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Abstract

Extensive evidence indicates that current and recently abstinent cocaine abusers compared to drug-naı̈ve controls have
decreased grey matter in regions such as the anterior cingulate, lateral prefrontal and insular cortex. Relatively little is
known, however, about the persistence of these deficits in long-term abstinence despite the implications this has for
recovery and relapse. Optimized voxel based morphometry was used to assess how local grey matter volume varies with
years of drug use and length of abstinence in a cross-sectional study of cocaine users with various durations of abstinence
(1–102 weeks) and years of use (0.3–24 years). Lower grey matter volume associated with years of use was observed for
several regions including anterior cingulate, inferior frontal gyrus and insular cortex. Conversely, higher grey matter volumes
associated with abstinence duration were seen in non-overlapping regions that included the anterior and posterior
cingulate, insular, right ventral and left dorsal prefrontal cortex. Grey matter volumes in cocaine dependent individuals
crossed those of drug-naı̈ve controls after 35 weeks of abstinence, with greater than normal volumes in users with longer
abstinence. The brains of abstinent users are characterized by regional grey matter volumes, which on average, exceed
drug-naı̈ve volumes in those users who have maintained abstinence for more than 35 weeks. The asymmetry between the
regions showing alterations with extended years of use and prolonged abstinence suggest that recovery involves distinct
neurobiological processes rather than being a reversal of disease-related changes. Specifically, the results suggest that
regions critical to behavioral control may be important to prolonged, successful, abstinence.
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Introduction

Cocaine is a major worldwide public health issue for which

current treatments are unsatisfactory [1,2]. Understanding the

differences between the brains of cocaine users and nonusers is a

critical step in identifying neurobiological characteristics of

addiction that may guide the development of therapeutic

interventions. Also of considerable importance, but much less

well researched, is understanding what differentiates users who

abstain and successfully avoid relapse from those who fail to

maintain abstinence and repeatedly relapse. As treatment

programs typically have very high dropout rates [3,4] reflecting

the relapsing nature of the disease, an understanding of the

neurobiology of successful abstinence may identify key targets for

therapeutic interventions. However, one consequence of high

dropout rates is that little is known about the neurobiology of

successful long-term abstinence as high levels of relapse and

attrition from treatment makes prospective studies of long-term

abstinence effects difficult.

Voxel based morphometry [5] is a technique that can examine

local tissue volume differences. Using this method, relative to

healthy drug-naı̈ve controls, grey matter changes have been

observed in multiple regions of the brain of cocaine addicts.

Widespread decreased GM concentration has been reported in

lateral and medial aspects of the orbitofrontal cortex (OFC),

anterior cingulate (ACC), anteroventral insular cortices, lateral

prefrontal cortex (LPFC), temporal cortices [6–11], cerebellum

[12] and subcortical regions [13–15]. Cocaine use has been linked

to accelerated age-related decreases in grey matter in the temporal

lobes [16]. Fein et al. [17] using a related method observed

significant reduction in prefrontal grey matter volume for cocaine

dependent (CD) and combined cocaine and alcohol dependent

individuals. It has been suggested that these focal decreases in GM

may underlie the functional hypoactivity and cognitive deficits

observed in cocaine users [8]. These regions have been variously

implicated in the executive functions of conflict monitoring [18],

performance monitoring [19], interoception [20], decision-making

[21] and reward processing [22], all of which have been

demonstrated to be compromised in cocaine addicts. However,

the literature is not consistent as others have failed to observe

differences in GM between CD and control participants [23].

Our prior report characterizing long-term abstinence probed

the functional neuroanatomy of cognitive control using a GO/

NOGO task [24]. The short- and long-term abstinent CD groups
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in this study displayed greater activation levels for correct

inhibitions and errors relative to drug-naı̈ve controls. More

specifically, the results suggested that early abstinence (1–5 weeks)

may be characterized by heightened activity in regions subserving

inhibitory control with heightened activity underlying behavioral

monitoring processes playing a more prominent role later in

abstinence (40–102 weeks). Our previous investigation of white

matter using diffusion tensor imaging revealed one set of structural

changes that differentiated long-term abstinent (44–102 weeks)

from more recently abstinent users (1–5 weeks) and another set

that differentiated all abstinent individuals from healthy controls

[25]. One interpretation is that the first set of white matter changes

may arise during abstinence or may have preceded and facilitated

abstinence while the second set may reflect changes that arose

from or preceded cocaine use. An implication arising from this

interpretation is that abstinence and recovery may have neurobi-

ological underpinnings that are distinct from those associated with

the disease.

A recent study compared grey and white matter densities in

abstinent (1–16 weeks) and current CD individuals and healthy

control participants and observed that the current users, compared

to controls and abstainers, had lower tissue density in frontal,

temporal, cerebellar and subcortical regions. The abstinent group

had much less pronounced deficits with lower grey matter density

in caudate/putamen and bilateral cerebellum compared to

controls [13]. It would appear that GM deficits are reduced in

abstinent users but it remains unclear whether these differences

would persist with prolonged abstinence, due in part to the high

rates of relapse making such prospective studies difficult.

The aim of the present study, using a cross-sectional design, was

to examine volume differences in cortical grey matter in a sample

of former cocaine addicts who varied in length of abstinence and

duration of use. We hypothesized that abstinence duration would

be associated with a set of GM volume changes in regions critical

to executive function, specifically anterior cingulate and lateral

prefrontal cortex. We further hypothesized that any GM volume

changes that may be attributable to length of use would be distinct

from those related to abstinence duration. Comparison to a non-

drug using control group allowed us to assess how changes of GM

with abstinence duration relate to volumes typical of drug naı̈ve

controls. The cross-sectional design employed here suffers by being

unable to resolve whether effects related to abstinence duration

arose from abstinence or preceded abstinence. However, it is

nonetheless valuable in that it can characterize individuals with a

demonstrated ability to remain abstinent over various durations.

This characterization may be of therapeutic importance in that

observed neurobiological differences might serve as targets for

therapy. Additionally, they may be useful biomarkers for possible

investigation in future longitudinal studies of abstinence.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Review Board of

the Nathan S. Klein Institute for Psychiatric Research (NKI).

Participants
Eighty-six volunteers (9 female; mean age 38.1, range 20–55)

(see Table 1) participated in this study. Written informed consent

was obtained in accordance with the Declaration of Helsinki and

participants were compensated for their time. Participants were

divided into two groups: one group of 43 abstinent cocaine users (2

female) and a second of 43 age-matched controls (7 female).

Control participants were recruited from the volunteer recruit-

ment pool at the NKI. CD participants were recruited from in-

patient and out-patient treatment centers in New York State. All

CD participants received an initial diagnosis of cocaine depen-

dence as assessed by Structural Clinical Interview for the DSM-IV

(SCID) [26]. Participants early in treatment were in an in-patient

facility that was monitored on a 24-hour basis. They were subject

to periodic Breathalyzer tests for alcohol and random urine

toxicology screens for multiple substances. Additionally, subjects

were not permitted to leave the facility without an escort. Those

later in treatment were allowed to leave the facility on their own

recognizance but were evaluated by clinical staff (including urine

toxicology and Breathalyzer tests) upon their return. Continued

enrollment in the in-patient and out-patient treatment programs

was predicated on negative toxicology screenings. CD participants

met at least weekly with a personal counselor certified by the state

of New York in the treatment of alcoholism and drug abuse.

Length of abstinence was verified with the counselor at the

addiction treatment centers. Exclusion criteria for both CD and

control participants were: (1) Any DSM IV, Axis 1 diagnosis

excluding dependence or a past diagnosis of depression caused by

CD based on the SCID; (2) Head trauma resulting in loss of

consciousness for longer than 30 minutes; (3) Presence of any past

or current brain pathology; (4) A HIV diagnosis; (5) Contraindi-

cations for MRI; (6) Under 19 or over 55 year of age; (7) The

presence of white matter (WM) hyperintensity (only one patient

was excluded due to clinically significant WM hyperintensity).

Given the high rates of co-morbid alcohol and drug abuse in the

target patient population [27], participants were not excluded for

abuse of other drugs or alcohol prior to the onset of CD (3

participants had co-morbid alcohol dependence and 7 had co-

morbid heroin dependence.) Thus the CD group may be thought

of as polydrug abusers with a primary dependence on cocaine.

None were currently using any amount of alcohol or drugs. Years

of drug use prior to abstinence was obtained during the initial

SCID interview.

MR Data Acquisition
All scanning was conducted on a 1.5T Siemens VISION

scanner (Erlangen, Germany) at NKI that was equipped with a

30.5-cm i.d. three-axis local gradient coil and an end-capped

quadrature birdcage radio-frequency head coil. High-resolution

T1-weighted MPRAGE anatomical images were acquired with

the following parameters: TE = 4.9 ms, TR = 11.6 ms, flip angle

8u, FOV 300 mm, 1.2 mm isotropic voxels, matrix 2566256, and

172 sagittal slices.

Table 1. Demographic characteristics for the control and
abstinent cocaine groups.

Characteristic Controls Cocaine Dependent

Number of participants 43 43

Gender M/F 41/2 36/7

Age at time of scanning
(years)

38.761.6 (20–55) 37.561.2 (22–54)

Years of education 14.660.3 (12–20) 12.360.3 (7–17) ***

Abstinence (Weeks) Not Applicable 31.2564.5 (0.7–102)

Years of use Not Applicable 9.161.0 (0.3–24)

Entries are of the form: mean 6 SEM (min-max). Gender was compared using
the binomial proportion test; all other observations were compared by Welsh T-
tests. C = control, CD = cocaine dependent. Significance code: p # 0.001 ‘***’.
doi:10.1371/journal.pone.0059645.t001
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MR Data Analysis
The high-resolution T1-weighted images were subjected to a

voxel-based morphometry (VBM) analysis [5,28] carried out with

FSL tools [29]. The data were median filtered (363 voxels), brain-

extracted using AFNI’s 3dSkullStrip [30], and then segmented

into grey and white matter and cerebrospinal fluid [31]. The grey

matter images were then affinely aligned to MNI152 standard

space [32,33] followed by non-linear registration [34,35] to further

refine the alignment. The resulting data were averaged to create a

study-specific template, to which the native grey matter images

were then non-linearly re-registered. The registered partial volume

images were then modulated by multiplying by the Jacobian of the

warp field [28]. This step compensates for the contraction/

enlargement due to the non-linear component of the transforma-

tion (http://dbm.neuro.uni-jena.de/vbm/segmentation/

modulation/), making correcting for total intra-cranial volume of

the individual unnecessary [36]. Removal of global brain volume

effects in this manner permitted inference on the local GM volume

differences. The modulated segmented images were then

smoothed with an isotropic Gaussian kernel (s= 2 mm ,
4.7 mm FWHM).

The resultant grey matter images of the abstinent CD group

were then subjected to voxelwise Huber robust regression [37,38]

in the R statistical analysis package [39]. The two variables of

interest, weeks of abstinence and years of use prior to abstinence

were included in a single voxelwise whole-brain regression model.

Since years of use could be a proxy for age and given the well-

established relationship between age and GM volume [28,40], age

was also included as a nuisance covariate in the regression model.

The voxelwise regression coefficients and associated T statistics for

each regression term were then split into maps of positive and

negative coefficients. Significant voxels passed a voxelwise

statistical threshold (t(39) = 2.97, p = 0.005, uncorrected) and, to

control for multiple comparisons, were required to be part of a

cluster of no less than 360 ml. The volume threshold was

determined by a Monte-Carlo simulation that together with the

voxelwise threshold resulted in a 5% probability of a cluster

surviving due to chance. Regions of interest (ROI) were identified

in this manner and the grey matter volume for each region was

extracted for each of the CD and, for comparison, the control

participants. To determine at what point the GM volume in each

region of interest crosses that of the controls, a robust regression

line against duration of abstinence and years of use for the CD

individuals was fit to these values for each region of interest and

the intersection of this line with that of the mean of the controls

computed. However, this approach tends to inflate correlation

values [41] so care in interpreting the results is warranted.

Results

Demographics
The CD participants did not differ from controls in age (Welch

t(77.5) = 20.6, p.0.05, or gender (x2 = 1.98, p = 0.15), but did

differ on years of education (Welch t(82.6) = 25.1, p,0.001; see

Table 1 for demographic information). Years of education

correlated negatively with abstinence duration (Pearson’s

r= 20.43, t(41) = 23.1, p,0.005) but not with years of use

(Pearson’s r= 20.02, t(41) = 20.12, p.0.1) for the CD group.

Years of use did not correlate with length of abstinence (Pearson’s

r= 20.17, t(41) = 21.2, p.0.05).

VBM Regression Results
Years of use. Four regions (Table 2) showed positive

correlations with years of use, that is grey matter volume increased

in these regions with longer terms of use. These regions were

located bilaterally in the precentral gyrus, and one region in each

of the left medial frontal gyrus and right nodule of the cerebellum.

Several regions (Table 2) displayed negative correlations with years

of use. These were located in the right cerebellar tonsil, bilaterally

in the superior temporal and inferior frontal gyri, in the right

anterior insula, and one in each of the right subcollasal gyrus and

right anterior cingulate gyrus shown in Figure 1 (left).

Weeks of abstinence. A number of regions (Table 2) were

observed to show positive correlations with weeks of abstinence,

that is grey matter volume in these regions increased with

abstinence. These included left insula, left and right cingulate gyri,

the left cuneus, left and right superior frontal gyri, left culmen of

the cerebellum, and the right middle temporal gyrus. As can be

seen in Figures 1 and 2, in each of these regions, those CD users

with shorter periods of abstinence show less GM than controls.

Those who were abstinent longer show greater GM volumes than

controls. The cross-over point from relatively smaller to relatively

greater volumes was quite consistent across all regions, averaging

35.6 weeks of abstinence (range 26.4–44.9, sd 6.2). Three regions

(see Table 2) were observed to display negative correlations with

length of abstinence. These included regions in bilateral cuneus

and one in the left precuneus. In these regions, on average 24.2

weeks of abstinence (range 18.5–27.6, sd 5.0) passed before the

level of GM equaled that of controls and then declined further

with increased periods of abstinence.

As abstinence duration correlated with years of education, we

conducted cluster-level correlations between GM volumes and

weeks of abstinence with both age and years of education included

as nuisance regressors. The effects reported above remained

significant for all regions.

We conducted a series of Welch T-tests to determine if the GM

volumes of users who were abstinent longer than the cross-over

point were significantly greater than the volumes of the controls.

These tests were performed separately for each ROI with the

cross-over points of each ROI identified from the linear

regressions. All of these tests were significantly different (all

p,0.05).

Independence between use and abstinence effects. We

tested whether the areas shown to have altered volumes associated

with years of use were also observed to change with abstinence.

We performed correlations for abstinence effects in those areas

that showed years of use effects (and vice versa). For all clusters, only

two, the right precuneus and left cuneus clusters identified initially

as showing positive correlations with abstinence (p,0.05) also

showed significant negative correlations with years of use

(p,0.05).

Discussion

The present results are some of the first to examine grey matter

volumes related to the length of cocaine use and abstinence in a

population of former cocaine addicts. We observed several regions

displaying decreased GM with increasing years of use. Although

these results are necessarily correlational, they suggest a cumula-

tive effect of cocaine use wherein the longer the period of

substance use the lower the grey matter volume [22]. That these

effects were observed in abstinent users is consistent with prior

reports of GM deficits in alcoholism that last from 6–9 months to

more than a year or, in some reports, up to at least 6 years

following abstinence [42–44]. Similarly, decreased GM as a

function of years of use of heroin [6,45,46] and cocaine [15] have

previously been reported. Conversely, increased GM as a function

of years of use was also observed in the cerebellum, bilateral

Disease and Recovery Dissociation
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Figure 1. Regions in the left and right anterior cingulate showing, respectively, increases in GM with weeks of abstinence and
decreases in GM with years of use. The solid line is the robust regression line for CD individuals. The dashed line is the mean GM in the same ROI
for the control participants.
doi:10.1371/journal.pone.0059645.g001

Table 2. Regions identified in the regression analysis.

Structure Hemisphere BA Volume Center of Mass Crossover

(mL) X Y Z Point

Term: Years of Use Correlation: Positive

Precentral Gyrus L 4 896 236 216 62 14.1

Nodule (Cerebellum) R 888 4 242 238 6.2

Medial Frontal Gyrus L 11 392 22 32 214 19.5

Precentral Gyrus R 6 368 13 226 73 18.6

Term: Years of Use Polarity: Negative

Cerebellar Tonsil R 1976 39 256 253 4.6

Portions of STG, IFG, AI R 22/13 1360 49 11 25 2.8

Portions of STG, IFG L 22/13 1088 250 13 27 3.7

Subcallosal Gyrus R 34 624 12 1 217 8.3

Anterior Cingulate R 24 448 4 30 14 6.7

Term: Abstinence (weeks) Polarity: Positive

Insula L 13 1512 237 9 11 29.9

Cuneus L 31 1480 226 279 23 26.4

Superior Frontal Gyrus L 8 680 216 46 42 42.3

Culmen L 648 214 248 212 32.8

Precuneus R 19 592 31 278 22 38.0

Cingulate Gyrus L 32 520 210 25 31 44.9

Superior Frontal Gyrus R 10 512 24 54 5 37.1

Cingulate Gyrus R 31 384 14 232 41 33.3

Term: Abstinence (weeks) Polarity: Negative

Cuneus R 19 520 12 281 36 27.6

Precuneus L 7 488 24 262 57 26.6

Culmen of Vermis L 368 22 264 3 18.5

Center-of-mass coordinates are in the MNI152 (LPI) standard and structure labels are from the Talairach & Tournoux atlas. RL: Right-Left, AP: Anterior-Posterior, IS:
Inferior-Superior. STG: Superior Temporal Gyrus, IFG: Inferior Frontal Gyrus, AI: Anterior Insula. BA: Brodmann Area. Crossover point refers to the location on the x-axis
(years of use or weeks of abstinence) where the regression (solid) line for the CD users intersects with the mean of the control participants (dashed line). Term refers to
the term of interest in the regression model (years of use or weeks of abstinence) from which the clusters were derived. Polarity refers to the sign (positive or negative)
of the regression coefficients from which the cluster was generated.
doi:10.1371/journal.pone.0059645.t002
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precentral gyrus (both effects discussed below) and also in the

perigenual region of the cingulate gyrus associated with affective

processing [47]. This may be a consequence of repeated cocaine

use blunting responses in regions important to emotional

regulation [48]. Alternatively, given that emotional reactivity has

been implicated as a factor modulating vulnerability to drug abuse

[49], this may have been a preexisting factor that served to

increase the likelihood of the development and prolongation of

drug abuse.

If addiction can be characterized as a loss of self-directed

volitional control [22], abstinence and its maintenance may be

characterized by a reassertion of these aspects of executive

function [24]. Current cocaine users demonstrate reduced GM

in brain regions critical to executive function, such as the anterior

cingulate, lateral prefrontal, orbitofrontal and insular cortices [6–

11]. In contrast, the group of abstinent CD users reported here

show elevations in GM as a function of abstinence duration that

exceeds control levels after 36 weeks, on average, of abstinence.

One possible explanation for this is that abstinence may require

reassertion of cognitive control and behavior monitoring that is

diminished during current cocaine dependence [11,50,51]. We,

and others, have previously hypothesized that drug abusers may

develop increased cerebellar activity to compensate for reduced

prefrontal activity in tasks demanding elevated levels of cognitive

control [52,53] and that this may play a role in maintaining

abstinence [24]. Reassertion of behavioral control may produce a

practice-related expansion [54] in GM regions such as the anterior

insula, anterior cingulate, cerebellum, and dorsolateral prefrontal

cortex and is consistent with our previous reports of elevated

activity levels, compared to controls, in long-term abstinent

substance users [24,55]. A viable alternative, given the cross-

sectional nature of the data, is that the differences in GM volumes

preceded abstinence and the relationship with abstinence duration

indicates that those with greater volumes in these regions are more

likely to maintain abstinence for longer. A small, but growing,

body of literature has begun to examine this possibility in users of

several substances as assessing baseline predictors, such as grey

matter volume, may provide an indication of what might be

different from the onset of abstinence in those who maintain

abstinence. In the case of alcohol, gray matter volume in the

parietal-occipital sulcus, medial and right lateral prefrontal cortex

[56] and brain regions critical to behavioral control and reward

processing [57,58] have been shown to predict likelihood of

relapse and successful abstinence. Similarly, grey matter volume in

Figure 2. Regions in the right posterior cingulate, left insula and left and right superior frontal gyrii showing increased GM with
weeks of abstinence. The solid line is the robust regression line for CD individuals. The dashed line is the mean GM in the same ROI for the control
participants.
doi:10.1371/journal.pone.0059645.g002
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cortical and subcortical regions measured prior to cessation has

been shown to be predictive of treatment outcome in smokers [59].

To our knowledge, no similar morphometric analyses of grey

matter in users of stimulants, such as cocaine, have been

performed. However, a variety of functional activation studies

have shown that activation levels in brain regions associated with

behavioral control, interoception and reward valuation show

promise as predictors of treatment outcome in methamphetamine

[60] and cocaine users [61–64]. We have previously investigated

the integrity of white matter in the same cohort of CD users as

reported here [25]. That study identified a dissociation of disease

and abstinence effects that are consistent with the results reported

herein. For example, the prefrontal changes reported here may

complement white matter changes we previously observed in the

longitudinal fasciculus [25]. It should be noted, however, that our

previous DTI study did not include tractographic analyses so we

cannot be certain that the grey matter changes reported here are

linked to the white matter changes that we have previously

reported. Future studies that investigate both grey matter and

tractographic differences that may be related to duration of

abstinence and length of use are required to resolve this ambiguity.

Ultimately, adjudicating between these alternatives, namely that

the volume differences reported herein arose as a consequence of

abstinence or predated and facilitated abstinence, requires large-

scale longitudinal studies. Nevertheless, both interpretations of the

present data identify elevated levels of volume in regions that

underlie cognitive control as characteristic of successful abstinence.

Impulsivity has been identified as a risk factor for the

development of substance use disorders wherein individuals

displaying higher levels of impulsivity are prone to both

experimentation with and misuse of illicit drugs [65,66].

Additionally, substance use may influence maladaptive behaviors

through either acute effects (such as through action on the

midbrain dopamine system [67,68]), or as a consequence of

prolonged drug use. For example, acutely, drugs may lead to

impaired inhibition [50] and altered risky-choice behavior [51,69–

71]. Continued use may result in escalation of use and subsequent

dependence, possibly by altering the neural substrate of perfor-

mance monitoring [72] and stimulus-reward processing brain

systems [73], amongst others. A common observation in trait

impulsiveness is elevated motor activity [74]. The observation of

elevated GM reported in bilateral precentral gyrus with years of

use may be significant insofar as it may reflect elevated

environmental exploration on the part of the addict to procure

the abused substance [75]. Indeed, such an hypothesis is consistent

with reports of increased GM in motor cortex with the acquisition

of complex motor skills [76].

Left and right inferior frontal gyrus and right anterior cingulate

have been identified as key loci underlying response inhibition

[77–81] and are associated with impaired cognitive control in

current addicts [82] and heavier, prolonged substance abuse [83].

As noted above, impaired behavioral inhibition is one of the

defining characteristics of drug addiction. The observation of

reduced GM with years of use in these regions may reflect the

cumulative effect of damage caused by prolonged usage. Previous

VBM studies of cocaine addicts have observed reduced GM in

cerebellum [12] and have suggested that this may reflect the

cumulative effect of cocaine-induced oxidative stress and vaso-

constriction [12]. Furthermore, the region of reduced GM is

located in a lobule of the cerebellum with many reciprocal

connections to prefrontal cortex [84,85]. This may contribute to

an inability to moderate behavior notwithstanding any possible

negative consequence it may have [22,86,87], and thus contrib-

uting to continued drug abuse. Alternatively, these effects may

have been preexisting and constitute an endophenotype for

impaired behavioral control that may have contributed to the

development of drug abuse [11]. It should be noted that we also

observed regions displaying increased GM with abstinence in

bilateral cingulate gyri that did not overlap with those showing

decreased GM with years of use. This suggests that the brain is

capable of compensating in response to changes in demands, such

as the maintenance of abstinence [54,76].

The present results are tempered by some limitations. A fuller

characterization of the subjects would be of value in order to assess

the psychological consequences of the observed structural changes.

In addition, the CD group reported here included individuals who

were dependent on alcohol and heroin. While polydrug use of this

sort is representative of the CD population, it raises the possibility

that the effects reported here could be influenced by these other

drug dependencies. Future studies might aim to resolve this

ambiguity by recruiting a purely cocaine dependent cohort or a

larger sample of polydrug abusers which would facilitate analyses

to explore independent and interactive drug use effects. Addition-

ally, future studies should aim to determine whether the number of

attempts at abstinence has any bearing on GM change. Finally,

consistent with most human clinical studies, it is not possible to

address the etiology of the changes reported here. That is, we

cannot say with certainty that they arose as a consequence of

cocaine consumption or predated it. Notwithstanding this

ambiguity, the present results demonstrate a dissociation between

the effects of prolonged addiction and extended abstinence. The

dissociation between regions showing alterations in grey matter

with increased years of use and those altering with increased

abstinence suggests that recovery is not simply a reversal of the

process of disease. Rather it suggests an asymmetry between the

two wherein cortical regions critical to behavioral control may

serve as a biomarker of successful abstinence. Furthermore, these

systems may be apt for targeting during treatment, such as with

mindfulness-based approaches [88] that have been shown to

modulate both function and structure of some of the regions

reported here [89–91]. This may ultimately lead to decreased

relapse and increase the likelihood of prolonged, successful

abstinence.
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75. Schilling C, Kühn S, Romanowski A, Banaschewski T, Barbot A, et al. (2011)

Common structural correlates of trait impulsiveness and perceptual reasoning in

adolescence. Human Brain Mapping. doi:10.1002/hbm.21446.
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