching, of the cells. The formation
and shedding of MVs from the cell surface are not yet fully understood. It is hypothesized that MVs
are formed because of the interplay between phospholipid redistribution and cytoskeletal protein
contraction [36,37]. MVs range in size from 100 nm to 1 µm in diameter [26,28,29,34,38]. They mainly
contain highly concentrated plasma- and cytosol-associated proteins [39,40], including cytoskeletal
proteins, heat-shock proteins, integrins, and proteins containing post-translational modifications
such as glycosylation and phosphorylation [41,42]. They are involved in cell–cell communication
between local and distant cells and are highly similar to exosomes in clinical settings. Therefore, they
can also be engineered to deliver therapeutic elements, including short interfering RNAs, antisense
oligonucleotides, chemotherapeutic agents, and immune modulators, to desired targets [35].

2.3. Apoptotic Bodies (ApoBDs)

Apoptotic cells release EVs that are known as apoptotic bodies (ApoBDs) into extracellular
environments. ApoBDs are formed via separation from the cytoskeleton as a result of increased
hydrostatic pressure after the cell contracts. ApoBDs are released into extracellular spaces via several
stages: cell membrane contraction, condensation of cytoplasm, shrinkage of cell size, alteration
and condensation of nuclear chromatin, and then deterioration of plasma membrane. Finally,
the plasma membrane undergoes blebbing and the cellular contents are disintegrated into distinct
membrane-enclosed vesicles. These membrane-enclosed vesicles are known as apoptotic bodies
and their sizes range from 50 nm up to 5000 nm in diameter [26,43]. They contain intact organelles,
chromatin, and small amounts of glycosylated proteins [26,44–46] which help to remove dying cells [47].
They also serve as key regulators of antigen presentation [47], and therefore they are also becoming a
key player in immune modulation.

3. Extracellular Vesicles (Particularly Exosomes) Versus HIV Virion Characteristics

In the past decade, EVs have been shown to influence numerous cellular functions. Infected
cells secrete EVs just as normal cells do, and during pathogenic infection, EVs secreted from infected
cells carry not only host components but also pathogen-derived components [48,49]. Consequently,
EVs produced from infected cells modulate the susceptibility of the receiving cell, usually by priming
the cell for infection [50]. Similarly, in HIV infection, infected cells shed not only HIV virions,
but also release EVs which, besides containing host-cell components also carry HIV components
(Figure 1). Exosomes, the predominant population of EVs, resemble HIV virions in terms of their
biogenesis, physical properties, size, and density (ranging from 1.13–1.21 g/mL) [44]. Both are
surrounded by a phospholipid bilayer and possess a similar composition, including lipids [51],
carbohydrates [52], proteins [53,54], and RNA [55]. Exosomes derived from HIV-infected cells are
enriched with viral proteins such as Nef and viral RNAs. Because of these similarities, HIV virions are
believed to be generated from the same pathway as the exosomes [56,57]. Size-wise differentiation
of HIV and exosomes is quite difficult, which poses a challenge when isolating exosomes in pure
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form, as well as when characterizing their precise role and contribution to disease pathogenesis in
HIV-infected individuals.
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4. Extracellular Vesicles Modulate HIV Infection 

Cells infected with microorganisms, including bacteria, fungi, and viruses, produce EVs that can 
either modulate host immunity or enhance the severity of the infection [48,49]. The EVs produced by 
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Figure 1. Extracellular vesicles (exosomes, microvesicles, and apoptotic bodies) secreted from
HIV-infected cells. Exosomes (30 nm–100 nm) contain proteins, nucleic acids (RNA), and lipids.

Although exosomes and HIV virions share biochemical features (Figure 2), there are certain
differences between these two. HIV virions are more organized and uniform in structure regardless of
the source of infected cells. On the other hand, the structure of exosomal vesicles varies depending on
the parental cell. The biochemical content of HIV virions is more or less consistent, while the content
of exosomes is highly diverse depending on the source [58]. Another important difference is that HIV
virions replicate, while exosomes do not replicate. Although exosomes may contain virus-associated
nucleic acids and proteins, true exosomes are metabolically inert. Therefore, they are unable to replicate
their content and cannot generate progeny.
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4. Extracellular Vesicles Modulate HIV Infection

Cells infected with microorganisms, including bacteria, fungi, and viruses, produce EVs that can
either modulate host immunity or enhance the severity of the infection [48,49]. The EVs produced
by infected or sick cells commonly incorporate virulent factors, and, as a result, these EVs play a
crucial role in spreading the infection or sickness [59,60]. It has been noted that EVs released from
infected cells can mediate the inhibition of immune responses mainly by accelerating the apoptosis of
immune cells [59]. Studies have clearly shown the role of EVs in shielding certain pathogens from
the host immune system, and thus promoting the systemic spread of infection. On the other hand,
EVs, especially from uninfected/healthy cells, have been found to act against infections by restraining
the proliferation and transmission of pathogens, mainly viruses [50,59,61]. Like any other pathogenic
infection, HIV-infected cells also secrete EVs that modulate HIV pathogenesis. In most cases, but not all,
exosomes secreted from HIV-infected cells enhance HIV infection and disease progression. However,
exosomes from uninfected cells usually carry HIV-inhibitory and -protective properties. Overall,
evidence suggests that the exosomal effect on HIV mainly depends on their cellular origin [62]. The role
of exosomes in HIV infection/transmission/disease progression, based on their origin, is discussed here.

4.1. Blood/Serum/Plasma

Human blood is the main biofluid responsible for HIV transmission. The blood contains different
types of cells, a fraction of which are HIV-susceptible. All these cells secrete exosomes. Exosomes
released from HIV-1-infected cells have distinct constituents, and they are thus functionally different
from the exosomes released by uninfected cells. Analysis has revealed that the number of exosomes
secreted [63] and the levels of cytokines and chemokines [64] in exosomes are significantly higher
in plasma samples from HIV-1-infected individuals than uninfected individuals. This correlates
well with HIV disease progression [63,64]. HIV-infected cells also secrete exosomes that contain
chemokine receptors, CCR5, and CXCR4. These receptors are delivered to the recipient or uninfected
cells to facilitate HIV establishment and spread in CD4+ cells. EVs carrying CCR5+ microparticles,
released by CCR5+ peripheral blood mononuclear cells (PBMCs) [65], transfer CCR5 coreceptor to
CCR5-CD4+ cells, which allows infection of CCR5-CD4+ cells with R5-tropic HIV-1 [65]. Likewise,
the microvesicle-mediated transfer of CXCR4 coreceptor to the recipient cells enhances the infection with
X4-tropic HIV-1 [66]. Hence, besides priming the uninfected cells, exosomes may facilitate the cellular
entry of restricted HIV strains, thus modifying viral tropism [67]. Exosomes from HIV-infected cells
contain Nef protein which, in turn, enhances the exosomes’ secretion [68]. Nef-containing exosomes
can induce CD4+T-cell apoptosis in vitro, defining the role of exosomes in the T-cell depletion [68].
Nef protein promotes infection by activating uninfected cells. During exosome biogenesis, HIV also
incorporates transactivating response (TAR) RNA into exosomes [69,70]. Therefore, the exosomes
thus produced from the infected cells contain viral protein, and TAR supports HIV infection in
recipient cells [70–72]. Researchers have found that TAR-RNA-element-harboring exosomes stimulate
proliferation, migration, and invasion of transformed cells, and TAR-carrying EVs promote proliferation
by lowering the level of pro-apoptotic protein and enhancing the expression of proto-oncogenes [71].
Moreover, TAR also enhances HIV replication by inhibiting the interferon-induced protein kinase
PKR and increasing the translation of viral mRNA [72]. A study by Sampey et al. indicated that
exosomes that contain TAR RNA induce secretion of pro-inflammatory cytokines, specifically TNF-β
and IL-6, from monocyte-derived macrophages (MDM) [69]. Researchers also found that infected
T cells released exosomes containing active ADAM metallopeptidase domain 17, which induced
activation and replication of HIV [73]. Thus, by priming the uninfected cells for infection, exosomes
contribute to viral transmission and persistence [49]. Interestingly, TAR is also present in the exosomes
isolated from the serum of HAART-treated HIV patients, validating that even with HAART treatment,
HIV transcription is still going on [74]. Exosomes secreted from HIV-infected cells modulate matrix
deposition and vascular permeability through communication with fibroblasts and endothelial cells [75].
This process further contributes to the spread of HIV and other coinfections [76]. The transportation of
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HIV proteins and RNA by exosomes has also been implicated in chronic inflammation, leakiness of gut
or blood–brain barrier endothelium lining, and long-term neurological dysfunction. EVs derived from
HIV-1 were also found to suppress host immune responses and to enhance viral expansion depending
on the target cell [49].

Most exosomes released by infected cells have stimulatory effects on HIV-1 infection; however,
a certain population of exosomes has an inhibitory effect on the HIV life cycle, including
transcription [30,49,77,78]. They may confer antiviral activity during infection. In particular, exosomes
secreted by CD8+T cells have been linked with non-cytotoxic suppression of HIV-1 transcription [30].
It was noted that CD8+ T-derived exosomes inhibited HIV-1 transcription in the absence of any viral
protein expression [32]. Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3G (APOBEC3G
or A3G) was observed to be the significant exosomal component responsible for the anti-HIV-1 activity
by inhibitory exosomes [79,80]. As anticipated, HIV-1 replication was found to be restrained by A3G
at preintegration steps, before the build-up of Vif in those cells that express enzymatically active
low-molecular-mass forms of A3G [79–81]. It is worth mentioning that some other components of
exosomes also inhibit HIV-1 infection, mainly different cytokines, which include interleukins (ILs),
interferon-alpha (IFN-α), interferon-beta (IFN-β), and tumor necrosis factor (TNF-α) [82–86].

4.2. Semen, Vaginal Fluids, Breast Milk, and Other Biological Fluids

Reports suggest that exosomes from healthy individuals inhibit HIV-1 replication by blocking
viral RNA reverse transcription. Exosomes secreted from the cells and secreted in biological
fluids—semen [87–89], vaginal fluids [78], and breast milk [90]—suppress HIV-1 replication.
Researchers have reported that HIV-1 replication is blocked by semen and vaginal exosomes at
the post-entry stage before integration (e.g., reverse transcription level) [78,89]. CCR5-binding
cytokines and CXCR4 ligands in semen inhibit the replication of CCR5- and CXCR4-tropic strains
of HIV-1, respectively [91]. Semen clusterin also inhibits the viral HIV-1 infection of dendritic cells
by binding to dendritic-cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). Clusterin competes
with HIV for binding sites and thus inhibits the viral entry [92]. However, depletion of clusterin
does not restore the HIV binding to DC-SIGN, which shows that multiple factors contribute to the
inhibition of HIV entry. The seminal mucin-6 protein was found to be an inhibitor of HIV-1 entry to
DCs [93]. However, it is still to be clarified whether mucin-6 or other components of the exosomes
isolated from the semen of HIV-1-infected individuals are responsible for HIV-1 inhibition. Therefore,
our understanding of the role of semen in HIV-1 infection and its spread remains premature.

In our studies, we found highly impaired HIV transmission and replication when we incubated
the cells with exosomes isolated from vaginal fluid [78]. Specifically, our data demonstrated that
vaginal fluid exosomes inhibited HIV by restricting post-entry steps, including reverse transcription
and integration [78]. Other studies also reported that EVs derived from vaginal Lactobacillus protect
against HIV transmission by blocking its entry into targeted cells [77]. Various studies have suggested
that milk exosomes have a strong inhibitory effect against HIV. These exosomes are transferred to the
newborn baby via breastfeeding, providing passive antiviral immunity [62]. However, other studies
have also shown that exosomes from human breast milk can enhance HIV-1 entry when the virions
and exosomes are co-incubated [94,95]. More research is needed to understand the effect of exosomes
from human breast milk and other biological fluids.

Thus far, we know that the content of exosomes varies depending upon their origin, and exosomes
derived from the different sources can have a similar effect on HIV pathogenesis (Table 1). However,
variation in preparation conditions, such as culture condition, exosome or virion preparation,
cell infection status, and exosomal transfer or delivery status, may influence the effect of exosomes in
HIV infection [96].
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Table 1. List of exosomes shown to modulate HIV infection/transmission/disease progression.

Impact on HIV-1 Progression Exosome Source Reference

Enhance Exosomes from HIV-infected plasma (blood)
Exosomes from HIV-infected serum (blood) [63–76,97]

Inhibit Exosomes from uninfected human semen
Exosomes from uninfected human vaginal fluid

[87–89]
[78]

Enhance/reduce Exosomes from uninfected human breast milk [62,94,95]
Not significant Exosomes from uninfected plasma (blood) [96]

5. Wound Healing and HIV Infection

Wound healing (WH), a normal biological process in the human body, begins after a tissue
injury to repair and protect the body from further damage due to infection, blood loss, and
other complications [98,99]. It is achieved through four highly programmed phases: hemostasis,
inflammation, proliferation, and remodeling [27,98,100]. The healing process begins after an injury,
starting with hemostasis, which is initiated by vasoconstriction in response to injury to prevent blood
deprivation and loss of fluids and electrolytes. Subsequently, nearby platelets infiltrate into the wound
site and start to adhere to the exposed collagen. This is then followed by platelet aggregation, where
platelets begin to form a plug [100–102]. Clotting factors, which are secreted by platelets and the
surrounding tissue, prompt fibrin formation. Fibrin is a crucial protein involved in the clotting of blood
and is generated upon cleavage of fibrinogen by thrombin [103]. Platelets also facilitate the healing
response through the release of pro-inflammatory cytokines and growth factors, including transforming
growth factor-beta (TGF)-β and the platelet-derived growth factor (PDGF), which also contribute
during the later phases of healing [98,100,101]. TGF-β activates macrophages to release more cytokines
such as FGF (fibroblast growth factor), PDGF, tumor necrosis factor-alpha (TNFα), and interleukin-1
(IL-1). (TGF)-β also assists in the expression of collagen and collagenase and improves the chemotaxis
of fibroblast and smooth muscle cells [98].

After hemostasis, the inflammation phase begins. This phase is essential in the healing process,
and a dysfunction in the inflammatory response can lead to poor wound healing [104]. Edema and
erythema characterize the initial signs of the inflammatory response at the site of injury. The damaged
blood vessel increases its blood flow, which allows leukocytes to infiltrate into the wound area. Resident
immune cells, including mast cells, gamma delta T cells, and Langerhans cells, become activated and
begin to release cytokines and chemokines. Inflammatory cells allow the release of lysosomal enzymes
and reactive oxygen species (ROS) and aid in the removal of cellular debris. Leukocytes are also
reported to play a role in the wound healing process during inflammation, and affect many aspects
of repair.

As the inflammatory phase begins to decline, the proliferative phase (rebuilding phase)
begins [100,105]. The proliferative phase consists of an overlapping series of events including
angiogenesis, collagen remodeling, granulation tissue formation, and epithelialization [104]. During
this phase, granulation tissue becomes healthy when it receives a sufficient amount of oxygen and
nutrients via the formation of a new network of blood vessels. Normal granulation tissue is red or
pink and uneven in texture during the healthy stages of wound healing. The darkening of granulation
tissue is a sign of infection, ischemia, or poor perfusion. At the final phase of the proliferative stage,
epithelial cells form a new coating at the injury site. Keeping the wound moist and hydrated helps to
speed epithelialization. Therefore, an occlusive or semi-occlusive dressing is normally applied within
48 h of injury to maintain optimum tissue humidity.

Then comes the maturation phase, also called the remodeling phase, in which an attempt to
recover the normal tissue structure occurs. During this phase, collagen is remodeled from Type III to
Type I, and the wound fully closes. Blood vessels and inflammatory cells gradually start to disappear
from the wound area through the process of programmed cell death or apoptosis. In this final stage of
the lesion’s healing, collagen fibers become thicker, aligned, placed in parallel, and lie close together to
form a cross-link. Cross-linking of collagen is important to make the skin area stronger, and it reduces



Viruses 2020, 12, 584 8 of 21

scar formation. However, the healed wound area remains weaker compared to the uninjured normal
skin, even after the formation of cross-linked collagen. Generally, remodeling starts 21 days after an
injury and continues up to one year or more.

To heal a wound successfully, all four phases (Table 2), hemostasis, inflammation, proliferation,
and remodeling, must occur in the proper sequence and also within a certain time frame. Failure to
progress in any of the four stages of wound healing can lead to chronic wounds. Many factors can affect
wound healing by interfering in any of the four phases, thus causing improper or impaired tissue repair.
Critical factors that can influence and impair the healing process have gained attention recently—factors
like age, stress, sex hormones, diabetes, medications, weight, nutrition, alcohol consumption, smoking
oxygenation, and infection are known to influence the wound-healing process. These factors can be
classified as local factors and systemic factors. Local factors influence the characteristics of the wound
directly, while systemic factors relate to the overall health or disease state of the individual that affects
the ability to heal the lesion [100]. Infection, oxygenation, and mechanical stress are among the factors
that are considered to influence wound healing directly while age, sex, hormones, obesity, diabetes,
medication, alcoholism, nutrition, and immunodeficiency are the systemic factors that act through local
effects to impair wound healing. One or more factors may play a role in any of the four wound-healing
phases and influence the overall outcome of the healing process [100].

Table 2. The process of normal wound healing.

Phases Events

1st phase Hemostasis Vasoconstriction, platelet infiltration and aggregation into the
wound site, and fibrin formation

2nd phase Inflammation
Increased blood flow (neutrophil, monocyte, and leucocyte
infiltration) and activation of resident immune cells to release
cytokines and chemokines

3rd phase Proliferation Angiogenesis, collagen remodeling, granulation tissue
formation, and epithelialization

4th phase Remodeling Collagen remodeling, vascular maturation, and regression

In many cases, infection with pathogens remains the main hindrance to wound healing.
When tissue is injured, macrophages and neutrophils provide the first line of defense against invading
pathogens. They are part of the innate response. They display receptors on their surface that
recognize common characteristics of various pathogens, as do dendritic cells (DCs) [106]. Macrophages,
neutrophils, and DCs are stimulated by the binding of a microorganism substance or antigen to their
surface receptor [106]. Once stimulated, these cells undergo phagocytosis. If the innate response is
unsuccessful in destroying the invading pathogen, the adaptive response plays its part. DCs mature
into an antigen-presenting cell (APC) and migrate to the peripheral lymphoid organs to stimulate T
lymphocytes by presenting the pathogen antigen [106]. T lymphocytes become activated upon binding
to the antigen, which causes clonal proliferation of specific T cells. A large number of T cells migrate to
the site of infection to kill infected cells and produce cytokines to stimulate B cells. Upon stimulation,
B cells differentiate into antibody-producing plasma cells that flag pathogens for destruction [106–108].
Wound infection can cause complications in wound healing, particularly if the immune system is not
able to clear the infection from the site of injury. This may lead to persistent inflammation and a failure
to heal [100,109]. In short, infection is a significant complication for wound healing, and the immune
response is crucial to the resolution of this complication.

HIV patients with acquired immunodeficiency syndrome (AIDS) have an impaired immune
system and poor immunity. They are known to be highly susceptible to wound infection [7,8,110].
Studies have shown that the decline of CD4+ cells in AIDS patients correlates with impaired wound
healing [8] and prolonged inflammation [48]. Other studies have shown that the healing of wounds
and severity of wound complication does not correlate with the CD4 count [111]. However, details
concerning the rate of wound healing and its correlation with CD4+ cell counts and viral load are still
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premature [112]. Reports have also suggested that HIV patients with AIDS have a significantly higher
risk of wound infection and other wound-healing-related complications in comparison to HIV patients
without AIDS [8]. ART-naïve HIV-infected individuals with CD4 counts of less than 350 cells/µL
experience a slower rate of healing than those with CD4 counts above 350 cells/µL, according to
published research [112,113]. However, HIV status alone is not associated with a significantly longer
healing period [114]. Thus, generally, it is noted that HIV-infected patients without AIDS are at
relatively lower risk of wound-healing complications [8]. To date, no study indicates that HIV infection
itself is an independent risk factor for complicated wound management. Open research areas include
investigating the role of HIV status in the formation of chronic wounds. Nevertheless, a large number of
HIV patients without AIDS present with other metabolic syndromes, such as diabetes [115], which puts
them under an increased risk of developing wound-healing complications [116]. Patients with Type
2 diabetes have impaired immunity, which contributes to wound-healing impairments [117,118].
Moreover, infection with HIV enhances the chances of other coinfections to the host, especially fungal
infections on the skin. These fungal infections can spread through the wound, resulting in impaired
healing and increased morbidity, hospitalization, sepsis, reoperation, and even death [110].

6. Effect of EVs in the Process of Wound Healing

Cells of various types are involved in wound healing. These cells release EVs into extracellular
environments. EVs derived from non-immune and immune cells also play a significant role in the
regulation of the immune system [17]. Content transfer through cell-to-cell communication mechanism
enables EVs to regulate cell proliferation and growth factor expression in the absence of cell contact [119].
Studies have shown that EVs regulate ECM and are responsible for elevating the healing process
along with reducing scar area in the rat model [120]. EVs are associated with ECM synthesis through
the increased release of the ECM protein elastin. The role of EVs in many wound healing steps,
including coagulation [121–123], cell proliferation [20,124–127], cell migration [20,22,124,125,128–131],
and remodeling [20,124,132–134], have been documented in many studies.

6.1. Role of EVs in Coagulation

Blood coagulation is known to be initiated through the tissue factor (TF), a protein that functions
in thrombin formation by converting zymogen FX to its active form FXa [122]. Microvesicles (MVs)
and exosomes that carry tissue factor (TF) can be derived from platelets, monocytes/macrophages,
and saliva. EVs, including microvesicles and exosomes derived from human saliva platelets, and
monocytes/macrophages are reported to influence the process of coagulation. The tissue factors present
in saliva, along with coagulation factor VII, have been shown to promote the coagulation process
(Figure 3) and reduce the clotting time [122]. Therefore, EVs may help to minimize blood loss and
protect the body from pathogen invasion [27,135]. Additionally, the phosphatydilserine-enriched
membranes of MVs derived from platelets, including exosomes, serve as a surface for attachment of
clotting factors that aid in coagulation [128].

6.2. Role of EVs in Inflammatory and Immune Response

Various immune cells, including mast cells [136], macrophages [137,138], dendritic cells [139],
T cells [140,141], and B cells [142], secrete EVs. Immune- and non-immune-cell-derived EVs, particularly
exosomes, play a significant role in the regulation of the inflammatory response [143,144]. EVs are
involved in the inflammatory response via intercellular communication between cells and could be
involved in long-term immune memory. Neutrophil-derived EVs can also exert anti-inflammatory
effects. EVs secreted from neutrophils induce downregulation of the transcription of pro-inflammatory
cytokines and allow the release of TGF-β1 from macrophages [145,146]. EVs derived from platelets have
an anti-inflammatory effect. They reduce the production of interferonγ (IFNγ), TNFα, and IL-6 secretion
from T cells [147]. RBC-derived EVs can increase the phagocytic activity of neutrophils in humans by
triggering an increase in CD11b. EVs also regulate the immune system’s transport of inflammatory
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mediators and receptors. EVs derived from monocytes have pro-inflammatory effects through their
interactions with various cells, including endothelial cells, other monocytes, fibroblasts, and smooth
muscle cells. EVs play a crucial role in the release of interleukin (IL)-1β [148], a pro-inflammatory
cytokine that is essential for host-defense responses [49]. Furthermore, EVs derived from monocytes
carried by interleukin-1 were found to activate endothelial cells and stimulate the generation of
IL-1β from monocytes [149]. Depending on the source of secretion, the activities of exosomes against
pathogens vary. Exosomes derived from mature DCs aid in T-cell and NK-cell activation [150].
Exosomes secreted from T cells can either activate or suppress the immune system, depending on the
activation status and tissue microenvironment of the T cell and other factors [32,151,152]. Activated
CD3+ T cells communicate with resting T cells through exosomes [32]. Exosomes released from CD4+

T cells are capable of delivering different signals, such as antigen-specific signals, atherogenic signals,
and co-stimulatory signals [153]. Exosomes derived from various immune cells serve an essential
purpose in wound healing and repair [132].Viruses 2020, 12, x FOR PEER REVIEW 10 of 22 
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6.3. Role of EVs in the Proliferation Phase

EVs, including exosomes, are reported to play a significant role in mediating different parts
in the proliferative phase of wound healing. Shabbir et al. have shown that exosomes secreted
from mesenchymal stem cells (MSCs) activate several signaling pathways [20] that modulate wound
healing. Exosomes promote cell proliferation by enhancing the expression levels of hepatocyte growth
factor (HGF), insulin-like growth factor-1 (IGF1), nerve growth factor (NGF), stromal-derived growth
factor-1 (SDF1); increase re-epithelialization; reduce scar widths; promote the maturity of collagen
and create new vessels; support wound-site maturation vessels; and activate Akt, Erk, and Stat3
signaling [20,124]. Li et al. (2016) found that exosomes derived from endothelial progenitor cells
(EPCs) facilitate wound healing by positively modulating vascular endothelial cell function [130].
Zhang et al. (2015) reported on the potential of exosomes derived from human-induced pluripotent
stem-cell-derived mesenchymal stem cells (hiPSC-MSCs) for treating cutaneous wounds for the first
time. The team suggested that hiPSC-MSC-Exos can facilitate cutaneous wound healing by promoting
collagen synthesis and angiogenesis [124]. Moreover, studies have also shown that exosomes secreted
from platelet-rich plasma (PRP) promote the re-epithelization of chronic cutaneous wounds [129].
Meanwhile, a study by Cheng et al. (2018) showed that exosomes secreted from human keratinocytes
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(HKC) could not promote cell proliferation [125]. Their content of extracellular hsp90α overrode TGF-β
inhibition to promote dermal cell migration.

It has also been hypothesized that exosomes derived from adipose-derived stem cells (ASCs)
promote the migration of fibroblasts toward the site of injury through internalization [154]. A study
in vitro found that exosomes can enter fibroblasts’ cytoplasm and secrete an active substance into the
cells that influences fibroblast migration, proliferation, and collagen secretion [155]. EVs derived from
human adipose-derived MSCs accelerate the migration and proliferation of dermal fibroblasts and
keratinocytes [156]. These EVs also activate the AKT pathway [156]. Ferreira et al. (2017) concluded
that EVs are a promising tool for wound healing [156].

EVs derived from lymphocytes have also been documented as having pro- or anti-angiogenic effects.
Research has shown that activation and apoptosis of lymphocytes releases MVs with pro-angiogenic
properties, whereas microparticles released from apoptotic lymphocytes inhibit angiogenesis [157–159].
EVs with abundant micro-RNA (miR-214 and miR-126) appear to be capable of inducing pro-angiogenic
signaling in adjacent epithelial cells [160]. However, EVs derived from platelets were discovered to
have anti-angiogenic properties, inhibiting angiogenesis by altering subunits of NADH oxidase and
increasing oxidative stress [161]. Taken together, EVs seem to have a positive effect on the proliferation
phase and stimulate proliferation, migration, and collagen secretion. EVs can also have both pro- and
anti-angiogenic effects, the overall balance of which likely influences angiogenesis and wound healing.
However, an in-depth understanding of the role of EVs remains to be elucidated.

6.4. Role of EVs in Remodeling

EVs play a crucial role in regulating extracellular matrix (ECM) remodeling, the last phase
of wound healing, particularly by promoting the production of ECM proteins such as elastin and
collagen [27,129]. Studies have found that mesenchymal stem cell (MSC)-derived exosomes promote
collagen I and III produced during earlier stages of wound healing [27,129]. Furthermore, studies
have also found that exosomes reduce scar formation by preventing collagen production during the
late stage of wound healing [132]. EVs may aid in the formation and function of the ECM, since
they are linked with the collagen network of the ECM. In addition to ECM remodeling, research has
found that EVs notably improved the healing rate and decrease scar diameters in a rat model [27].
MVs derived from endothelial cells also contain matrix metalloproteinases, which are involved in
the tissue remodeling phase [27,162,163]. Additionally, during wound healing, embryonic MSC- and
endothelial-cell-derived exosomes prompt endothelial cell generation and migration, which aid in
angiogenesis. A previous study has found that exosomes derived from mesenchymal stem cells
(hiPSC-MSC-Exos) play a significant role in wound healing and repair. HiPSC-MSC-Exos were found
to improve cutaneous wound healing, collagen synthesis, and angiogenesis at the wound site in a
full-thickness skin-defect rat model [131].

7. Future Perspectives on EVs in HIV Infection and Wound Healing

EVs are considered a “fingerprint” of cells as they reflect the condition of the cells [164].
EVs (particularly exosomes) could be used as biomarkers to detect cellular abnormalities, even
infection to the cells. Exosomes are considered effective and sturdy biomarkers because of their stability,
sensitivity, and specificity [165]. Welker et al. (2012) suggested that exosomal CD81 may be a potential
marker for hepatitis C diagnosis and treatment response, as the level of serum exosomal CD81 is
elevated in patients during chronic hepatitis and severe fibrosis [166]. Exosomal EGFRvIII may also
provide diagnostic information for glioblastoma [167]. It is reported that exosome from the serum of
brain tumor patients has an elevated level of EGFR, EGFRvIII, and TGF-beta; therefore, it could be
used as a biomarker [168]. Further, studies have shown that tau phosphorylated at Thr-181 is present
at elevated levels in exosomes isolated from cerebrospinal fluid specimens of Alzheimer’s disease (AD)
patients [169].
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Likewise, exosomes could also be used as biomarkers for HIV-1 infection. The presence of HIV-1
proteins and RNA in the exosomes from HIV-1-infected patients accentuates the potential use of
circulating exosomes as a biomarker for HIV-1. During HIV infection, exosome-associated immune
and oxidative stress markers may be used as indicators of HIV-1 disease progression. Furthermore,
an abundance of plasma exosomes and the size of exosomes correlate inversely with CD4 counts and
correlate positively with CD8T cell counts, thus indicating HIV disease progression [63]. On the other
hand, as the EVs, particularly exosomes, derived from semen [87–89], vaginal fluids [78], and breast
milk [90] have been identified as inhibitory to HIV, these exosomes could be used as a potential therapy
against HIV infection. These EVs have protective properties that can restrain vertical and horizontal
viral transmission. They could be isolated and used as a natural carrier of anti-HIV-1 molecules, thereby
preventing HIV infection and its progression. Even though the beneficial roles of these exosomes
are known, the mediators are still yet to be identified. Indeed, it will be important to characterize
the exact component(s) and the mechanism responsible. The delivery of antiviral molecules and/or
therapeutic vaccines utilizing EV-based delivery systems could represent a major improvement in
drug development. Certainly, EVs are much more likely to have low immunogenicity compared to
liposome- and lentiviral-based delivery systems. The ease of engineering these exosomes and the
non-synthetic nature of these delivery systems offer advantages for disease targeting.

The roles of exosomes in the field of wound repair and cutaneous regeneration have gained a lot of
attention over the last few decades. Therapies based on exosomes derived from mesenchymal stem cells
(MSCs) have emerged as a promising technique for their ability to promote wound healing and minimize
scarring [170]. Despite having issues pertaining to the separation of a highly pure and uniform exosomal
fraction [171], EV-based therapies have many advantages, including being easy to prepare, store,
and transport, easy to dose, and easy to administer. Moreover, they have high therapeutic efficiency
with minimum risk of immune rejection and tumorigenesis. These advantages make them useful in
regenerative medicine without the limitations of cellular therapy. Consequently, MSC-exosomes have
potential for cutaneous regeneration and could effectively replace whole-MSC-based therapy. Since
the exosomes have regenerative attributes like stem cells and may avert undesired effects associated
with stem-cell transplantation, exosomes can be used effectively for direct treatment. Exosomes cause
angiogenesis [172], promote proliferation, skin-cell migration, and wound closure, and enhance the
healing process in animal models [131,173] when administered locally as an injection. This suggests
that exosomes offer a promising therapeutic approach for wound healing.

8. Conclusions

EVs are rapidly evolving and expanding topics in the field of biology, affecting almost all
biomedical disciplines including HIV/AIDS and wound healing. However, many questions about
EVs remain, as do many challenges to their use. A major hurdle in understanding the specific
functions of EVs is the inability to separate and classify the complex population of vesicles into
subclasses of particular sizes, compositions, and biogenetic pathways. Since various factors, such as
the cellular origins, recipient cells, and the intracellular signaling, influence the role of EVs in HIV
infection, the preparation and testing conditions play a crucial part. The role of EVs appears to vary
considerably during HIV infection. Due to their ability to modulate the HIV lifecycle, it is expected
that a certain population of EVs could be developed as a biomarker for HIV infection, besides their
use as potential therapeutics. Because EVs also play crucial roles in overlapping phases of wound
healing, including coagulation, inflammation, cell proliferation, cell migration, angiogenesis collagen
production, and ECM remodeling, they could also be a potential tool in wound-healing treatments.
Although significant advances have been made in the role of EVs, a more in-depth understanding is still
required, in particular in intercellular communication, immune modulation, and immune surveillance.
Compared to other fields, the role of EVs in HIV infection and wound healing remains to be explored.
Therefore, more research should be anticipated at the in vivo level to reveal the potential of EVs in
the development of anti-HIV therapy. Understanding the effect of weak immunity on EV function
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in wound healing in HIV-infected individuals will be of great significance in understanding the
therapeutic potential of EVs in the wound healing process, especially of HAART-taking longer-living
HIV patients.
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