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Chagas’ disease is caused by infection with the 
protozoan parasite Trypanosoma cruzi. This para-
site has a complex life cycle that involves mam-
malian hosts and insect vectors (1). The vectors 
become infected after taking a blood meal 
from an infected host that has circulating, non-
dividing, blood form trypomastigotes (BFT). 
The BFT transform into epimastigotes, which 
multiply extracellularly, inside the insect mid-
gut and diff erentiate into nondividing meta-
cyclic trypomastigotes that enter the host during 
the insect’s next blood meal. Trypomastigotes 

 penetrate a variety of host cell types and multi-
ply intracellularly as amastigotes (2). When amas-
tigotes fi ll the host cell, they diff erentiate into 
BFT, which are released as the cell ruptures. 
The BFT invade adjacent tissues and/or spread 
via the lymphatic and circulatory systems to 
distant sites where they undergo further cycles 
of intracellular multiplication. In this way, 
humans maintain a parasitemia infective for 
 vectors, thus completing the transmission cycle. 
T. cruzi may also be transmitted by other means 
such as by blood transfusion, laboratory acci-
dents, organ transplantation, and from mother 
to fetus (3, 4).
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Chagas’ disease is caused by infection with the parasite Trypanosoma cruzi. We report that 

infected, but not uninfected, human endothelial cells (ECs) released thromboxane A2 (TXA2). 

Physical chromatography and liquid chromatography-tandem mass spectrometry revealed 

that TXA2 is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-

derived TXA2 accounts for up to 90% of the circulating levels of TXA2 in infected wild-type 

mice, and perturbs host physiology. Mice in which the gene for the TXA2 receptor (TP) has 

been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism 

(fourfold) than WT mice after infection. Conversely, deletion of the TXA2 synthase gene 

had no effect on survival or disease severity. TP expression on somatic cells, but not cells 

involved in either acquired or innate immunity, was the primary determinant of disease 

progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon 

restoration of TP expression. We conclude that the host response to parasite-derived TXA2 

in T. cruzi infection is possibly an important determinant of mortality and parasitism. A 

deeper understanding of the role of TXA2 may result in novel therapeutic targets for a 

disease with limited treatment options.
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10–30% of T. cruzi–infected individuals develop chronic 
symptomatic cardiomyopathy. Chagasic cardiomyopathy is a 
major cause of mortality and disability in endemic areas of 
Mexico, Central, and South America (1) and is now recog-
nized as an opportunistic infection in individuals with HIV/
AIDS (5). T. cruzi infects many cell types in the cardiovascu-
lar system, including cardiac myocytes, cardiac fi broblasts, 
endothelial cells (ECs), and vascular smooth muscle cells. In-
fection results in acute myocarditis, associated with parasite 
pseudocysts, myonecrosis, focal ischemia, enhanced platelet 
activation/aggregation, and thrombus formation (1, 6). In-
fection also induces vasculitis in multiple vascular beds result-
ing in focal endothelial denudation and perturbation of the 
normal quiescent endothelial state associated with EC activa-
tion, loss of normal vascular tone, increased vasospasm, and 
reduced tissue perfusion (7–9). Chronic cardiomyopathy is 
associated with infl ammation and fi brosis; however, few par-
asites are observed during the chronic phase.

Many of the sequelae associated with T. cruzi infection 
are reminiscent of the eff ects of the eicosanoid thromboxane 
A2 (TXA2). TXA2 is a potent proinfl ammatory agent that 
 activates and facilitates cytokine production by monocytes (10). 
TXA2 perturbs the normal quiescent phenotype of ECs re-
sulting in increased vascular permeability, increased adhesion 
molecule expression on ECs, and leukocyte adhesion to the 
vessel wall, important components of the infl ammatory re-
sponse. TXA2 also promotes platelet activation/aggregation 
and degranulation as a part of its prothrombotic properties. 
In smooth muscle cells, TXA2 promotes proliferation and 
migration contributing to neointima formation (11).

TXA2 is the most potent vasoconstrictor known, produc-
ing substantial narrowing of coronary arteries and resistance 
vessels and mediating cyclic coronary fl ow variations in ex-
perimental models of myocardial infarction and unstable an-
gina (11–13). Indeed, thromboxane A2 receptor (TP) blockers 
and TXA2 synthase (TXA2S) inhibitors attenuate the eff ect of 
and the damage caused by ischemic injury and infl ammation 
in several organs, including heart (11). TP expression and 
plasma levels of TP ligands are elevated, both locally and 
 systemically, in several vascular and thrombotic diseases, in-
cluding unstable angina, myocardial infarction, and various 
vasculopathies (11, 12, 14).

Previous studies have reported increased expression of 
proinfl ammatory cytokines (15), chemokines (16), vascular 
adhesion molecules (15), and endothelin-1 in T. cruzi in-
fection both in vivo and in vitro (6, 8, 17). All of these factors 
promote infl ammation and vascular injury (9), and many of 
these parameters result from or require the activation of 
TXA2 receptors for full eff ect (10, 18–20). The role of TXA2 
in the pathogenesis of T. cruzi infection remains unexplored.

In the present study, we report that TP modulates host 
response to T. cruzi infection and that the parasite enzymati-
cally metabolizes prostaglandin (PG) H2 to produce TXA2, 
which is biologically active and able to modulate host response. 
Parasite-derived TXA2 perturbs the normal endothelial state 
producing an infl ammatory phenotype, denoted by increased 

intercellular adhesion molecule (ICAM)-1 and vascular cell 
adhesion molecule (VCAM) expression. Moreover, infec-
tion of TP-defi cient mice results in increased parasitemia 
and early death of the host. This was caused by the absence 
of TP in somatic cells which was replicated in vitro with 
ECs from TP-null mice displaying higher intracellular para-
sitemia than WT mice. This indicates that parasite-derived 
TXA2 is important in modulating disease pathogenesis in the 
absence of host-derived TXA2. These results indicate that 
TXA2 is an important factor in Chagas’ disease that controls 
parasite proliferation and the resulting infl ammatory response 
to T. cruzi infection.

RESULTS

Infected HUVECs produce more TXA2 than 

uninfected HUVECs

Eicosanoids are produced by multiple organisms in addition 
to mammals such as fungi, cestodes, trematodes, nematodes, 
and protozoans, including trypanomastids (21–25). The rate 
of TXA2 release from human umbilical vein endothelial cells 
(HUVECs) infected with the Brazil strain of T. cruzi, mea-
sured as the stable metabolite thromboxane B2 (TXB2), was 
sixfold higher than that from uninfected HUVECs (Fig. 1 A). 
Western blotting revealed a time dependent increase of 
TXA2S expression in infected HUVECs, a requirement for 
the synthesis of TXA2 (Fig. 1 B). ECs do not usually express 
TXA2S (26) (Fig. 1 D); thus, we hypothesized that intra-
cellular amastigotes may be the source of the TXA2. The 
release of TXA2 from purifi ed cultured trypomastigotes (Brazil 
strain) was �5-fold greater than that from infected HU-
VECs (Fig. 1 C), and trypomastigote extracts contained 
�10-fold more TXA2S than equivalent extracts (30 μg) 
from infected HUVECs (Fig. 1 D). The related, and more 
virulent, Tulahuen strain of T. cruzi also released TXA2, ex-
pressed TXA2S, and increased TXA2 release from infected 
HUVECs. Media from uninfected L6E9 myoblasts, the feeder 
cells used to grow the trypomastigotes, was devoid of TXA2 
indicating that the release was not a contaminant from co-
culture with another cell type. Thus, the majority of TXA2 
released from infected HUVECs was most likely derived 
from the parasite.

TXA2 is the main eicosanoid released during all life stages 

of T. cruzi

Because trypomastigotes could release TXA2 we determined 
which developmental stages of the parasite expressed TXA2. 
TXA2 release (Fig. 1 E) was highest in lysates of purifi ed, 
 extracellular amastigotes (90 pg TXA2/mg-protein).

Epimastigotes (Epi) and trypomastigotes (Trp) exhibited 
similar TXA2 release (Trp, 40 pg/mg; Epi, 33 pg/mg). For 
comparison, TXA2 levels in amastigote lysates were approxi-
mately half those in platelet extracts (Fig. 1 E), indicating that 
the TXA2S content of amastigotes is substantial. Analysis by 
liquid chromatography-tandem mass spectrometry (LC-MS-MS) 
established the presence of TXB2, the stable hydrolytic 
product of TXA2, in lysates of T. cruzi. Identifi cation was 
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based on matching retention times in two chromatographic 
systems with synthetic TXB2. The prominent ions of diagnostic 
value obtained with synthetic TXB2 included M/Z169, 195, 
307, 325, 333, 351, 369 (M-H), which matched prominent 
diagnostic ions in the lysates from Epi (Fig. 1 F) and Trp and 
establish its identity as TXB2. These diagnostic ions were also 
present in T. cruzi–conditioned media but neither in naive 
nor L6E9-conditioned media.

Comparison with synthetic prostanoids revealed two 
clearly distinguishable prostanoid species in T. cruzi extracts. 
Based on the retention times, in addition to TXB2, material 
also separated with prostaglandin F2α (PGF2α) (Fig. 2 A). 
T. cruzi extracts were able to catalyze exogenous [14C]-
 arachidonic acid (AA) to either TXA2 or PGF2α with TXA2 
production four-times greater than PGF2α (Fig. 2 B). The 
conversion was enzymatic as neither product was found 
without enzyme or upon heat treatment of the lysates (100°C, 
1 h; n = 3). Thus, TXA2 is the main eicosanoid produced 
by T. cruzi.

The only eicosanoid synthase previously reported in 
T. cruzi was old yellow enzyme (TcOYE), a potential PGF2α 
synthase (27). To eliminate TcOYE as the putative TXA2S 

we produced recombinant TcOYE and examined its bio-
chemical properties. Recombinant TcOYE did not cross-
 react with an antibody against human TXA2S (Fig. 2 C) nor 
did it result in TXA2 biosynthesis (Fig. 2 D). These fi ndings 
rule out TcOYE as the putative TXA2S; however, recombinant 
TcOYE catalyzed PGF2α biosynthesis (Fig. 2 D) confi rming 
its previous identifi cation as a PGF2α synthase (27).

Parasite-derived TXA2 is biologically active and pro-
duces changes in host cells consistent with the pathology 
observed in Chagas’ disease. Release of TXA2 by the parasite 
indicated a potential to contribute to the pathogenesis of 
Chagas’ disease. The potential for parasite-derived TXA2 to 
impact host physiology was examined using Ca2+ mobiliza-
tion (Fig. 3 A). Exposure of TPα-expressing, indo-1–loaded 
CHO cells to freshly isolated parasite-conditioned media  
(orange line) resulted in robust Ca2+ mobilization similar in 
kinetics to that observed with the TP ligand IBOP ([1S-
1a,2a(Z),3b(1E,3S*),4a]]-7-[3-[3-hydroxy-4-(4-iodophe-
noxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic 
acid) (black line). Moreover, this ligand-induced Ca2+ release 
was blocked by pretreatment of the cells with the TP blocker 
SQ29548 ([1S[1a,2a(Z),3a,4a]]-7-[3-[[2-[(phenylamino)

Figure 1. T. cruzi infection increases TXA2 release through the 

liberation of parasite-derived TXA2. (A and B) TXB2 content of condi-

tioned media (A) and TXA2S expression (B) from uninfected (white bars) 

and T. cruzi infected (black bars) HUVECs (30 μg protein per lane). (C and D) 

Release of TXA2 by uninfected and T. cruzi–infected HUVECs and extra-

cellular trypomastigotes (107 cells) into conditioned media (C), and the 

expression of TXA2S (D) was measured by ELISA and immunoblotting, 

respectively. (E) TXB2 content of lysates from epimastigotes (Epi), extra-

cellular amastigotes (Ama), and trypomastigotes (Trp) was measured by 

ELISA. Extracts from the same cells were also probed for TXA2S by immuno-

blotting. Platelet extracts (Plt) were used as a source of comparison for 

TXA2 release. (F) Identification of TXB2 content in epimastigotes ly-

sates using LC-MS-MS (as described in Materials and methods) using 

synthetic TXB2 as a reference. Data (mean ± SD) and blots are from at 

least three experiments. Numbers to the side of immunoblots indicate 

migration of molecular weight standards (kD). * indicates signifi cance 

(P ≤ 0.005) from uninfected HUVECs and other T. cruzi life stages.
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carbonyl]hydrazine]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-
5-heptenoic acid) (28) (blue line). No eff ect of SQ29548 was 
observed on Ca2+ handling in CHO cells (unpublished data). 
Thus, the parasite-derived TXA2 appears to aff ect host response 
through traditional mammalian TPs.

TXA2 release has a variety of consequences for a mam-
malian host, one of which is perturbation of the normally 
quiescent EC surface to produce an infl ammatory state (20). 
A coculture system was used to examine whether parasite-
derived TXA2 has functional consequences on the host vas-
culature (Fig. 3 B). We observed that a molecule secreted by 
trypomastigotes induced the expression of ICAM-1 and 
VCAM on HUVECs. This soluble mediator was as potent as 
TNF-α (10 U/ml) and accounted for all the infl ammatory 
properties of cocultures where the endothelium was infected 
by the parasite. Moreover, the perturbation of the HUVECs 
by this factor was ablated by the TP blocker, SQ29548, indi-

cating that parasite-derived TXA2 was responsible (Fig. 3 B). 
These data indicate that direct infection of ECs by the parasite 
may be unnecessary to perturb the vascular system and manifest 
the changes observed during T. cruzi infection.

Parasite-derived TXA2 accounts for the majority 

of circulating TXA2 in experimental T. cruzi infection

Circulating TXA2 levels (measured as the stable metabolite 
TXB2) in infected mice were measured to establish the con-
tribution of parasite-derived TXA2 to disease pathogenesis. 
TXB2 was detectable in the plasma of WT mice (Fig. 4 A). 
Circulating plasma TXB2 levels in uninfected WT mice were 
very low (�1 ng/ml) with most of the TXB2 detected re-
fl ecting a minor activation of platelets during sampling. This 
value increased to 4.2 ng/ml in infected mice 14 d after 
 infection and stabilized at around 2.5–3 ng/ml for the re-
mainder of the time course examined. As expected, TXB2 
levels were absent in plasma obtained from uninfected TXA2 
synthase-null mice. Surprisingly, the rate of increase in circulating 

Figure 2. TXA2 is the primary eicosanoid produced by T. cruzi. 

(A and B) TLC examining the diversity of eicosanoids produced by trypo-

mastigotes (Trp) (A and B), epimastigotes (Epi), and amastigotes (Ama) (B). 

Eicosanoids generated upon incubation of [14C]-AA with extracts from 

epimastigotes, extracellular amastigotes, and trypomastigotes are shown 

(B). Incubation of [14C]-AA without lysate was used as a control. Amount 

of [14C]-AA is shown to denote equal loading ([14C]-AA input). Standards 

for PGD2, PGE2, TXB2, and PGF2α were used to identify the species present 

in T. cruzi lysates. PGs were not detected in L6E9 myoblasts lysates. (C and D) 

Recombinant TcOYE does not react with TXA2S antisera (C) and is inca-

pable of synthesizing TXA2 but can readily metabolize PGH2 to PGF2α (D). 

Immunoblot performed using 30 μg of protein lysate per lane. Numbers 

to the side of immunoblots indicate migration of molecular weight stan-

dards (kD). The autoradiographs shown are representative of four indi-

vidual experiments. No Lys, no lysate; Unld Std, unlabeled standard.

Figure 3. Trypomastigote-derived TXA2 elicits a pathological 

response from host cells. (A) Mobilization of intracellular Ca2+ in CHO 

cells expressing the α-isoform of human TP in response to unconditioned 

(green line) or trypomastigote-conditioned media (orange line). The role 

of TXA2 was assessed by preincubating the cells with the TP blocker 

SQ29548 (5 μM, blue line). Response to the TXA2 mimetic IBOP (100 nM) 

is also shown (black line). Arrow denotes the point at which conditioned 

media or IBOP was added. (B) HUVECs were cocultured with trypomasti-

gotes for 24 h and ICAM-1 (white bars) and VCAM (black bars) expression 

assessed by ELISA. The role of TP was determined by including SQ29548 

(5 μM) in the media. TNF-α (10 U/ml) was used as a positive control to 

induce ICAM-1 and VCAM expression. All data are representative of three 

independent experiments. * and # indicate signifi cance (P ≤ 0.005) from 

uninfected and infected HUVECs, respectively.
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TXB2 in TXA2S-null mice was similar to that found in WT 
mice during the acute phase of infection (reaching 2.5 ng/ml 
after 14 d of infection; Fig. 4 A). At longer times (14–28 d) the 
amount of circulating TXA2 was almost identical in the 
TXA2S-null and WT mice. TXA2S-null mice are incapable 
of generating TXA2 (29), indicating that parasite-derived 
TXA2 may account for up to 90% of the circulating levels in 
WT mice during acute infection. The mortality (Fig. 4 A, 
insert) and parasitemia (Fig. 4 B) of TXA2S-null mice was 
similar to WT mice upon infection, indicating that parasite-
derived TXA2 can compensate for any defi cits in host response 
derived from the inability of the host to produce TXA2.

Inability of the host to respond to parasite-derived TXA2 

increases mortality and parasitemia during acute infection

To examine whether host response to parasite-derived TXA2 
was an important regulator in murine models of T. cruzi 
 infection we used TP-null mice. Increased mortality was ob-
served in both the C57/BL6 (Fig. 5 A) and BalbC (Fig. 5 B) 
strain of TP−/− mice compared with strain-controlled WT 
mice. Plasma TXB2 levels in infected WT and TP-null mice 
were similar (Fig. 5 C). TP-null mice display more severe 
cardiac pathology (Fig. 5, F–I) than their age/sex-matched 
WT counterparts. The myocardium of infected TP-null mice 
had increased infl ammatory cell infi ltrates (Fig. 5, F, H, and I) 
and myonecrosis (Fig. 5 I) compared with the myocar-
dium of WT mice (Fig. 5 G). As the ensuing damage to the 
heart of infected TP-null mice is greater, we hypothesize that 
these cardiac anomalies are the cause of acute death in the 
TP-null mice.

The increased mortality in TP-null mice was accompa-
nied by elevated levels of parasite pseudocysts in the myocar-
dium (Fig. 5, F–I, black arrow). Quantitative PCR confi rmed 
a 2.7-fold increase in parasite number in the myocardium of 
infected TP-null mice (Fig. 5 J), and the circulating levels of 

parasites were increased fourfold (Fig. 5 D). Inactivation of the 
TP gene in the TP-null mice was achieved by insertion of a 
neomycin resistance cassette (30). As such, TP expression is 
deleted in all cells. This results in defi cits in both platelet (30) 
and monocyte activation (11, 31), both of which potently 
regulate parasite number (32–34). To dissect the role of TP 
on somatic cells versus cells engaged in innate immunity we 
transplanted BM cells into irradiated mice to repopulate the 
hematopoietic-derived cells and examined mortality after 
T. cruzi infection (Fig. 5 E). Transplantation of TP−/− BM 
into WT-C57/BL6 mice (WT¬knockout [KO]) resulted in 
a survival rate identical to both the normal C57/BL6 and 
C57/BL6 mice transplanted with WT marrow (WT¬WT). 
Similarly, repopulation of the TP-null mice with WT BM 
(KO¬WT) did little to decrease the higher mortality 
 observed in TP-null mice recapitulated with TP−/− BM 
(KO¬KO). These data clearly indicate that although hema-
topoietic cells may be important in controlling T. cruzi infec-
tion, the expression of TP on and response of hematopoietic 
cells to TXA2 is not a critical determinant of host survival or 
parasitism; however, TP presence on the somatic cells is a 
critical determinant of parasite replication.

The absence of the TP in somatic cells appears to be im-
portant in determining the mortality and parasitemia result-
ing from T. cruzi infection. To assess the validity of this 
hypothesis and the possible role of TP in the pathogenesis of 
disease we infected ECs  derived from the TP-null and WT 
mice and followed intracellular parasite growth in vitro using 
Giemsa staining (Fig. 6 A) and quantitative PCR (Fig. 6 B) to 
determine the extent of intracellular parasitism. Over 72 h, 
the proliferation of intracellular amastigotes in TP−/− ECs was 
clearly greater than in WT ECs by Giemsa staining, and the 
rate of proliferation was up to threefold higher as assessed by 
quantitative PCR. Reconstitution of TP expression into ECs 
from TP-null mice normalized proliferation rates (Fig. 6 B). 

Figure 4. T. cruzi–derived TXA2 accounts for the majority of 

plasma TXB2 levels in T. cruzi–infected mice. (A) Time course of 

plasma TXB2 levels in infected WT (white bars) and TXA2S-null (black bars) 

C57/BL6 mice. Levels of circulating TXB2 between the strains are not sig-

nifi cantly different after 21 d of infection. Insert shows the survival of 

WT (○) and TXA2S-null (●) mice over 40 d of infection. (B) Parasitemia 

(day 17) for WT and TXA2S-null mice infected with 105 trypomastigotes of 

the Brazil strain. Data (mean ± SD) are derived from at least fi ve mice per 

group. * and # indicate signifi cance (P ≤ 0.005) from basal values and 

from WT mice, respectively.
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Figure 5. Failure of the host somatic cells to respond to T. cruzi–

derived TXA2 results in increased parasitemia and enhanced mortality. 

(A and B) Survival curves for WT (○) and TP−/− (●) mice in both the C57/

BL6 (A) and BalbC (B) backgrounds after inoculation of 5 × 104 and 105 

trypomastigotes of the Brazil strain, respectively. (C) Plasma TXB2 levels in 

infected WT and TP−/− mice (C57/BL6 strain, day 21) showing equivalent 

TXB2 levels. (D) Parasitemia in the blood of WT and TP−/− mice (BalbC) 

14 d after infection with 105 trypomastigotes (Brazil strain). (E) Adoptive 

bone marrow transfer of WT and TP−/− marrow into WT and TP−/− mice 

(C57/BL6 strain). Mice were irradiated to kill BM and unfractionated mar-

row transplanted to change the phenotype of the hematopoietic cells. 

Repopulation of WT and TP-null mice with marrow from the same geno-

type (WT¬WT; Ko¬Ko) did not change the susceptibility to death com-

pared with uninstrumented animals. Transfer of TP-null marrow into WT 

mice (WT¬Ko) did not alter their survival in response to infection, nor did 

transfer of WT marrow into TP-null mice (Ko¬WT). Results with non-

irradiated WT mice are also shown. This data indicates that survival is 

dependent on TP expression in somatic cells and not cells of the hemato-

poietic lineage (including platelets and monocytes). (F–I) Representative 

sections of the myocardium of TP-null (F) and WT (G) mice stained with 

hematoxylin and eosin. High power view of the hearts of TP−/− mice 

indicating extensive infl ammation (H) and myonecrosis (I). Black arrows 

denote parasite pseudocysts located in the myocardium. (J) Quantitative 

PCR indicating parasite levels in the myocardium of WT and TP−/− mice. 

Data (mean ± SD) are derived from at least fi ve mice per group. Data 

(mean ± SD) are from three individual experiments. * indicates signifi -

cance (P £ 0.005) from control (WT) group. Bars, 125 μm.
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These data indicate that TP signaling by host cells directly 
aff ects the rate of intracellular amastigote growth and suggests 
a role for TP- induced signaling pathways in the control of 
parasitemia during T. cruzi infection.

To determine the signaling pathway(s) involved we 
reconstituted ECs from the TP-null mouse with each of the 

human isoforms, TPα and TPβ, a truncation mutant devoid 
of the intracellular tail, TP328, and two point mutants, TPα-
R60L and TPα-R130V, that cannot activate Gαq-dependent 
pathways (Fig. 6 C). ELISA assay, using an antibody derived 
against the NH2 terminus of human TP, indicated that ex-
pression of all constructs was not signifi cantly diff erent to endo-
genous TP expression in WT ECs. Compared with TP-null 
EC expression of TPα, TPβ and TP328 suppressed parasite 
growth in vitro (Fig. 6 C). However, the two TPα point 
mutants were unable to suppress parasite growth, indicating 
the response was linked to the activation of Gαq. To confi rm 
signaling through Gαq was compromised in the TPα-R60L– 
and TPα-R130V–reconstituted cells, we examined ERK acti-
vation in response to IBOP (100 nM). ERK activation, as 
measured with a phospho-specifi c antibody, was enhanced in 
response to IBOP in the TPβ-, TPα-, and TP328-expressing 
cells but not in the TP-null, TPα-R60L–, and TPα-R130V–
expressing ECs, indicating Gαq coupling was truly compro-
mised in these cells. The suppression of parasite growth is 
mediated through Gαq signaling downstream of TP and indi-
cates that TP signaling and not TP expression itself is respon-
sible for the control of parasite proliferation in somatic cells 
during T. cruzi infection.

DISCUSSION

Eicosanoids, many of which are vasoactive, are produced by 
several parasitic organisms (22–25, 35) and represent ideal 
modulators of vasculopathy during infection. In addition to 
vasospasm, TXA2 mediates many of the other pathophysio-
logical features of chagasic cardiomyopathy. In this study we 
documented, using ELISA, TLC, and LC-MS-MS, that the 
parasitic protozoan T. cruzi releases TXA2. TXA2 is the pre-
dominant prostanoid released by the parasite. However, 
TXA2 is not the only bioactive lipid produced. T. cruzi also 
produce and release PGF2α, and we have confi rmed that 
TcOYE, the only eicosanoid synthase identifi ed to date in  
T. cruzi, is a PGF2α synthase. In addition, we established that 
TcOYE does not biosynthesize TXA2. Both LC-MS-MS 
and [14C]-AA conversion/labeling assays have identifi ed 
other potential bioactive lipids released from T. cruzi (unpub-
lished data), many of which are unidentifi ed, that could also 
play a role in the pathogenesis of T. cruzi infection.

TXB2 levels are elevated in mice infected with T. cruzi 
(36). The present results identify TXA2 as a parasite-derived 
molecule that modulates survival and disease progression. 
T. cruzi–derived TXA2 elicits a robust response from host 
cells and infl uences host cell activation. TP-null mice had an 
increased mortality and their coronary artery ECs had a 
higher intracellular parasitism compared with controls. It is 
clear that TXA2 plays a prominent role in the acute stages of the 
disease; however, the primary issue has been the belief that the 
enhanced TXA2 levels manifest through a host response to 
infection, such as infl ammation and platelet activation. Re-
sults from the TXA2S-null mice clearly identify the parasite as the 
source of up to 90% of the circulating TXA2 in experimental 
Chagas’ disease. In addition, it suggests that parasite-derived 

Figure 6. G𝛂q signaling by host TP in response to parasite-derived 

TXA2 suppresses intracellular parasite growth. (A and B) Overnight 

infection of EC from TP−/− (black bars) C57/BL6 mice with trypomasti-

gotes (Brazil strain, MOI 2:1) results in a rate of intracellular parasite 

growth three times greater than that in EC from WT (white bars) mice by 

Giemsa staining (A) and PCR (B). Bars, 20 μm. Reconstitution of murine 

TP expression in TP−/− ECs (black bars) normalizes the number of amasti-

gotes per cell (B) indicating host response to parasite-derived TXA2 is an 

important regulator of parasite proliferation. (C) Examination of pathways 

involved in the suppression of intracellular parasite proliferation by host 

TP. Reconstitution of ECs from TP-null mice with either human isoform, 

TPα, or TPβ, or a truncation mutant containing only the common domain, 

TP328, suppress parasite growth in vitro. However, two TPα mutants de-

void of Gαq coupling, R60L and R130V, did not suppress parasite growth 

indicating the mechanism is mediated by Gαq activation. Examination of 

ERK activation by immunoblotting supports the role of these two residues 

in Gαq activation. Data (mean ± SD) and autoradiographs are from three 

individual experiments. * and # indicate signifi cance (P ≤ 0.005) from 

control (WT) and TP−/− groups, respectively. 
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TXA2 is suffi  cient to stimulate host TP to ensure normal disease 
progression, parasitemia, and host survival.

The pathology of the T. cruzi–infected TP-null mice in-
dicates that the biosynthesis and release of TXA2 by the para-
site may have multilevel actions in the host (Fig. 7). On one 
hand, the resulting TP activation on host cells initiates a sig-
naling cascade that controls parasite growth and permits 
 parasite replication at a rate that enables continued survival 
of the host (Figs. 5 and 7). In addition, the response of the 
host to parasite-derived TXA2 appears to be largely anti-
infl ammatory, with the WT mice displaying minimal pa-
thology (Fig. 5). The combination of these eff ects allows for 
a balance between the needs of the parasite (proliferation and 
 survival through evading the host immune response) and the 
host (to survive the initial infection and largely limit  collateral 
damage to organs during acute infection). These fi ndings ap-
pear counterintuitive at fi rst. The actions of TXA2 are nor-
mally considered proinfl ammatory as it enhances monocyte 
activation and cytokine production (10), leukocyte adhesion 
molecule expression on ECs (20), and vascular permeability 
(37, 38). However, the dramatic antiinfl ammatory eff ect of 
TXA2 may result from the suppression of NKκB activation 
by other infl ammatory mediators in the more complex 

 setting of T. cruzi infection in vivo. We previously demon-
strated that TP stimulation inhibits the proinflammatory 
eff ects of TNF-α via a Gαq- mediated mechanism (20). The 
present study is the fi rst in vivo demonstration of the anti-
infl ammatory properties of TP stimulation and builds on our 
previous observations on the role of TXA2 as an infl amma-
tory regulator.

Other host responses elicited by parasite-derived TXA2 
account for many of the substantial physiological changes that 
occur during the acute stage of T. cruzi infection (Fig. 7). 
TXA2 is a potent vasoconstrictor due in no small part to its 
inhibition of endothelial-derived vasorelaxants, such as nitric 
oxide (11, 39) (Fig. 7). TXA2 is also a potent stimulus for 
vascular smooth muscle cell proliferation and migration (11) 
which explains the proliferative phenotype observed in the 
arteries from infected mice (40) (Fig. 7). TXA2 increases vas-
cular permeability (37, 38) and promotes platelet  activation/
aggregation (11) (Fig. 7) which may explain the enhanced 
adhesiveness of platelets to ECs and the enhanced reactivity 
of platelets from infected mice (36). Finally, TP activation is 
a direct contributor to tissue damage in multiple organs, in-
cluding heart (11), which could increase the degree of cardiac 
myocyte apoptosis and result in the increased likelihood of a 

Figure 7.  Schematic showing the basis for the role of TP in the 

pathogenesis of Chagas’ disease. TXA2 liberated from the intracellular 

amastigote is transported to the extracellular environment by the host 

cell where it binds to and initiates signaling from the host TP. TP signaling 

produces a variety of effects: (no. 1) activation of platelets and endothe-

lial cells resulting in a diffuse thrombus formation, perturbation of the 

quiescent EC state, increased vascular permeability, and accompanying 

apoptosis; (no. 2) suppresses monocyte/macrophage activation through 

inhibiting the effects of infl ammatory cytokines such as TNF-a; (no. 3) 

suppresses long-term acquired immunity by preventing antigen presenta-

tion to DCs enabling transition to the chronic state; (LFA-1, lymphocyte 

function–associated antigen 1); (no. 4) produces vascular smooth muscle 

cell activation with the associated vasoconstriction and limitation to 

blood fl ow; (no. 5) produces cardiac myocyte apoptosis resulting in di-

lated cardiomyopathy; and no. 6) serves to indicate the intracellular para-

site load to regulate amastigote proliferation. Collectively, these events 

produce the plethora of pathophysiological changes that result in the 

complicated phenotype of acute and chronic Chagas’ disease.
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dilated cardiomyopathy and progression to heart failure, a 
major cause of death in patients with this disease (Fig. 7).

In addition to the maelstrom of changes during the 
acute phase, the ongoing secretion of TXA2 may also impact 
chronic T. cruzi infection. During chronic disease T. cruzi are 
morphologically absent in most tissues; however, molecular 
techniques demonstrate considerable levels of parasites in the 
blood (41) and multiple organs, including eye (42), adipose 
(43), connective tissue (44), and heart (45). In general, para-
site burden during the acute phase correlates well with persis-
tence during the chronic stage (44). It has been proposed that 
tissue-resident parasites sustain the infection and produce the 
ongoing systemic symptoms (46, 47). Indeed, it is possible 
that chronic exposure to high levels of T. cruzi–derived TXA2 
may produce many of the clinical manifestations that are 
characteristic of chronic Chagas’ disease. For instance, changes 
to protein expression profi les in the chronically infected 
myocardium indicate substantial oxidative stress and ongoing 
apoptosis (48–50). TXA2 has been linked to the induction of 
myocardial apoptosis and increases oxidative stress in tissues 
(11). In the retina, TP are expressed on multiple cell types 
including photoreceptors and ECs (51). The production of 
TXA2 by parasites in the orbit may therefore directly contrib-
ute to the retinal dysfunction and decreased vascularization 
observed in chronic Chagas’ disease (52). Thus, the persistence 
of TXA2-producing parasites in multiple tissues may directly 
contribute to the development of the clinical symptoms 
 observed in chronic Chagas’ disease.

Parasite-derived TXA2 may also inhibit the host’s adap-
tive immune response enhancing progression to the chronic 
disease (Fig. 7). Chronic infection of mice with this parasite 
attenuates dendritic and T cell functions (53) and reduces the 
number of IFN-γ–producing CD8+ T cells through selective 
loss of immature thymocytes (54–56). TP stimulation nega-
tively regulates dendritic cell–T cell interactions preventing 
maturation and antigen presentation (57) and induces apop-
tosis in immature thymocytes (58) indicating parasite-derived 
TXA2 may mediate the loss of T cell function and number. 
Immature B cells are also targeted for apoptosis by an unknown 
cyclooxygenase-derived metabolite during chronic T. cruzi 
infection (59). Our current data suggests that TXA2 may be 
the agent responsible. Thus, TXA2 release by the parasite 
may be responsible for restructuring the number and func-
tion of cells involved in acquired immunity during chronic 
T. cruzi infection.

It is well known that several parasitic species produce PGs 
(23, 25, 35) but the contribution of these modulators to dis-
ease pathogenesis remains largely unexplored. If parasite PGs 
act as immunoregulatory agents for the host, similar to TXA2, 
then our present observation may have larger implications by 
highlighting a common mechanism used by intracellular par-
asites to aff ect host response. This data potentially clarifi es the 
mechanism behind the previously unexplained clinical phe-
nomena that cyclooxygenase inhibition enhances mortality 
rates in patients (60, 61). In this case, these pharmacological 
agents that regulate TXA2 generation or responsiveness 

would essentially mimic the TP-null mice enhancing parasit-
emia and mortality rates.

TXA2 biosynthesis and release were observed in all three 
life stages of T. cruzi. It is clear that in the infectious forms of 
the parasite, multiple functions exist for this bioactive lipid. 
The most important may be to control parasite proliferation 
and ensure further transmission of the parasite through con-
tinued survival of the host (Fig. 6). Collectively, the enhanced 
mortality observed in TP-null mice, suppression of amasti-
gote proliferation by host TP activation, and elevated expres-
sion of TXA2S in amastigotes (intracellular forms) suggest the 
intensity of TP signaling may act as a quorum sensor for the 
parasite. A cell with few intracellular amastigotes releases little 
parasite-derived TXA2 providing few signals from host TP 
that regulate growth. Paracrine TP signaling on the host cell 
surface would increase proportionally to amastigote number, 
with the intensity of TP activation indicating the number of 
intracellular amastigotes. This environmental cue eventually 
exceeds a threshold which slows amastigote proliferation and 
initiates diff erentiation into the trypomastigote stage in prep-
aration for another round of infection. This mechanism is 
self-contained and operates independently of host physiol-
ogy, such as the level of activation of the host immune re-
sponse. The most likely mediator of these eff ects downstream 
of TP is Gαq (Fig. 6) and little is known of the role of this 
 important signaling pathway in T. cruzi infection.

The sensing mechanism is not a direct eff ect of TXA2 on 
parasite physiology as TXA2 mimetics added to epimastigotes 
has little eff ect on parasite growth (unpublished data), and only 
the absence of host TP causes deranged parasite proliferation. 
Thus, the proposed mechanism is unique as it intertwines host 
biochemistry and parasite biology as opposed to other agents 
where receptors on the parasite direct behavior. Another 
 question is what advantage is aff orded to the epimastigote by 
TXA2 release? In organisms with insect vectors it has been 
 hypothesized that parasite-derived PGs suppress immunity and 
permit the chronic habitation of the vector. TXA2 has already 
been shown to inhibit acquired immunity in mice (57) and 
may also act to protect the parasite in a similar fashion in the 
insect. Moreover, TXA2 may aid in the colonization of the gut 
by producing mucosal injury (62) and increase the potential 
spread of the parasite through increasing gut motility (63).

In conclusion, our results demonstrate for the fi rst time 
that T. cruzi–derived TXA2 is an important modulator of sur-
vival and disease progression in mammalian host and functions, 
through the activation of TP in somatic cells, as a quorum 
 sensor to control parasite proliferation and parasitemia in vivo. 
These fi ndings advance our understanding of host–parasite 
 relationships and reveal a potential new avenue for pharmaco-
logical treatment for a disease with few therapeutic options.

MATERIALS AND METHODS
Materials. Sterile plasticware was purchased from Costar (Cambridge, MA). 

Tissue culture materials and reagents, excluding pooled human serum (Gemini 

Bio-Products Inc.), were from Invitrogen. The TXA2 mimetic IBOP and the 

TP blocker SQ29548 were obtained from Cayman Chemical. All other chemi-

cals and reagents were obtained from Sigma-Aldrich unless otherwise stated.
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Mice and BM transplantation studies. TP-null (both C57/BL6 and 

BalbC) and TXA2S-null (C57/BL6) mice were obtained from Dr. Thomas 

Coff man (Duke University) and Dr. Kenneth Wu (University of Texas 

Health Science Center), respectively. WT, TP-, and TXA2S-null mice were 

bred in house. BM transplants were performed as previously described (64). 

In brief, recipient mice (6 wk old C57/Bl6) received 9 Gy of γ-radiation, 

administered as a split dose, after which 5 × 105 cells of WT or TP−/− bone 

marrow was injected through the tail vein. Bone marrow was obtained from 

the femurs of male WT and TP-null mice by fl ushing the marrow cavity 

with HBSS, the resulting suspension dissociated using a 25-gauge needle. 

Male mice were infected 28 d later with the Brazil strain of T. cruzi by an intra-

peritoneal route at the inoculums indicated. Mortality was monitored daily 

and blood drawn for the determination of parasitemia at the intervals stated. 

All animal experiments were performed under protocols approved by the 

Institutional Animal Care and use Committee of the Albert Einstein College 

of Medicine.

Parasites. The Brazil and Tulahuen strains of T. cruzi were maintained in 

C3H/HeJ and A/J mice (Jackson Laboratories), respectively. In vitro experi-

ments used both the Brazil and Tulahuen strains. No signifi cant diff erences 

were observed between the two strains regarding infection and growth in 

ECs. Epimastigotes and trypomastigotes were propagated, and extracellular 

amastigotes were produced as previously described (65).

Isolation of primary human and murine ECs. The isolation and expan-

sion of HUVECs was performed as previously described (20). HUVECs at 

passage 1 were used for the present study. Primary murine ECs were isolated 

from the hearts of 6–8-wk-old WT and TP-null mice. After excision, hearts 

were minced into pieces and digested until completion with collagenase 

(100 U/ml in Hank’s balanced salt solution). Magnetic particles (Imag; BD 

Biosciences) were coated with saturating amounts of G. simplicifolia isolectin 

B4 (Sigma-Aldrich) and added to the resulting cell suspension. Cells and 

beads were incubated for 30 min at 4°C, and ECs were isolated using a mag-

netic fi eld and cultured on fi bronectin-coated plates.

The R130V mutant was a gift from Dr. Valerie Capra (University of 

Milan, Milan, Italy). Other TP mutants were cloned using PCR-based site-

directed mutagenesis (Quick change II kit; Stratagene). Transfection of vari-

ous TP constructs into TP-null ECs was performed using the GENEporter 

reagent (Gene Therapy Systems) and resulted in transfection rates of ≥70%. 

Stable expression was obtained under antibiotic selection (G418, 200 μg/ml). 

To maintain the integrity of the EC phenotype cells were used from passage 

1–4. Passage 1 and 4 ECs are comparable in appearance, CD31 expression, 

and rate of migration and diff erentiation. TP expression was determined 

using cell surface ELISA assay using an antibody developed in house against 

the NH2 terminus of the human TP.

Infection of HUVECs and primary mouse EC cultures. To examine 

the potential host response to parasite-derived TXA2 and its pathological 

role in experimental T. cruzi infection we monitored TXA2 release from 

ECs (HUVECs) and the proliferation of parasites in ECs derived from WT 

and TP-null mice with or without reconstitution of murine TP expression. 

All ECs were infected with trypomastigotes of the Brazil and Tulahuen 

strains, harvested as previously described (65), at a multiplicity of infection 

of �2:1. TXA2 release was monitored by ELISA (see Identifi cation of 

TXB2... section) 48 h after infection. Parasitism was followed by PCR and 

Giemsa staining.

Quantifi cation of intracellular parasitism. Quantitative real-time PCR 

was used to determine the number of parasites/cell using the T. cruzi forward 

and reverse primers as previously described (43). A parallel reaction using 

murine-specifi c microglobulin primers (β2F2 and β2R2) was performed to 

normalize the amount of mouse DNA present, e.g., number of cells, in each 

analysis (43). A standard for murine β2-microglobulin concentration was 

developed from a serial dilution of DNA (PCR product murine genomic 

DNA). The mean number of parasites per cell is calculated by dividing the 

number of parasites (copy number of T. cruzi DNA obtained by real-time 

PCR) by number of cells (number of copies of β2-microglobulin).

Identifi cation of TXB2 by LC-MS-MS, ELISA, and TLC. Crude cell 

extracts for analysis were prepared from washed parasites (epimastigotes, 

trypomastigotes, and amastigotes) or human platelets. Cells were resuspended 

at 109 cells/ml in lysis buff er (20 mM Tris-HCl, pH 7.5; mM DTT plus 

protease inhibitors), passed through a 26-gauge needle, homogenized by six 

strokes in a Dounce homogenizer, and sonicated three times for 15 s each to 

ensure complete lysis. Before further analysis lysates were clarifi ed by cen-

trifugation (10 min, 17,000 g).

For LC-MS-MS, samples were prepared for analysis by solid-phased ex-

traction using C-18 SPE 500-mg columns (Alltech). LC-MS-MS identifi ca-

tion was acquired with a LCQ quadrupole ion trap spectrometer system 

equipped with an electrospray ionization probe (ThermoFinnigan). Samples 

were suspended in mobile phase and injected into the HPLC component, 

which consisted of a SpectraSYSTEMS P4000 (ThermoFinnigan) quater-

nary gradient pump, with a LUNA Prodigy ODS (3) (100 × 2 mm, 5 μm) 

column (Phenomenex). The column was eluted at a fl ow rate of 0.2 ml/min 

with methanol/water/acetic acid (65:34.99:0.01, vol/vol/vol) from 0 to 8 

min, and then a gradient increasing to 100% methanol from 8.01 to 30 min. 

Synthetic TXB2 was purchased from Cayman Chemical. TXB2 (the stable 

hydrolytic product of TXA2) was measured by ELISA (GE Healthcare) 

according to manufacturer’s instructions.

TLC was performed as in reference 66 on parasite lysates extracted with 

ethyl ether/methanol/0.2 M acetic acid (30:4:1, vol/vol) using the indicated 

PG standards (5 μg of each) as a marker. Conversion of [14C]-labeled AA 

was performed using 100 μl of cell extract and 1 Gbq [14C]-AA in 100 mM 

sodium phosphate (pH 7.0), 2 μM hematin, and 5 mM tryptophan at 37°C. 

The reaction was quenched by addition of 100 mg/ml stannous chloride in 

1 N HCl and analyzed by TLC. The nonenzymatic conversion of AA was 

examined in the absence of T. cruzi lysates (“no enzyme control”) or by pre-

incubating lysates at 100°C for 10 min to destroy all enzymatic activity (“heat 

treated control”).

PCR, cloning, and expression of TcOYE. The TcOYE open reading 

frame was amplifi ed using platinum PCR super mix (Invitrogen) and the 

gene-specifi c sense (5′-C G G A A T T C A T G G C G  A C G T T C C C T G A A C T-

T C -3′) and antisense (5′-C C G C T C G A G T T A T T T G T T G T A C G T C G G G-

T A -3′) primers. The PCR product was cloned into pGEX-4T-1 expression 

vector (GE Healthcare) using EcoRI and XhoI restriction sites. Recombi-

nant TcOYE was isolated from Rosetta BL21 E. coli (Novagen) using gluta-

thione (GSH)-Sepharose 4B resin (GE Healthcare) after overnight induction 

with 1 mM IPTG at 30°C. The recombinant enzyme was separated from the 

GST component by thrombin digestion while bound to the resin.

Co-culture of HUVECs and trypomastigotes and expression of leu-

kocyte adhesion molecules. Transwell inserts in 24-well plates were used 

to establish the EC–trypomastigote co-culture model. Fibronectin-coated 

Transwell inserts (0.4 μm pore size; Corning-Costar) were seeded with 3 × 

105 HUVECs, incubated with trypomastigotes for 24 h with mild agitation 

to ensure the trypomastigotes remained in suspension. ICAM and VCAM 

expression were determined by cell-based ELISA as previously described 

(20). Trypomastigotes were included in the upper chamber (2 × 106 per 

insert) or the lower chamber (4 × 106 per insert) in complete media. Media 

alone and TNF-α (100 U/ml) served as negative and positive controls, 

respectively. For antagonism of TP on HUVECs, SQ29548 (5 μM) was 

included in the upper and lower chambers.

Immunoblotting. Whole cell lysates (30 μg protein per lane) were 

separated by SDS-PAGE under reducing conditions and transferred onto 

PVDF membrane. Immunoblotting was performed as previously described 

(20) using antibodies against human TXA2S (Cayman Chemical), α-tubulin 

(Sigma-Aldrich), total and phosphorylated ERK1/2 (Cell Signaling 

Technology).
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Ca2+ imaging in CHO cells. CHO cells with stable expression of the 

α-isoform of human TP were incubated for 45 min at 37°C with the Ca2+ 

indicator Indo-1 AM (10 μM; Molecular Probes). After harvesting, cells 

were suspended in Tyrode’s solution (mM: 137.0 NaCl; 4.0 KCl; 0.5 MgCl2; 

2.0 CaCl2; 24.0 NaHCO3; 1.8 NaH2PO4; 5.5 glucose; 5.0 Hepes, pH 7.2) 

at 5 × 105/ml. Mobilization of intracellular Ca2+ was induced by addition of 

either 100 nM IBOP or 0.2 μm fi ltered, conditioned media (200 μl) from 

parasite cultures to the suspended CHO cells. The conditioned media used 

as the stimulus was fi ltered directly into the cassette containing labeled CHO 

cells because of considerations of the aqueous half-life of TXA2. This process 

minimized the degradation of secreted TXA2, as the time elapsed for the en-

tire procedure was �5 s, and removed contaminating trypomastigotes. 

SQ25948 (5 μM) was used to assess the role of the TP in this response. Ca2+ 

fl ux was measured by spectrofl uorimetry using standard excitation and emis-

sion fi lters for Indo-1.

Statistical analysis. Data were pooled and statistical analysis was performed 

using the Mann-Whitney U-test using Sigma Stat Version 2.0 (SPSS).
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