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Abstract

Our preferences are influenced by the opinions of others. The past human neuroim-

aging studies on social conformity have identified a network of brain regions related

to social conformity that includes the posterior medial frontal cortex (pMFC), anterior

insula, and striatum. Since these brain regions are also known to play important roles

in reinforcement learning (i.e., processing prediction error), it was previously hypothe-

sized that social conformity and reinforcement learning have a common neural mech-

anism. However, although this view is currently widely accepted, these two

processes have never been directly compared; therefore, the extent to which they

shared a common neural mechanism had remained unclear. This study aimed to for-

mally test the hypothesis. The same group of participants (n = 25) performed social

conformity and reinforcement learning tasks inside a functional magnetic resonance

imaging (fMRI) scanner. Univariate fMRI data analyses revealed activation overlaps in

the pMFC and bilateral insula between social conflict and unsigned prediction error

and in the striatum between social conflict and signed prediction error. We further

conducted multivoxel pattern analysis (MVPA) for more direct evidence of a shared

neural mechanism. MVPA did not reveal any evidence to support the hypothesis in

any of these regions but found that activation patterns between social conflict and

prediction error in these regions were largely distinct. Taken together, the present

study provides no clear evidence of a common neural mechanism between social

conformity and reinforcement learning.
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1 | INTRODUCTION

Humans are highly sensitive to social influence, and our everyday

decisions are often guided by the opinions of others. One of the best

known forms of social influence is social conformity, which refers to

the act of changing one's judgments, attitudes, and preferences to

align with the expectations of others (Cialdini & Goldstein, 2004). The

neural mechanism underlying this important social phenomenon has

been investigated over the past two decades using functional mag-

netic resonance imaging (fMRI).

A seminal study by Klucharev et al. (Klucharev, Hytonen,

Rijpkema, Smidts, & Fernandez, 2009) found that the posterior medial

frontal cortex (pMFC) and ventral striatum play important roles in

social conformity. They asked participants to rate the attractiveness
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of female faces, and after rating each face, the participants were pres-

ented with the ratings of the same face by another group of people.

They found that the larger the difference between an individual's rat-

ing and the group rating, the higher the activity in the pMFC, while

the opposite pattern was found in the ventral striatum (i.e., the closer

the individual and group ratings, the higher the activity in the ventral

striatum). In a study on social conformity that used transcranial mag-

netic stimulation, it was shown that the pMFC plays a causal role in

preference change (Klucharev, Munneke, Smidts, & Fernandez, 2011).

Using the similar experimental paradigm, several studies have repli-

cated the original fMRI findings (e.g., Campbell-Meiklejohn, Bach,

Roepstorff, Dolan, & Frith, 2010; Izuma & Adolphs, 2013; Korn

et al., 2014; Korn, Prehn, Park, Walter, & Heekeren, 2012; Wake,

Aoki, Nakahara, & Izuma, 2019), and a recent meta-analysis revealed

that the insula and pMFC are consistently positively related to social

conflict (i.e., the difference between individual and group opinions)

and that the ventral striatum is negatively related to social conflict

(Wu, Luo, & Feng, 2016).

As these brain regions (especially the pMFC and striatum) are known

to play pivotal roles in reinforcement learning, Klucharev et al. (2009)

proposed an interesting hypothesis that a complex social phenomenon

of social conformity may share common neural mechanisms as a simple

nonsocial reward-based learning process (Izuma, 2013, 2017). It has

been reported in several human neuroimaging studies and animal neuro-

physiology studies that ventral striatum activity tracks reward prediction

error (i.e., the difference between expected and actual outcomes) and

that the pMFC and insula are involved in processing unsigned prediction

error (i.e., the absolute degree of deviation from expectations) (see

Fouragnan, Retzler, & Philiastides, 2018 for a recent meta-analysis of

human neuroimaging studies).

In addition to the commonly activated regions reported in human neu-

roimaging studies, social conformity and reinforcement learning are similar

in at least the threeways presented below. First, there is a conceptual simi-

larity between social conformity and reinforcement learning as they are

processes that involve the adjustment of the behavior of an individual

(e.g., rating or choice) based on received feedback (e.g., group opinion or

reward) (Izuma, 2017). Second, the neurotransmitter dopamine is known

to play a role in both processes. It is well established that dopamine neu-

rons in the midbrain, which is heavily interconnected to the ventral stria-

tum, signal reward prediction error (Schultz, 2015). Furthermore, a

pharmacological studywith human participants has shown that social con-

formity effect ismodulated bymethylphenidate, which indirectly increases

extracellular dopamine levels in the brain (Campbell-Meiklejohn

et al., 2012). Third, several electroencephalogram (EEG) studies have

reported an EEG signal over the pMFC called feedback-related negativity

(FRN), which is related to prediction error (Holroyd & Coles, 2002), and

several EEG studies on social conformity have reported a similar signal

over the pMFC that correlates with the difference between individual and

group opinions (e.g., Chen, Wu, Tong, Guan, & Zhou, 2012; Kim, Liss, Rao,

Singer, & Compton, 2012; Shestakova et al., 2012).

However, importantly, there are at least two reasons to believe that

the hypothesis is too simplistic. First, in the context of the original social

conformity task (Klucharev et al., 2009), the idea that social conflict is the

same as prediction error implies that participants expect that the group's

rating is always the same as their ratings, which seems highly unlikely. In

fact, using a similar social conformity paradigm, we had previously asked

participants to guess the group ratings, but their expectations of group

ratings were not related to their own ratings (Izuma & Adolphs, 2013). In

other words, the social conformity task was not perceived as a learning

task (i.e., learning preferences of a group) by participants. If so, underlying

computations are likely to be different between social conformity and

reinforcement learning. Second, another important difference is that

while striatal activity is positively related to signed prediction error dur-

ing the reinforcement learning task (i.e., actual vs. expected rewards), it is

negatively related to social conflict during the social conformity task

(i.e., the absolute difference between one's vs. group's rating). This nega-

tive correlation with social conflict in the social conformity task corre-

sponds to a negative correlation with unsigned prediction error in the

reinforcement learning task (i.e., the absolute difference between actual

vs. expected rewards). Thus, although the same striatal region is involved

in both tasks, signals related to its activity are conceptually different

between the two tasks.

The reinforcement learning hypothesis of social conformity sug-

gests an interesting possibility of bridging two previously-unrelated

literatures of neuroscience research on reinforcement learning and

psychology research on social conformity and could significantly

advance the understandings of the neural and psychological mecha-

nisms of how we are influenced by others. However, while the

reinforcement-learning hypothesis is currently most widely accepted

as the neural mechanism of social conformity (Campbell-Meiklejohn

et al., 2012; Chen et al., 2012; Izuma, 2013, 2017; Kim et al., 2012;

Klucharev et al., 2009; Shestakova et al., 2012), to the best of our

knowledge, these two processes have never been directly compared

to each other. Thus, evidence in support of a common neural mecha-

nism is still insufficient. Thus, the aim of this study was to rigorously

test the reinforcement learning hypothesis of social conformity by

asking the same sample of participants to perform social conformity

and reinforcement learning tasks inside an fMRI scanner.

A question of whether social vs. nonsocial processes share the

same neural mechanism remains an important topic in neuroscience

(Lockwood, Apps, & Chang, 2020). Drawing on the idea of Marr's

three levels (Marr, 1982), Lockwood et al. (2020) argued that social

vs. nonsocial processes may be similar or distinct at each of three dif-

ferent levels: (a) computational level, (b) algorithmic level, and

(c) implementational level. In the present study, we aimed to contrib-

ute to this important theoretical debate and test whether social con-

formity and reinforcement learning are similar at least at the

implementational level (i.e., whether social conflict and reward predic-

tion error are processed in the same brain region). Importantly, it is

increasingly being recognized that even if there are activation over-

laps in the same sample of participants, activation overlaps based on

traditional univariate fMRI data analysis cannot be considered strong

evidence of a common neural mechanism (e.g., Woo et al., 2014).

Therefore, we used multi-voxel pattern analysis (MVPA) to obtain

more compelling evidence to support or refute the hypothesis

(Peelen & Downing, 2007).
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To test the hypothesis, we selected particular social conformity and

reinforcement learning tasks, which are themost representative and appro-

priate to test the neural correlates of social conflict and prediction error sig-

nals. More specifically, for the social conformity task, we employed the

same face attractiveness rating task as that in the original study by

Klucharev et al. (2009) (see Figure 1a). The same (or conceptually similar)

paradigm has been used in a number of previous studies (e.g., Campbell-

Meiklejohn et al., 2012; Izuma & Adolphs, 2013; Klucharev et al., 2011;

Shestakova et al., 2012; Zaki, Schirmer, & Mitchell, 2011). For the rein-

forcement learning task, we adopted a probabilistic reward learning task

fromCooper, Dunne, Furey, andO (2012) inwhich participants were asked

to pick one of two slot machines in each trial (Figure 1b). We selected this

particular task because of its simplicity, and this task is conceptually similar

to that used in other neuroimaging studies, in which the neural correlates

of reward prediction error were demonstrated (e.g., Burke, Tobler,

Baddeley, & Schultz, 2010; Fouragnan, Retzler, Mullinger, &

Philiastides, 2015; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006).

2 | MATERIALS AND METHODS

Twenty-nine right-handed female students with no history of psychiatric

disorders were recruited from the University of Southampton (mean

age = 22.12 years). As in the original study (Klucharev et al., 2009), only

female participants were recruited for the study as previous research

suggests that there are gender differences in neural activity related to

attractiveness rating (e.g., Cloutier, Heatherton,Whalen, & Kelley, 2008).

Data from four participants were not included in the final analyses for

the following reasons: excessive head movement (>3 mm) in one partici-

pant, strong doubts regarding the social conformity manipulation in two

participants (see below for more details), and technical problems with

the response box in one participant (this participant could not complete

all the fMRI tasks). The final sample consisted of 25 participants (mean

age = 22.1 years).Written consentwas obtained from all the participants

prior to the experiment, and the study was approved by the University of

Southampton ethics committee.

2.1 | Stimuli

For the social conformity task, 100 digital color photographs of Caucasian

women (aged 18–35) were used as stimuli. The images were taken from

the set used in the study by Klucharev et al. (2009). All the women in the

photographsweremoderately attractive and had amoderate smile.

2.2 | Experimental procedure

The experiment consisted of two parts, namely an fMRI session and a

behavioral session. Prior to the experiment, participants were given

F IGURE 1 Experimental tasks.
(a) Social conformity task.
Participants were shown images of
female faces and a 10-point scale and
asked to rate the attractiveness of
each face. After the participants
submitted their ratings, they were
shown the ratings of each face by
other people (in blue frame) for 2 s.
(b) Reinforcement learning task
(probabilistic reward learning task).
Participants were presented with two
slot machines and asked to pick 1 of
them. After the participants made
their decisions, they were presented
with a win or loss outcome
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instructions and practice trials on the tasks. During the fMRI session,

participants were asked to perform the following two tasks: (a) social

conformity task and (b) reinforcement learning task. Both tasks were

programmed using Psychtoolbox (http://psychtoolbox.org/) with

Matlab software (version 2018b, http://www.mathworks.co.uk). Par-

ticipants completed two runs of each task (a total of four fMRI runs)

and each run consisted of 50 trials. The order of the tasks was

counterbalanced across participants.

Social Conformity task We adopted the social conformity task

used in the original study (Klucharev et al., 2009). For each trial, par-

ticipants were presented with an image of a female face and a

10-point scale (Figure 1a). The participants were asked to rate the

attractiveness of each face on a scale of 1 (least attractive) to 10 (most

attractive). Each trial consisted of the following three phases:

(a) rating phase (no time limit, but participants were encouraged to

answer as quickly as they can), (b) highlight of response phase (1–5 s,

mean = 2 s), (c) group rating presentation phase (2 s). There was an

inter-trial interval (ITI) (1–7 s, mean = 2.5 s) between trials. The partic-

ipants were asked to indicate their answers using response button

handles (with one handle held in each hand). They used both of their

index fingers to move a white cursor through the rating scale (e.g., a

right index finger button press moved the cursor 1 point to the right).

The white cursor remained invisible until the participant pressed a

button, and it appeared below the scale when participants started

scrolling. The initial position of the cursor in each trial was randomly

determined. The participants were asked to use the cursor location to

indicate their chosen rating and to press the right thumb button to

select their chosen rating. In the highlight of response phase, the rat-

ing chosen by the participant was highlighted with a yellow cursor.

In the group rating presentation phase, the participants were

presented with a rating in a blue frame that represented “the mean

group rating of other students at the University of Southampton”
(Figure 1a). During the instruction, the participants were informed

about the meaning of the blue frame and were led to believe that the

group rating was an actual group mean rating based on responses

from other students at the University of Southampton. In reality, it

was systematically manipulated such that the group rating matched

the rating of the individual participant in 17.5–25% of the trials and

such that the group rating was roughly equally less than or greater

than the rating of the participant in 75–82.5% of the trials. The group

rating did not deviate from the participant's rating by more than

3 points. The order of the images was randomized for each

participant.

Reinforcement Learning task This was a probabilistic reward learn-

ing task adapted from the study by Cooper et al. (2012). In each trial,

participants were asked to pick one of two slot machines (Figure 1b).

There was a certain probability of winning 10 points (equivalent to £1)

on each of the two slot machines. There were independent probabili-

ties of winning on each trial on the two slot machines, and the proba-

bilities changed gradually over the 50 trials in each run to ensure that

learning continued throughout the task so that the magnitude of pre-

diction errors varied widely. Specifically, each slot machine's reward

probability followed a sine curve set to drift between 0 and 100%

probability. A starting point was randomly determined, and half-period

was randomly set between 0.87 and 1.67 times the number of trials

per run (i.e., 50 trials). The reward probabilities of the two slot

machines were constrained to be correlated with each other at less

than r = .02. Finally, a small amount of Gaussian noise was added to

each trial (M = 0, SD = 6%) before scaling sines to have a range of

0–100% (Cooper et al., 2012). There were four different slot machines

(red, blue, green, and purple), and two runs of the reinforcement learn-

ing task were performed with different combinations of two slot

machines. The combinations of the slot machines and the location of

the two slot machines were counterbalanced across participants.

Each reinforcement learning trial consisted of the following three

phases (Figure 1b): (a) choice phase (participant's response, <2 s),

(b) highlight of response phase (1–7 s, mean = 2.5 s), and (c) outcome

phase (2 s). Trials were separated by an ITI (1–7 s, mean = 2.5 s). In

the choice phase, the participants were asked to choose the slot

machine they thought would result in a win outcome within 2 s. They

were informed that the probability of winning associated with each

slot machine might change gradually throughout the experiment. The

participants were also told that two trials would be randomly selected

(1 from each of the 2 runs) at the end of the experiment and that they

would receive a cash bonus depending on the outcome of the two

trials.

The participants were asked to indicate their answers by pressing

the response handle buttons using the left or right index finger. If they

did not respond within 2 s, an error message (“Too slow!!!”) was

shown, and the trial was repeated. In the highlight of response phase,

the chosen slot machine image was highlighted by a yellow frame. In

the outcome phase, 1 of the 2 following possible outcomes was

shown: “You won! +10 points” or “You lost. 0 points” (Figure 1b). The

outcome messages were written in magenta or cyan font color, and

combinations of font colors (magenta or cyan) and outcomes (win or

loss) were counterbalanced across participants.

2.3 | Behavioral session

After the scan, to measure how participants' face ratings were

affected by group opinion (i.e., social conformity effect), they were

unexpectedly (unannounced during the initial instruction) asked to

rate each face again, this time, without the group rating. They rated

the same 100 faces again in a new randomized order. Next, the partic-

ipants were asked to complete a demographic questionnaire. On the

questionnaire, participants were asked to indicate with a “yes” or a

“no” if they had any doubts about the group ratings presented during

the fMRI face-rating task. If the indication is a “yes,” the participant is

asked to explain the doubt in a follow-up interview. As earlier men-

tioned, two participants were excluded for their strong doubts about

the group rating (both of them explicitly said that they did not believe

the group ratings presented to them during the fMRI scanning). Lastly,

the participants were paid and debriefed.
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2.4 | fMRI data acquisition

All the images were obtained using a Siemens 3.0 Tesla Skyra scanner. For

functional imaging in both task sessions, T2*-weighted gradient-echo

echo-planar imaging (EPI) sequences were used with the following param-

eters: time repetition = 2,500 ms, echo time = 25 ms, flip angle = 90�, field

of view = 220 mm, and voxel dimension = 3.0 × 3.0 × 3.0 mm. Forty-four

contiguous sliceswith a thickness of 3 mmwere acquired in an interleaved

order. A high-resolution anatomical T1-weighted image (1 mm isotropic

resolution) was also acquired for each participant.

2.5 | fMRI data preprocessing

Analysis of the fMRI data was performed using SPM12 (Welcome

Department of Imaging Neuroscience) implemented in Matlab (Math

Works). To allow for T1 equilibration, the first four volumes were dis-

carded before preprocessing and data analysis. The SPM12 realign-

ment program was used to correct for head motion. Following

realignment, the volumes were normalized to MNI space using a

transformation matrix obtained from the normalization of the first EPI

image of each individual participant to the EPI template using an

affine transformation (resliced to a voxel size of 2.0 × 2.0 × 2.0 mm).

The normalized data was spatially smoothed with an isotropic Gauss-

ian kernel of 8 mm (full-width at half-maximum). For MVPA, spatial

smoothing was not applied so as to preserve fine-grained activation

patterns.

2.6 | Behavioral analysis

Social conformity effect Multiple regression analysis was performed for

each participant to investigate the effect of group rating on individual

conformity (rating change). The following two predictor variables were

included: (a) gap (group rating - participant's first rating) and

(b) participant's first rating. The dependent variable was rating change

(participant's second rating - first rating). The first rating was consid-

ered as one of the predictor variables to control for the regression-to-

the-mean effect (Izuma & Adolphs, 2013; Wake et al., 2019). On the

rare occasion (0.32% across all participants), seven participants

pressed the decide button (right thump button) before the right or left

key (i.e., they submitted their rating, most likely accidentally, when the

cursor was still invisible). These missed trials were not included in the

behavioral data analysis and were modeled as a regressor of no inter-

est in the fMRI data analysis (see below).

Prediction error estimation To estimate prediction error signals in

each trial of the reinforcement learning task, we fitted a standard Q-

learning model (Sutton & Barto, 1998) to the participants' choice

behaviors.

In the Q-learning model, in the choice phase of each trial, an

agent chose an option (say A) over the other (say B) with the probabil-

ity q(A) = 1/[1 + exp(−β (Q(A) – Q(B)))], where Q denotes the value of

each option and β denotes the degree of stochasticity in the choices

(called inverse temperature). In the outcome phase, the agent updated

the value of the chosen option based on reward experience. Suppose

that the option A is chosen, then the value is updated by the reward

prediction error δ = R – Q(A), where R denotes the reward outcome

(coded 1 for reward and 0 for no reward) as follows: Q(A) Q(A)

+ αδ. Here, the parameter α is the learning rate. In the first trial of the

task, option values were set at 0.5 (as the agent seemed to have no

prior belief in the reward probabilities).

We fitted this model to each participant's choice data. In the

model fitting, to avoid any unreasonable individual fits (Niv, Edlund,

Dayan, & O, 2012), we employed a maximum a posteriori (MAP)

approach in which the learning rate was constrained to a range of 0 to

1 with a Beta (2,2) prior distribution and the inverse temperature was

constrained to be positive with a Gamma (2,3) prior distribution.

2.7 | fMRI data analysis: Univariate analysis

Two general linear models (GLMs) were used to analyze the fMRI

data. The first GLM was set up to assess brain activation correlated to

the absolute gap (the difference between a participant's first rating

and the group rating) in the social conformity task. The second GLM

was set up to assess brain activation correlated to signed and

unsigned prediction error values in the reinforcement learning task.

In the first GLM (social conformity task analysis), the absolute gap

in the social conformity task was quantified by calculating the abso-

lute difference between the individual and group ratings in each trial.

A parametric modulation analysis was performed to assess the corre-

lation between trial-by-trial absolute gap scores and brain activation.

The model included the following three regressors: (a) trial regressor

(onset = trial onset, duration = subject's response time), (b) feedback

regressor (onset = feedback onset, duration = 2 s), and (c) feedback

regressor modulated by absolute gap between individual and group

ratings. As stated above, missed trials were modeled as an additional

regressor of no interest for the seven participants.

In the second GLM (reinforcement learning task analysis), signed

and unsigned prediction errors were quantified using the computa-

tional model described above. A parametric modulation analysis was

performed to assess the correlation between trial-by-trial signed/

unsigned prediction error and brain activation. The model included

the following four regressors: (a) trial regressor (onset = trial onset,

duration = subject's response time), (b) feedback regressor

(onset = feedback onset, duration = 2 s), (c) feedback regressor modu-

lated by signed prediction error values, and (d) feedback regressor

modulated by unsigned prediction error values. If there were missed

trials, they were separately modeled as a regressor of no interest.

In both GLMs, the regressors were calculated using a box-car

function convolved with a hemodynamic-response function. Other

regressors of no interest, such as six motion parameters, session

effect, and high-pass filtering (128 s), were also included.

We aimed to follow up findings based on the univariate analyses

(i.e., activation overlaps) with MVPA to further test the hypothesis. To

avoid false negative results at the initial univariate analysis stage, we
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used a statistical threshold of p < .005 voxelwise (uncorrected for

multiple comparisons) with a cluster size of 20 voxels within the three

anatomical regions of interest (ROIs, see below) (Lieberman &

Cunningham, 2009). Outside the ROIs, the statistical threshold was

set at p < .001 voxelwise (uncorrected) and cluster p < .05 (FWE

corrected for multiple comparisons). All reported p-values for both

behavioral and fMRI data analyses were based on one-tailed tests.

2.8 | fMRI data analysis: MVPA

Correlation-based MVPAWhen the univariate analyses revealed activa-

tion overlaps, we further investigated if activation patterns in each of

the overlapped regions were similar between social conflict and

signed/unsigned prediction errors (Figure 2a). In this correlation-based

MVPA, the following four contrast images were used: (a) those rep-

resenting positive sensitivity to absolute gaps between individual and

group ratings, (b) those representing negative sensitivity to absolute

gaps between individual and group ratings, (c) those representing pos-

itive sensitivity to unsigned prediction error values, and (d) those rep-

resenting positive sensitivity to signed prediction error values. We

calculated voxel-by-voxel correlations between contrast images 1 and

3 (representing positive social conflict and unsigned prediction error,

respectively) for each of the overlapped regions within the pMFC and

insula. Similarly, we calculated voxel-by-voxel correlations between

contrast images 2 and 4 (representing negative social conflict and

signed prediction error, respectively) for each of the overlapped

regions within the striatum. These within-subject correlation values

were Fisher-z-transformed and submitted to a one-sample t test to

test for significantly positive correlation. A positive correlation indi-

cates that the pattern of voxelwise sensitivity to social conflict is simi-

lar to the pattern of voxelwise sensitivity to signed and unsigned

prediction errors, thus providing a support for the hypothesis.

Classifier-based MVPA While the correlation-based MVPA

described above assessed the similarities in activation (or sensitivity)

between social conflict and signed/unsigned prediction errors, the aim

of classifier-based MVPA was to determine if the two patterns were

significantly distinct. We used a linear support vector machine, which

was performed using Matlab in combination with LIBSVM (https://

www.csie.ntu.edu.tw/�cjlin/libsvm/) (Wake & Izuma, 2017), with a

cost parameter of c = 1 (default). For this analysis, separate contrast

images were created for each of the two fMRI runs, and classification

performances were evaluated using a leave-one-run-out cross-

validation procedure. Thus, using the contrast images from the first

run of each task, we trained a classifier that discriminates activation

patterns between social conflict and signed/unsigned prediction error.

Then, using the contrast images from the second run of each task, we

tested if the classifier could discriminate between social conflict and

signed/unsigned prediction error (Figure 2b). The procedure was

repeated using data from the second run as training data and data

from the first run as test data. Two classification accuracy values were

averaged for each participant and the average classification accuracy

values were submitted to a Wilcoxon signed-rank test to determine if

the classification accuracy was significantly higher than the theoretical

chance level (i.e., 50%; note that we also conducted permutation tests

[1,000 times] to estimate the empirical chance level in each ROI, but

the results were virtually the same). Significantly high classification

accuracy indicates that the pattern of voxelwise sensitivity to social

conflict is distinct from that to signed/unsigned prediction error.

Searchlight analysis Further, we performed searchlight analysis

(Kriegeskorte, Goebel, & Bandettini, 2006) to more thoroughly depict

the activation profiles of each local region within the pMFC, insula, and

striatum using the correlation-based and classifier-based MVPA proce-

dures described above. We used a radius of three voxels so that each

searchlight included a maximum of 123 voxels (and less voxels at the

boundaries of each ROI). In each searchlight, a correlation between social

conflict and unsigned/signed prediction error was computed for the

correlation-based MVPA, and classification accuracy was computed for

the classifer-based MVPA. The correlation maps and classification accu-

racy maps were entered into a second-level permutation-based analysis

F IGURE 2 Schematic illustrations of two types of MVPA. (a) Correlation-based MVPA tests if the two patterns are significantly similar.
(b) Classifier-based MVPA tests if the two patterns are significantly distinct
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with 5,000 permutations using the Statistical NonParametric Mapping

toolbox for SPM (Nichols & Holmes, 2002). A statistical threshold

(i.e., voxel level) was set at p < .005 and a cluster-level threshold was set

at p < .0125 (FWE corrected; separate second-level analyses were con-

ducted for each of the four ROIs so that the cluster-level threshold was

further corrected for four comparisons).

2.9 | Regions of interest

Anatomical ROIs To test the hypothesis, we focused on the following

three anatomical ROIs: (a) pMFC, (b) insula, and (c) striatum. In a

recent meta-analysis, it was reported that these ROIs were consis-

tently positively associated with social conflict (pMFC and insula) and

consistently negatively associated with social conflict (striatum)

(Wu et al., 2016). These ROIs were also consistently associated with

signed/unsigned prediction errors (Fouragnan et al., 2018). These ana-

tomical ROIs were defined using a WFU pickatlas toolbox for SPM

(dilation factor = 2) (Maldjian, Laurienti, Kraft, & Burdette, 2003). The

pMFC included the superior frontal gyrus (Frontal_Sup_Medial), ante-

rior cingulate cortex (ACC), middle cingulate cortex, and supplemen-

tary motor area (SMA). The striatum ROI included the caudate

nucleus, putamen, and globus pallidus. We tested if the same areas

within the pMFC and insula ROIs were activated by social conflict

(positive correlation) and unsigned prediction error. Similarly, we

tested if the same areas within the striatum ROI were activated by

social conflict (negative correlation) and signed prediction error.

Functional ROIs For the subsequent MVPAs, we defined func-

tional ROIs as overlapped clusters between social conflict and

unsigned prediction error in the pMFC and insula anatomical ROIs

and overlapped clusters between social conflict and signed prediction

error in the striatum anatomical ROIs with a threshold of p < .005

with more than 20 voxels. For the searchlight MVPA, we used the

same definition of functional ROIs above but with a more lenient

threshold of p < .05 (uncorrected).

3 | RESULTS

3.1 | Behavioral results

On average, participants took 5.14 s (SD = 1.65) to rate a face in the

social conformity task. During the reinforcement learning task, partici-

pants selected a slot machine within 2 s for most trials (average num-

ber of missed trials = 0.2) and the average reaction time was 0.67 s

(SD = 0.18).

Consistent with the previous works, we found a significant con-

formity effect; the second ratings of the participants were significantly

influenced by the group rating even after the regression-to-the-mean

effect was controlled (t[24] = 2.18, p = .02, d = 0.43). We also found

highly significant regression-to-the-mean effect (t[24] = −15.81,

p < .001, d = 3.16), which is consistent with our previous studies

(Izuma & Adolphs, 2013; Wake et al., 2019).

During the reinforcement learning task, participants selected

options with a higher reward probability 59.9% of the trials, which is

significantly higher than the chance (50%; t[24] = 6.22, p < .001,

d = 1.24), indicating that the participants were generally able to accu-

rately keep track of the fluctuating reward probabilities based on

reward outcomes.

Further, our data showed that the reinforcement learning model

explains participant behavior better than a model that assumes that

an individual selects the right option with a fixed probability (p). To

compare the goodness-of-fit of the models, we computed the Laplace

approximated log model evidence (MacKay, 2003) of the two models.

The values were compared using the Bayesian Model Selection (BMS)

method from the study by Stephan, Penny, Daunizeau, Moran, and

Friston (2009), which treats model identity as a random effect.

Exceedance probabilities from this analysis indicated that the rein-

forcement learning model has a 100% chance of being the more com-

mon of the two models in the population.

Finally, we computed the across-subject correlation between the

social conformity effects (beta values from the multiple regression

analyses) and learning rate parameters (α estimated using the rein-

forcement learning model), but they did not correlate with each other

(r[23] = −.09, p = .66). This indicates that individual differences in the

susceptibility to social influence during the social conformity task are

unrelated to individual differences in the sensitivity to reward out-

come during the reinforcement learning task.

3.2 | Univariate results

We first successfully replicated the findings of previous studies on

social conformity. The pMFC (dmPFC [dorsomedial prefrontal cortex]

and pre-SMA [presupplementary motor area]) and bilateral anterior

insula activities were positively correlated with social conflict

(i.e., absolute difference between participant and group ratings)

(Figure 3a), whereas the striatum activities were negatively correlated

with social conflict (Figure 3b and Table 1). All activated areas outside

the ROIs are listed in Table 2.

We also successfully replicated the findings of previous studies

on reinforcement learning. During the reinforcement learning task,

the pMFC and bilateral anterior insula activities were positively corre-

lated with unsigned prediction error (Figure 3c), whereas the striatum

activities were positively correlated with signed prediction error

(Figure 3d and Table 3). All areas outside the ROIs that were signifi-

cantly positively related to unsigned or signed prediction error are

listed in Table 4 (note that no area was significantly negatively related

to signed or unsigned prediction error).

Consistent with the hypothesis, in each of the three anatomical

ROIs (i.e., the pMFC, insula, and striatum), there were a total of seven

activation overlaps (18–158 voxels; Table 5). We found two over-

lapped clusters in the pMFC; one in the dmPFC and the other in the

pre-SMA (Figure 3e and Table 5). These overlapped areas in the

pMFC and bilateral insula were sensitive to social conflict (positively

related) and unsigned prediction error. Similarly, we found three
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separate overlapped clusters within the striatum (Figure 3f and

Table 5), and these areas were sensitive to social conflict (negatively

related) and signed prediction error.

3.3 | MVPA results

3.4 | ROI-based analyses

Correlation-based MVPA To obtain more compelling evidence of a com-

mon neural mechanism between social conformity and reinforcement

learning, we conducted correlation-based MVPA which investigates

whether social conflict and signed/unsigned prediction error evoked

similar activation patterns in each of the seven overlapped areas

(Table 5). A high correlation indicates that voxels sensitive to social

conflict are also sensitive to reward prediction error and therefore sup-

ports the hypothesis. However, there were no significant correlations in

any of the seven overlapped areas. The average correlations in the four

overlapped areas in the pMFC and insula were not significantly positive

even at p < .05 uncorrected level (all ps > .60; Table 6). Similarly, all three

overlapped regions in the striatum showed nonsignificant correlation (all

ps > .41; Table 6). These results suggest that, although the same brain

regions are involved in social conformity and reinforcement learning, the

underlying neural populationsmay be distinct.

Classifier-basedMVPAWe further attempted to findmore direct evi-

dence that refutes the hypothesis and conducted classifier-basedMVPA

to determine whether activation patterns are distinct between social

conflict and signed/unsigned prediction error (i.e., whether a classifier is

able to distinguish patterns associated with social conflict and reward

prediction error). The dmPFC cluster showed significant classification

accuracy, which indicates that the patterns evoked in the dmPFC by

social conflict and unsigned prediction error are distinct. Classification

F IGURE 3 fMRI results from univariate analyses. (a) pMFC and insula regions positively related to social conflict (i.e., absolute difference
between participant and group ratings). (b) Striatum regions negatively related to social conflict. (c) pMFC and insula regions positively related to
unsigned prediction error. (d) Striatum regions positively related to signed prediction error. (e) Activation overlaps between social conflict (panel a)
vs. unsigned prediction error (panel c) related regions. (f) Activation overlaps between social conflict (panel b) vs. unsigned prediction error (panel
d) related regions

LEVORSEN ET AL. 1335



accuracies in the right insula, left insula, and pre-SMA were not signifi-

cant (although classification accuracy in the left insula was significant at

p < .05 uncorrected level; Table 6). Similarly, the right putamen cluster

showed significant classification accuracy, which indicates that the pat-

terns evoked in this area by social conflict and signed prediction error

were distinct. Classification accuracies in the left putamen and left

nucleus accumbens (NAcc) were not significant (Table 6).

Overall, our ROI based MVPA analysis did not find any support

for the hypothses. On the contrary, we found evidence refuting the

hypothesis, especially in the dmPFC and the right putamen, whereas

TABLE 1 ROI activation during the
social conformity task

Location

MNI coordinate

Z Cluster sizex y z

Areas in the pMFC and insula positively related to social conflict

dmPFC 8 48 38 4.26 337

Right anterior insula 38 22 -4 4.07 388

Left anterior insula −34 20 −16 3.76 128

Pre-SMA 12 20 68 3.48 191

Areas in the striatum negatively related to social conflict

Left striatum (caudate body) −18 −8 20 5.13 1,714

Left caudate tail −14 −20 22 4.55

Left putamen −32 −16 6 4.22

Left caudate head −18 22 14 4.18

Left NAcc −18 10 −8 4.61

Right striatum (caudate head) 14 28 0 4.85 1,682

Right caudate body 20 16 20 4.53

Right putamen 36 −8 −4 4.3

Right caudate tail 22 −24 22 4.27

Right NAcc 16 10 −12 3.99

Abbreviations: dmPFC, dorsomedial prefrontal cortex; NAcc, nucleus accumbens; pMFC, posterior medial

frontal cortex; pre-SMA, presupplementary motor area.

TABLE 2 Activations outside the
ROIs during the social conformity task

Location

MNI coordinate

Z Cluster sizex y z

Areas positively related to social conflict

No significant region

Areas negatively related to social conflict

Left IPL −58 −30 38 5.39 6,834

Left paracentral lobule −12 −20 60 4.83

Posterior cingulate cortex 0 −34 42 4.66

Left lateral prefrontal cortex −42 50 12 4.88 499

Left inferior temporal gyrus −54 −58 −8 4.5 751

Right cerebellum 46 −70 −44 4.2 240

Right posterior insula 38 −8 −4 4.13 362

Right STG 62 −18 −2 4.13

Left DLPFC −36 34 −32 3.92 206

Left MFG −22 −24 52 3.86 262

Left STG −62 −28 4 3.51 204

Abbreviations: DLPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobule; MFG, middle frontal

gyrus; STG, superior temporal gyrus.
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there was no clear evidence for or against the hypothesis in the pre-

SMA, left and right insula, left putamen, and left NAcc.

3.5 | Searchlight analysis

Although we conducted MVPA analyses on each of the seven over-

lapped clusters (Table 6), the size of an overlapped cluster depends on

the thresholds and smoothing kernels (e.g., see Deen, Koldewyn,

Kanwisher, & Saxe, 2015), and this makes our choice of functional

ROIs somewhat arbitrary. Therefore, we conducted searchlight

analysis to more thoroughly depict the activation profiles of each local

area within the pMFC, insula, and striatum. We defined the functional

ROIs (i.e., univariate activation overlaps) more broadly by using a

p < .05 (uncorrected) threshold in each of the three anatomical ROIs.

This procedure revealed 917 overlapped voxels in the pMFC, 369 in

the right insula, 199 in the left insula, and 3,054 across three separate

clusters in the striatum (Figure 4a).

We performed searchlight MVPA of each of the overlapped clus-

ters to determine if any area showed similar activation patterns

between social conflict and prediction error (i.e., correlation-based

MVPA). However, we found no such areas in any of the ROIs. We also

TABLE 3 ROI activation during the reinforcement learning task

Location

MNI coordinate

Z Cluster sizex y z

Areas in the pMFC and insula positively related to unsigned prediction error

mPFC 16 64 2 4.17 55

Pre-SMA/dmPFC −2 16 54 3.99 632

Left anterior insula −44 16 −10 3.55 89

Right anterior insula 38 18 −4 3.30 96

Areas in the striatum positively related to signed prediction error

Left putamen −34 −4 2 4.10 183

Right putamen 32 −6 14 3.89 146

Left NAcc −12 14 −4 3.85 224

Abbreviations: dmPFC, dorsomedial prefrontal cortex; mPFC, medial prefrontal cortex; NAcc, nucleus accumbens; pMFC, posterior medial frontal cortex;

pre-SMA, presupplementary motor area.

TABLE 4 Activations outside the
ROIs during the reinforcement
learning task Location

MNI coordinate

Z Cluster sizex y z

Areas positively related to unsigned prediction error

Right IPL 50 −40 48 5.28 2,706

Right inferior temporal gyrus 58 −30 −22 5.03 491

Left lateral prefrontal cortex −28 46 10 4.95 175

Left IPL −38 −46 42 4.45 653

Right DLPFC 46 32 42 4.18 505

Right VLPFC 40 58 −10 3.74

Areas positively related to signed prediction error

mPFC 6 62 8 4.55 2,420

dmPFC −14 42 54 4.39

ACC −2 44 2 4.24

vmPFC −6 48 −14 3.41

Left lingual gyrus −20 −90 6 4.52 424

Right lingual gyrus 28 −86 10 4.39 891

Note: The mPFC cluster positively related to signed prediction error did not overlap with the dmPFC

region related to social conflict.

Abbreviations: ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; dmPFC,

dorsomedial prefrontal cortex; IPL, inferior parietal lobule; mPFC, medial prefrontal cortex; VLPFC,

ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex.
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performed classifier-based MVPA using the same searchlight proce-

dure and found a total of nine significant clusters across the four ROIs

(Figure 4b and Table 7). Thus, no evidence of a shared neural mecha-

nism between social conformity and reinforcement learning was

found in the searchlight analysis. On the contrary, searchlight analysis

found that the patterns between social conformity and reinforcement

learning in several local areas within each ROI were significantly

distinct.

4 | DISCUSSION

The present study investigated whether social conformity and rein-

forcement learning have a common neural mechanism. The behavioral

results showed a robust social conformity effect during the social con-

formity task and that the reinforcement learning model can ade-

quately explain the behavior of participants during the reinforcement

learning task. Furthermore, univariate fMRI analyses successfully rep-

licated the findings of earlier studies that reported the involvement of

the pMFC, insula, and striatum in the processing of prediction error

signals and social conflict signals (i.e., the difference between one's

and group ratings) during the reinforcement learning task and social

conformity task, respectively. Further, we found that, in the pMFC

and anterior insula, areas positively related to social conflict

(i.e., absolute difference between participant and group ratings) over-

lapped with areas sensitive to unsigned prediction error. We also

found that areas of the striatum negatively related to social conflict

overlapped with areas of the striatum sensitive to signed prediction

TABLE 5 Overlapped activations between social conflict and signed/unsigned prediction error

Size of overlap (voxel)

Peak MNI coordinate

x y Z

Overlap between areas positively related to social conflict and areas positively related to unsigned prediction error

dmPFC 27 8 28 44

Pre-SMA 26 6 16 62

Right anterior insula 65 38 22 −4

Left anterior insula 18 −36 20 −8

Overlap between areas negatively related to social conflict and areas positively related to signed prediction error

Right posterior putamen 66 32 −12 2

Left posterior putamen 74 −30 −12 6

Left NAcc 158 −18 10 −8

Note: The peak MNI coordinates reported here are based on the social conflict contrasts. There were two more overlapped clusters (both in the left

putamen), but these clusters consist of less than three voxels and were not investigated further.

Abbreviations: dmPFC, dorsomedial prefrontal cortex; pre-SMA, presupplementary motor area; NAcc, nucleus accumbens.

TABLE 6 MVPA results

Regions
ROI size
(voxel)

Correlation-based MVPA Classifier-based MVPA

Average
correlation

p-value
(uncorrected)

Average classification
accuracy (%)

p-value
(uncorrected)

Overlap between areas positively related to social conflict and areas positively related to unsigned prediction error

dmPFC 27 −0.02 0.62 59 .004*

Pre-SMA 26 −0.02 0.61 56 .078

Right insula 65 −0.03 0.70 52 .250

Left insula 18 −0.01 0.60 56 .031

Overlap between areas negatively related to social conflict and areas positively related to signed prediction error

Right

putamen

66 −0.02 0.72 56 .016*

Left putamen 74 0.01 0.41 51 .500

Left NAcc 157 −0.02 0.72 52 .375

*p < .05 (Bonferroni correction). Significant results of correlation-based MVPA mean that activation patterns are similar between social conflict and

prediction error (i.e., evidence supporting the hypothesis), while those of classifier-based MVPA mean that they are distinct (i.e., evidence against the

hypothesis).
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error. This is the first unequivocal evidence that social conflict and

signed/unsigned prediction error activate the same areas in the

pMFC, insula, and striatum.

However, follow-up MVPA did not provide evidence of a com-

mon neural mechanism. It revealed that patterns of sensitivity to

social conflict were not similar to patterns of sensitivity to unsigned/

signed prediction error in any of the overlapped areas. Although this

negative result could be explained by the high noise of the data,

classifier-based MVPA could successfully distinguish between social

conflict vs. unsigned prediction error related activation patterns in the

pMFC, and this is evidence of distinct (nonsimilar) neural mechanisms

in social conformity and reinforcement learning at least within the

pMFC. Searchlight analyses further confirmed these results, and there

was no evidence of a common neural mechanism in any of the ROIs.

On the contrary, overall pictures of the searchlight results show

largely distinct, rather than common, activation patterns in social

F IGURE 4 Searchlight MVPA.
(a) Functional ROIs used in the searchlight
MVPAs. Yellow color denotes regions
sensitive to social conflict (positively
related) and unsigned prediction error.
Cyan color denotes regions sensitive to
social conflict (negatively related) and
signed prediction error. (b) Searchlight
MVPA results (classifier-based MVPA).

Each panel depicts areas that showed
significantly distinct activation patterns
between social conflict and signed/
unsigned prediction error

TABLE 7 Searchlight MVPA results

Location

MNI coordinate

Cluster size Cluster p-valuex y z

Correlation-based MVPA

No significant region

Classifier-based MVPA

pMFC ROI

dmPFC 16 24 60 54 <.001

dACC −2 30 38 42 <.001

Pre-SMA 4 16 66 12 .009

Right insula ROI

Right anterior insula 44 20 −12 5 .001

Left insula ROI

Left anterior insula 1 −28 24 0 9 .001

Left anterior insula 2 −42 16 −4 2 .012

Striatum ROI

Left posterior putamen −24 10 −4 29 <.001

Right NAcc 4 12 −4 24 .005

Left anterior putamen −32 2 4 30 .003
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conflict and signed/unsigned prediction error. Thus, despite our

efforts to minimize the possibility of false negatives, we found no evi-

dence to support the hypothesis that social conformity and reinforce-

ment learning have a common neural mechanism. These results

suggest that the reinforcement learning hypothesis may be too sim-

plistic to explain the neural mechanism of social conformity.

Based on the theoretical framework provided by Lockwood

et al. (2020), our results showed that social conformity and reinforce-

ment learning are different at least at the implementational level. Fur-

thermore, we speculate that they may be different even at the

algorithmic and/or computational levels. For example, while activities

in the pMFC and insula may reflect the degree of surprise (or the

absolute deviation from expectations) during the reinforcement learn-

ing task, they may express a negative feeling (e.g., unpleasantness or

anxiety due to the recognition that one is different from others) dur-

ing the social conformity task. This in turn motivates the individual to

reduce the negative feeling by conforming to group opinion. It is

unlikely that individuals think their rating will always be the same as

the group rating (see Izuma & Adolphs, 2013). In other words, the

degree of social conflict is not related to the degree of surprise (devia-

tion from expectations). This seems to be a critical difference between

social conflict in the social conformity paradigm and reward prediction

error (including various forms of social prediction error (Suzuki &

O'Doherty, 2020). Furthermore, the notion that the activities in the

pMFC and insula during the social conformity task reflect negative

emotion is consistent with reports of previous studies stating that

these regions also play a role in cognitive dissonance (Izuma

et al., 2010; van Veen, Krug, Schooler, & Carter, 2009) (for reviews,

see Izuma, 2013; Izuma & Murayama, 2019), which is considered to

be a negative feeling caused by inconsistency between attitude and

behavior (Festinger, 1957). This notion is also supported by our previ-

ous finding that agreement, rather than disagreement, with a disliked

group activated the pMFC and insula (and disagreement with a dis-

liked group activated the striatum) (Izuma & Adolphs, 2013).

Similarly, activity in the striatum, which is negatively related to

social conflict, may reflect a positive subjective feeling (Campbell-

Meiklejohn et al., 2010; Nook & Zaki, 2015), which results from the

realization that the group has the same opinion as the participant. Fur-

ther, activity related to signed prediction error reflects a learning sig-

nal but not a positive subjective feeling. It is well known that striatum

activity tracks subjective pleasantness induced by various stimuli such

as faces and foods (e.g., Izuma et al., 2010; Lebreton, Jorge, Michel,

Thirion, & Pessiglione, 2009). However, it should also be noted that

the ventromedial prefrontal cortex (vmPFC) is also known to be

robustly related to subjective pleasantness (e.g., Ito et al., 2015;

Lebreton et al., 2009; Suzuki, Adachi, Dunne, Bossaerts, & O, 2015;

Suzuki, Cross, & O, 2017), but we did not find any activation nega-

tively related to social conflict in the vmPFC.

Although the present study used an experimental paradigm simi-

lar to that of the social conformity study that originally proposed the

reinforcement learning hypothesis of social conformity (Klucharev

et al., 2009), it should be noted that social conformity is not a unitary

phenomenon and that some forms of social conformity may be more

similar to reinforcement learning. At least three types of motivation

for attitude change based on social influence have been identified in

psychological studies (Cialdini & Goldstein, 2004; Petty &

Cacioppo, 1981), and they include the following: (a) motivation to be

accurate, (b) motivation to obtain social approval from others, and

(c) motivation to maintain a positive self-concept (which includes atti-

tude change following cognitive dissonance). The majority of previous

neuroimaging studies on social conformity used the face rating task

(or a similar task which involves subjective ratings of stimuli)

(Izuma, 2013). The conformity effect reported in these studies can be

explained by the motivation to obtain social approval and/or the moti-

vation to maintain a positive self-concept, but it cannot be explained

by the motivation to be accurate as there is no right or wrong answer

in facial attractiveness rating. In a situation where individuals strongly

believe that group opinion is more accurate than their own opinion

(e.g., group opinion ≈ correct performance feedback), social conflict

can serve as a teaching signal just like prediction error in the rein-

forcement learning task. In fact, the pMFC, insula, and striatum are

related to prediction error in a semantic learning paradigm where no

reward is involved (i.e., acquiring new semantic knowledge based on

performance feedback [correct or incorrect]) (Pine, Sadeh, Ben-Yakov,

Dudai, & Mendelsohn, 2018). In this study, prediction error in each

trial was calculated based on a subjective rating of confidence and on

feedback received by participants (e.g., a positive prediction error sig-

nal is generated when individuals were not confident about their

answer but received a correct feedback). Further, activities in the

pMFC and insula were found to be positively related to unsigned pre-

diction error, whereas striatum activities were found to be positively

related to signed prediction error (Pine et al., 2018). Thus, how these

brain regions process social conflict might be more similar to rein-

forcement learning in a different social conformity paradigm where a

right answer can be objectively defined (i.e., where social conflict can

serve as a strong teaching signal), and this is an important avenue for

future research.

Finally, this study highlights the importance of directly comparing

two tasks (cognitive processes) with the same sample of participants

and the utility of the multivariate approach in interpreting univariate

activation overlaps (Peelen & Downing, 2007). Although previous EEG

studies (Chen et al., 2012; Kim et al., 2012; Shestakova et al., 2012)

report the finding of a signal over the pMFC during the social confor-

mity task that resembles the FRN signal found in the reinforcement

learning task, it is important to compare these signals with the same

participants to clearly determine if they are similar in terms of spatial

location and timing.

In conclusion, this study investigated the reinforcement learning

hypothesis of social conformity, which states that social conformity

and reinforcement learning have a common neural mechanism. Using

the representative tasks of social conformity and reinforcement learn-

ing, we found that the pMFC, bilateral anterior insula, and striatum

were involved in processing reward prediction error and social con-

flict, which is consistent with the reports of previous studies. How-

ever, MVPA failed to find any clear evidence of a shared neural

mechanism. Thus, our results suggest that the reinforcement learning
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hypothesis is likely to be too simplistic and caution against proposing

a common neural mechanism based on univariate activation overlaps.
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