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Abstract Microbial communities routinely have several possible species compositions or

community states observed for the same environmental parameters. Changes in these parameters

can trigger abrupt and persistent transitions (regime shifts) between such community states. Yet

little is known about the main determinants and mechanisms of multistability in microbial

communities. Here, we introduce and study a consumer-resource model in which microbes

compete for two types of essential nutrients each represented by multiple different metabolites.

We adapt game-theoretical methods of the stable matching problem to identify all possible species

compositions of such microbial communities. We then classify them by their resilience against three

types of perturbations: fluctuations in nutrient supply, invasions by new species, and small changes

of abundances of existing ones. We observe multistability and explore an intricate network of

regime shifts between stable states in our model. Our results suggest that multistability requires

microbial species to have different stoichiometries of essential nutrients. We also find that a

balanced nutrient supply promotes multistability and species diversity, yet make individual

community states less stable.

Introduction
Recent metagenomics studies revealed that microbial communities living in similar environments are

often composed of rather different sets of species (Zhou et al., 2007; Lahti et al., 2014;

Lozupone et al., 2012; Zhou et al., 2013; Pagaling et al., 2017; Gonze et al., 2017). It remains

unclear to what extent such alternative species compositions are deterministic as opposed to being

an unpredictable outcome of communities’ stochastic assembly. Furthermore, changes in environ-

mental parameters may trigger abrupt and persistent transitions between alternative species compo-

sitions (Shade et al., 2012; Rocha et al., 2018; Scheffer and Carpenter, 2003). Such transitions,

known as ecosystem regime shifts, significantly alter the function of a microbial community and are

difficult to reverse. Understanding the mechanisms and principal determinants of alternative species

compositions and regime shifts is practically important. Thus, they have been extensively studied

over the past several decades (Sutherland, 1974; Holling, 1973; May, 1977; Tilman et al., 1997;

Schröder et al., 2005; Fukami and Nakajima, 2011; Bush et al., 2017).

Growth of microbial species is affected by many factors, with availability of nutrients being among

the most important ones. Thus, the supply of nutrients and competition for them plays a crucial role

in determining the species composition of a microbial community. The majority of modeling

Dubinkina et al. eLife 2019;8:e49720. DOI: https://doi.org/10.7554/eLife.49720 1 of 37

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.49720
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


approaches explicitly taking nutrients into account are based on the classic MacArthur consumer-

resource model and its variants (MacArthur and Levins, 1964; MacArthur, 1970; Huisman and

Weissing, 1999; Tikhonov and Monasson, 2017; Posfai et al., 2017; Goldford et al., 2018;

Goyal et al., 2018; Butler and O’Dwyer, 2018). This model assumes that every species co-utilizes

several substitutable nutrients of a single type (e.g. carbon sources). However, nutrients required for

growth of a species exist in the form of several essential (non-substitutable) types including sources

of C, N, P, Fe, etc. Real ecosystems driven by competition for multiple essential nutrients have been

extensively experimentally studied (see recent papers; Fanin et al., 2015; Browning et al., 2017;

Camenzind et al., 2018 and references therein). The theoretical foundation for all existing con-

sumer-resource models capturing this type of growth has been laid in Tilman (1982), where a model

with two essential resources has been introduced and studied. Future studies extended Tilman’s

approach to three and more essential resources, where it has been shown to sometimes result in

oscillations and chaos (Huisman and Weissing, 1999; Huisman and Weissing, 2001; Shoresh et al.,

2008). However, all the previously studied models accounted for just a single metabolite per each

essential nutrient.

Here, we introduce and study a new consumer-resource model of a microbial community supplied

with multiple metabolites of two essential types (e.g. C and N or N and P). This ecosystem is popu-

lated by microbes selected from a fixed pool of species. We show that our model has a very large

number of possible steady states classified by their distinct species compositions. Using game-theo-

retical methods adapted from the well-known stable marriage (or stable matching) problem

(Gale and Shapley, 1962; Gusfield and Irving, 1989), we predict all these states based only on the

ranked lists of competitive abilities of individual species for each of the nutrients. We further classify

these states by their dynamic stability, and whether they could be invaded by other species in our

pool. We then focus our attention on a set of steady states that are both dynamically stable and

resilient with respect to species invasion.

For each state, we identify its feasibility range of all possible environmental parameters (nutrient

supply rates) for which all of state’s species are able to survive. We further demonstrate that for a

given set of nutrient supply rates, more than one state could be simultaneously feasible, thereby

allowing for multistability. While the overall number of stable states in our model is exponentially

eLife digest In nature, different species of bacteria and fungi often live together in stable

microbial communities. Exactly which species are present in the group and in which proportion may

vary between communities. Changes in the environment, and in particular in the availability of

nutrients, can trigger abrupt, extensive, and long-lasting changes in the composition of a

community: these events are known as regime shifts. For instance, when bodies of water receive

large quantities of phosphorus and nitrogen, certain algae can start to multiply uncontrollably and

take over other species. A given community can have different stable species compositions, but it

was unclear exactly how variations in nutrients can influence regime shifts.

To examine this problem, Dubinkina, Fridman, Pandey and Maslov harnessed mathematical

techniques used in game theory and economics and modeled all the possible stable compositions of

a community. They could then predict which environmental conditions – in this case, the amount of

specific nutrients – were necessary for each stable composition to exist. These models also showed

which conditions could trigger a regime shift. Finally, how resilient the communities were to different

types of perturbations – for instance, an invasion by new species or changes in nutrient supply – was

examined.

The results show that if competing species require different quantities of the same nutrients, then

the community can have several possible stable compositions and it is more likely to go through

regime shifts. In addition, a small number of keystone species were identified which can drive

regime shifts by preventing other microbes from invading the community. Ultimately, these results

suggest ways to control microbial communities in our environment, for example by manipulating

nutrient supplies or introducing certain species at the right time. More work is needed however to

verify the predictions of the model in real communities of microbes.
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large, only very few of them can be realized for a given set of environmental conditions defined by

nutrient supply rates. The principal component analysis of predicted microbial abundances in our

model shows a separation between the alternative stable states reminiscent of real-life microbial

ecosystems. We further explore an intricate network of regime shifts between the alternative stable

states in our model triggered by changes in nutrient supply. Our results suggest that multistability

requires microbial species to have different stoichiometries of two essential resources. We also find

that well-balanced nutrient supply rates matching the average species’ stoichiometry promote multi-

stability and species diversity yet make individual community states less structurally and dynamically

stable. These and other insights from our consumer-resource model may help to understand the

existing data and provide guidance for future experimental studies of alternative stable states and

regime shifts in microbial communities.

Results

Microbial community growing on two types of essential nutrients
represented by multiple metabolites
Our consumer-resource model describes a microbial ecosystem colonized by microbes selected

from a pool of S species. Growth of each of these species could be limited by two types of essential

resources, to which we refer to as ‘carbon’ and ‘nitrogen’. In principle, these could be any pair of

resources essential for life: C, N, P, Fe, etc. A generalization of this model to more than two types of

essential resources (e.g. C, N and P) is straightforward. Carbon and nitrogen resources exist in the

environment in the form of K distinct metabolites containing carbon , and M other metabolites con-

taining nitrogen. For simplicity, we ignore the possibility of the same metabolite providing both

types. We further assume that each of the S species in the pool is a specialist, capable of utilizing

only a single pair of nutrients, that is one metabolite containing carbon and one metabolite contain-

ing nitrogen.

We assume that for given environmental concentrations of all nutrients, a growth rate of a species

a is limited by a single essential resource via Liebig’s law of the minimum (de Baar, 1994):

gaðc;nÞ ¼minðlðcÞa c;lðnÞa nÞ : (1)

Here, c and n are the environmental concentrations of the unique carbon and nitrogen resources

consumed by this species. The coefficients lðcÞa and lðnÞa are defined as species-specific growth rates

per unit of concentration of each of two resources. They quantify the competitive abilities of the spe-

cies a for its carbon and nitrogen resources, respectively. Indeed, according to the competitive

exclusion principle, if two species are limited by the same resource, the one with the larger value of

l wins the competition. Note that according to Liebig’s law, if the carbon source is in short supply

so that lðcÞa c<lðnÞa n, it sets the value for this species growth rate. We refer to this situation as c-source

limiting the growth of the species a. Conversely, when lðcÞa c>lðnÞa n, the n-source is limiting the growth

of this species. Thus, each species always has exactly one growth-limiting resource and one non-lim-

iting resource.

In our model, microbes grow in a well-mixed chemostat-like environment subject to a constant

dilution rate d (see Figure 1A for an illustration). The dynamics of the population density, Ba, of a

microbial species a is then governed by:

dBa

dt
¼ Ba gaðci;njÞ� d

� �

; (2)

where ci and nj are the specific pair of nutrients defining the growth rate ga of this species according

to the Liebig’s law (Equation 1). These nutrients are externally supplied at fixed rates f
ðcÞ
i and f

ðnÞ
j

and their concentrations follow the equations:

dci
dt

¼f
ðcÞ
i � d � ci�

P

allausingci

Ba
gaðci;njÞ
Y
ðcÞ
a

;

dni
dt

¼f
ðnÞ
i � d � ni �

P

allausingni

Ba
gaðci;njÞ
Y
ðnÞ
a

(3)
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Figure 1. Community states and different types of their stability. (a) A schematic depiction of the proposed experimental setup and one of several

possible community states in the 2C � 2N � 4S model. Several sources of carbon an nitrogen are supplied at constant rates f
ðcÞ
i and f

ðnÞ
j to a

chemostat with a dilution rate d. Red and blue square nodes represent these nutrients inside the chemostat with steady state concentrations c1, c2 (for

carbon) and n1, n2 (for nitrogen). They are consumed by three microbial species labeled by the pair of carbon (the first index) and nitrogen (the second

index) nutrients this species consumes. Shaded ovals connect every species to its unique growth-limiting nutrient. The fourth species B2;1 is not present

in this steady state. (b) All seven uninvadable states in our realization of 2C � 2N � 4S model (see Supplementary files 1,2 for the specific

parameters). depicted using the same schematic representation as in (a). Panels (c–e) schematically illustrate three possible types of perturbations of a

community state, corresponding to three different types of its stability. (c) Changes of nutrient supply rates, that may result in extinction of some of the

species. Green shaded area schematically depicts the region of nutrient supply rates where a given state is feasible, red arrows represent the

perturbations of nutrient supply rates. (d) Introduction of species currently absent from the system, that is invasion, that may change the set of surviving

species. (e) Small fluctuations in abundances of existing species, that may disturb the dynamic equilibrium of the system and potentially drive it to

another state. (f) Table that shows which stability criteria are satisfied for 34 possible states in our realization of 2C � 2N � 4S model. Note that these

types of stability are in general unrelated to each other.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Distribution of volumes for stable and unstable states.
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Here, YðcÞ
a and YðnÞ

a are the growth yields of the species a on its c- and n-resources respectively.

Yields quantify the concentration of microbial cells generated per unit of concentration of each of

these two consumed resources. The yield ratio YðnÞ
a =Y ðcÞ

a determines the unique C:N stoichiometry of

each species.

A steady state of the microbial ecosystem can be found by setting the right hand sides of Equa-

tions 2-3 to zero and solving them for environmental concentrations of all nutrients ci, and nj, and

abundances Ba of all species. We choose to label all possible steady states by the list of species

present in the state and by the growth-limiting nutrient (cor n) for each of these species. Thus, two

identical sets of species, where at least one species is growth limited by a different nutrient are

treated as two distinct states of our model. Conversely, our definition of a steady state does not

take into account species’ abundances. Examples of such states in a system with two carbon, two

nitrogen nutrients and four species (one species for every pair of carbon and nitrogen nutrients) with

specific values of species’ competitive abilities lðcÞa and lðnÞa and yields YðcÞ
a and YðnÞ

a (see

Supplementary files 1,2 for their exact values) are shown in Figure 1B. For the sake of brevity we

refer to this model as 2C � 2N � 4S.

Because each of the S species in the pool could be absent from a given state, or, if present, could

be limited by either its c- or its n-resource, the theoretical maximum of the number of distinct states

is 3S (equal to 81 in our 2C � 2N � 4S example). However, the actual number of possible steady

states is considerably smaller (equal to 34 in this case). Indeed, possible steady states in our model

are constrained by a variant of the competitive exclusion principle (Gause, 1932) (see

Materials and methods for details). One of the universal consequences of this principle is that the

number of species present in a steady state of any consumer-resource model cannot exceed

K + M � the total number of nutrients.

We greatly simplified the task of finding all steady states in our model by the discovery of the

exact correspondence between our system and a variant of the celebrated stable matching (or sta-

ble marriage) problem in game theory and economics (Gale and Shapley, 1962; Gusfield and Irv-

ing, 1989). The matching in our model connect pairs of C and N resources via microbial species

using both of them. Unlike in the traditional stable marriage model, a given resource can be involved

in more than one matching but cannot be limiting for more than one microbe. Thus, the competitive

exclusion principle provides a number of constraints on the set of possible matchings and their sta-

bility, which are described in detail in Materials and methods and Appendix 3.

Three criteria for stability of microbial communities
Each of the steady states identified in the previous chapter can be realized only for a certain range

of nutrient supply rates. These ranges can be calculated using the steady state solutions of Equa-

tions 2, 3, governing the dynamics of microbial populations and nutrient concentrations, respec-

tively (see Materials and methods). Among all formal mathematical solutions of these equations we

select those, where populations of all species and all nutrient concentrations are non-negative. This

imposes constraints on nutrient supply rates, thereby determining their feasible range for a given

steady state (shown in green in Figure 1C). The volume of such feasible range has been previously

used to quantify the so-called structural stability of a steady state (Rohr et al., 2014; Grilli et al.,

2017; Butler and O’Dwyer, 2018). States with larger feasible volumes generally tend to be more

resilient with respect to fluctuations in nutrient supply.

Stability of a steady state could be also disturbed by a successful invasion of a new species (see

Figure 1D). We can test the resilience of a given state in our model with respect to such invasions. A

state is called uninvadable if none of the other species from our pool can survive in the environment

shaped by the existing species. Figure 1B shows all seven states that are uninvadable in our variant

of the 2C � 2N � 4S model. Whether or not a given state is uninvadable is determined by the spe-

cific choice of parameters lðcÞa , lðnÞa . For example, for parameters listed in the Supplementary file 1

the state in which B12 is limited by carbon c1, and B22 - by carbon c2 could be invaded by the species

B11. Indeed, l
ðcÞ of B11 is larger than that of B12, and the nitrogen concentration n1 is not limited by

any species. Hence, this state is not shown in Figure 1B. However, the same state may turn out to

be uninvadable for a different combination of parameters. The one-to-one correspondence between

our model and a variant of the stable matching problem (Gale and Shapley, 1962) allows us to
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identify all uninvadable steady states for a given choice of lðcÞa , lðnÞa describing species competitive-

ness for resources (see Materials and methods and Appendix 3 ).

Note that, in the regime of our model, where the supply of all nutrients is high, that is

fðc;nÞ � d2=lðc;nÞa , invadability of individual states does not depend on supply rates. Indeed, in this

regime the outcome of an attempted invasion is fully determined by the competition between spe-

cies, which in turn depends only on the rank-order of competitive abilities l of the invading species

relative to the species currently present in the ecosystem (see Materials and methods for details).

In addition to structural and invasion types of stability described above, there is also a notion of

dynamic stability of a steady state actively discussed in the ecosystems literature (see e.g.

May, 1972; Allesina and Tang, 2012; Butler and O’Dwyer, 2018). Dynamic stability can be tested

by exposing a steady state to small perturbations in populations of all species present in this state

(see Figure 1E). The state is declared dynamically stable if after any such disturbance the system ulti-

mately returns to its initial configuration (see Materials and methods for details of the testing proce-

dure used in our study).

We classify all the steady states in our model according to these three types of stability. The

example of this classification for our realization of 2C � 2N � 4S model is summarized in Figure 1F.

Note, that in general, one type of stability does not imply another. Out of 34 possible steady states

realized for different ranges of nutrient supply rates there are only seven uninvadable ones. In the

2C � 2N � 4S model only one of the states (labelled seven in Figure 1B) turned out to be dynami-

cally unstable, while for the remaining 33 states small perturbations of microbial abundances present

in the state do not trigger a change of the state. Unlike two other types of stability, the structural

stability has a continuous range. It could be quantified by the fraction of all possible combinations of

nutrient supply rates for which a given state is feasible (referred to as state’s normalized feasible

range). We estimated the normalized feasible ranges of all states in the 2C � 2N � 4S model using

a Monte Carlo procedure described in Materials and methods. The results are reflected in the sec-

ond column of Figure 1F, where a structurally stable state is defined as that whose normalized feasi-

ble range exceeds 0.1 (an arbitrary threshold). In general we find that normalized feasible ranges of

uninvadable states in our model have a broad log-normal distribution (see Figure 1—figure supple-

ment 1 for details).

It is natural to focus our attention on steady states that are simultaneously uninvadable and

dynamically stable. Indeed, such states correspond to natural endpoints of the microbial community

assembly process. They would persist for as long as the nutrient supply rates do not change outside

of their structural stability range. Therefore, they represent the states of microbial ecosystems that

are likely to be experimentally observed. From now on, we concentrate our study almost exclusively

on those states and refer to them simply as stable states.

Regime shifts between alternative stable states
The feasible ranges of nutrient supply of different stable states may or may not overlap with each

other (see Figure 2A–B for a schematic illustration of two different scenarios). Whenever feasible

ranges of two or more states overlap (see Figure 2B) - multistability ensues. Note that the states in

the overlapping region of their feasibility ranges constitute true alternative stable states defined and

studied in the ecosystems literature (Sutherland, 1974; Holling, 1973; May, 1977; Fukami and

Nakajima, 2011; Bush et al., 2017). The existence of alternative stable states goes hand-in-hand

with regime shifts manifesting themselves as large discontinuous and hysteretic changes of species

abundances (Scheffer and Carpenter, 2003).

Every pair of states with overlapping feasibility ranges in our model corresponds to a possible

regime shift between these states as illustrated in Figure 2D (note abrupt changes in the population

B11 at the boundary of the overlapping region). In general, a discontinuous regime shift happens in

our model when one of the species (B12 in this example) changes its growth-limiting nutrient thereby

making the state invadable. It is then promptly invaded by the species present in the new state (B11

and B22 in our example) which may lead to immediate changes in populations of multiple species.

Conversely, when feasible ranges of a pair of states do not overlap with each other but share a

boundary (Figure 2A), the transition between these states is smooth and non-hysteretic (Figure 2C).

It manifests itself in continuous changes in abundances of all microbial species at the boundary

between states. Such continuous transitions happen in our model when the growth rate of one of
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Figure 2. Regime shifts between alternative stable states. (a) Shaded green areas schematically depict the feasible ranges of nutrient supply rates for

several stable states in our model (#2-#4 in Figure 1B). The feasible range of the state #4 does not overlap with that of any other state. Feasible ranges

of states #2 and #3 also do not overlap but share a common boundary. Panel (b) depicts the opposite scenario of overlapping feasible ranges of

another pair of stable states (#1 and #2 in Figure 1B). In the overlapping region (dark green), they form a pair of alternative stable states. (c) A smooth

Figure 2 continued on next page
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the species (B21 in this example) falls below the dilution rate d. This species then slowly disappears

from the ecosystem thereby changing its state. When this boundary is crossed in the opposite direc-

tion, the same species (B21) gradually appears in the ecosystem.

As expected for regime shifts, dynamically unstable states always accompany multistable regions

in our model (Scheffer and Carpenter, 2003) (see below for a detailed discussion of the interplay

between multistability and dynamically unstable states). We observed that dynamically unstable

state #7 in our 2C � 2N � 4S is feasible in the overlapping region between states #1 and #2 in

Figure 2B. The population B11 in this state is shown as dashed line in Figure 2D.

We identified all possible regime shifts in the 2C � 2N � 4S model by systematically looking for

overlaps between the feasible ranges of nutrient supply of all six uninvadable dynamically stable

states. These regime shifts can be represented as a network in which nodes correspond to commun-

ity’s stable states and edges connect states with partially overlapping feasible ranges (see thick red

edges in Figure 2E). One can see that regime shifts are possible only for of nine pairs of uninvadable

states. We performed additional simulations (see Materials and mthods) looking for shared bound-

aries (continuous transitions) between uninvadable states and identified additional four pairs of

states bordering each other (thin blue edges in Figure 2E). The pairs of states #5 - #6 and #3 - #4

do not directly transition to each other either continuously or discontinuously. This indicates that

their feasible ranges are too far apart from each other, so that they do not have any overlaps or

common boundaries.

Combining the information in Figure 1B and Figure 2E one can find that all states connected by

a discontinuous regime shift in our 2C � 2N � 4S model have two distinct sets of keystone species:

B11-B22 in one state and B12-B21 in another. This is because all regime shifts are driven by the same

bistable switch in which these pairs of species compete and mutually exclude each other. The

dynamically unstable state #7 is formed by the union of all four keystone species and, when per-

turbed, collapses into a state with either one or another keystone set. Conversely, states connected

by a continuous transition share the same pair of keystone species. One of the ‘satellite’ species,

that is species distinct from the keystone, gradually goes extinct when the boundary between these

states is crossed. When the nutrient supply is changed in the opposite direction this species gradu-

ally invades the system.

Figure 2F shows a much larger network of 8633 regime shifts between 893 uninvadable dynami-

cally stable states in the 6C � 6N � 36S realization of our model. In this model the microbial commu-

nity is supplied with six carbon and six nitrogen nutrients and colonized from a pool of 36 microbial

species (one for each pair of C and N nutrients) (see Supplementary files 3, 4, 5, 6 for the values of

l’s and yields). For simplicity, we did not show the remaining 165 uninvadable stable states that

have no possible regimes shifts to any other states. The size of a node is proportional to its degree

(i.e. the total number of other states it overlaps with) ranging between 1 and 164 with average

around 20 (the degree distribution is shown in Figure 2—figure supplement 1).

The network modularity analysis (see Materials and methods for details) revealed seven network

modules indicating that pairs of states that could possibly undergo a regime shift are clustered

together in the multi-dimensional space of nutrient supply rates. This modular structure suggests the

Figure 2 continued

transition between two states at the boundary. The population B11 of the microbial species (1,1) is plotted as a function of changing nutrient supply rate

fðcÞ (same as the x-axis in panel (a)). Vertical gray line corresponds to the boundary between states #3 and #2. (d) A regime shift between two states. B11

is plotted as a function of nutrient supply fðcÞ as it sweeps through the overlapping region (gray area) in panel (b). Note abrupt changes of B11 at the

boundaries of the overlapping region and its hysteretic behavior as expected for regime shifts. Dashed line corresponds to B11 in a dynamically

unstable state (#7 in Figure 1B). (e) The network of possible regime shifts between pairs of stable states in the 2C � 2N � 4S model. Each red edge

represents a possible regime shift between two states it connects (overlap of their feasible ranges as in panel (d)). Each blue edge corresponds to a

smooth transition between two states while changing the fluxes (as in panel (c)). Nodes correspond to six uninvadable and dynamically stable states

(state labels are the same as in Figure 1b). Sizes of nodes reflect relative magnitudes of feasible ranges of states they represent. (f) Network of 8633

possible regime shifts between pairs of 893 uninvadable dynamically stable states in the 6C � 6N � 36S model. The size of each node reflects its

degree (i.e. the total number of other stable states that a given state can shift into). The color of each node corresponds to its network modularity class

calculated as described in Materials and methods.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Statistics of pairwise bistability network for 6C � 6N � 36S example.
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existence of distinct sets of keystone species driving regime shifts within each module. However, the

complexity of the 6C � 6N � 36S model does not allow a straightforward identification of these driv-

ers (paired sets of keystone species and dynamically unstable states).

Patterns of multistability
In a general case, the number of stable states that are simultaneously feasible for a given set of nutri-

ent supply rates can be more than two. Furthermore, as the number of nutrients increases, the multi-

stability with more than two stable states becomes progressively more common. In Figure 3A, we

quantify the frequency of multistability with V stable states occur in our 6C � 6N � 36S model across

all possible nutrient supply rates (see Materials and methods for details of how this was estimated).

V � 1 approximately follows a Poisson distribution (dashed line in Figure 3A) with l ¼ 0:063. Note

that for some supply rates up to five stable states can be simultaneously feasible. However, the

probability to encounter such cases is exponentially small.

We further explored the factors that determine whether multistability is possible in resource-lim-

ited microbial communities. Like in a simple special case of regime shift between two microbial spe-

cies studied in Tilman (1982), multistability in our model is only possible if individual microbial

species have different C:N stoichiometry. This stoichiometry is given by the ratio of species’ nitrogen

and carbon yields. Our numerical simulations and mathematical arguments show that when all spe-

cies have exactly the same stoichiometry YðnÞ
a =YðcÞ

a , there is no multistability or dynamical instability in

Figure 3. Patterns of multistability. (a) The distribution of the number, V , of multistable states across the entire space of nutrient supply rates. The data

is based on Monte Carlo sampling of 1 million different environments (combinations of nutrient supply rates) in the 6C � 6N � 36S model. Solid circles

show the fraction of all sampled environments for which V ¼ 1; 2; 3; 4; 5 uninvadable dynamically stable states are simultaneously feasible. The dashed

line is the fit to the data with a Poisson distribution for v� 1 extra states giving rise to multistability. (b) Fraction of multistable cases for different ratios

of supply of two essential nutrients. The peak of the distribution is close to the balanced supply (fðcÞ : fðnÞ ’ 1 : 1). (c) The PCA plot of relative microbial

abundances in the vicinity of the environment, where V ¼ 5 stable states coexist. Supply rates were randomly sampled within ±10% from the initial

environment. Each point shows the first (x-axis) and the second (y-axis) principal components of microbial abundances in every uninvadable state

feasible for this combination of supply rates. Colored circles label the original five stable states, black circles - several other stable states, which became

feasible for nearby supply rates, and grey crosses - dynamically unstable states feasible in this region of nutrient supply rates.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The PCA plot of fractional microbial abundances.
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our model (see Appendix 5 ) . That is to say, in this case for every set of nutrient supply rates the

community has a unique uninvadable state, and all these states are dynamically stable.

A complementary question is whether multistable states are more common around particular

ratios of carbon and nitrogen supply rates. Figure 3B shows this to be the case: the likelihood of

multistability has a sharp peak around the well-balanced C:N nutrient supply rates. In this region

multiple stable states are present for roughly 15% of nutrient supply rate combinations. Note that

the average C:N stoichiometry of species in our model is assumed to be 1:1. In case of an arbitrary

C:N stoichiometry, by redefining the units of nutrient concentrations and supply rates one can trans-

form any ecosystem to have 1:1 nutrient ratio. Hence, in general, we predict that the highest chance

to observe multistability will be when the ratio of nutrient supply rates is close to the average C:N

stoichiometry of species in the community.

To illustrate how multistable states manifest themselves in a commonly performed Principal Com-

ponent Analysis (PCA) of species’ relative abundances, we picked the environment with V ¼ 5 simul-

taneously feasible stable states in our 6C � 6N � 36S model. In natural environments, nutrient

supply usually fluctuates both in time and space. To simulate this we sampled a ±10% range of nutri-

ent supply rates around this chosen environment (see Materials and methods) and calculated spe-

cies’ relative abundances in each of the uninvadable states feasible for a given nutrient supply. To

better understand the relationship between dynamically stable and unstable states we included the

latter in our analysis. Figure 3C shows the first vs the second principal components of relative micro-

bial abundances sampled in this fluctuating environment. (two more examples calculated for differ-

ent multistable neighborhoods are shown in Figure 3—figure supplement 1A–B). One can see five

distinct clusters, each corresponding to a single dynamically stable uninvadable state. Interestingly,

in the PCA plot these states are separated by V � 1 ¼ 4 dynamically unstable ones. Furthermore, all

states are aligned along a quasi-1D manifold with an alternating order of stable and unstable states.

It is tempting to conjecture that some variant of our model may explain similar arrangements of clus-

ters of microbial abundances, commonly seen in PCA plots of real ecosystems. If this is the case, the

gaps between neighboring clusters would correspond to dynamically unstable states of the ecosys-

tem, which may be experimentally observable as long transients in community composition.

Patterns of diversity and structural stability of states
Above we demonstrated that multistable states are much more common for balanced nutrient sup-

ply rates, that is to say, when the average ratio of carbon and nitrogen supply rates matches the

average C:N stoichiometry of species in the community (see Figure 3B). Interestingly, a balanced

supply of nutrients also promotes species diversity. In Figure 4A, we plot the average number of

species in a stable state, referred to as species richness, as a function of the average balance

between carbon and nitrogen supplies for 6C � 6N � 36S model. The species richness is the largest

(around 10.5) for balanced nutrient supply rates, while dropping down to the absolute minimal value

of six in two extreme cases of very large imbalance of supply rates, where the nutrient supplied in

excess becomes irrelevant in competition. In this case, only six species that are teh top competitors

for carbon metabolites (if nitrogen supply is plentiful) or, respectively nitrogen metabolites (if carbon

is large) survive, while the rest of less competitive species are never present in uninvadable states.

The number of distinct community states also has a sharp peak at balanced nutrient supply (see 3-

orders of magnitude difference in Figure 4—figure supplement 1).

For balanced nutrient supply rates the relationship between species’ competitiveness and its

prevalence in the community is much less pronounced than for imbalanced ones. It is shown in

Figure 4B, where we plot the prevalence of the species as a function of its average competitiveness.

Here, the average competitiveness rank of a species is defined as the mean of its ranks of competi-

tive abilities (l parameters of the model) for its carbon and nitrogen resources. The rank 1 being

assigned to the most competitive species for a given resource (the species with the largest value of

l), while the rank 6 - to the least competitive species for this resource. Species prevalence is given

by the fraction of all environments where it can survive. Note that all 36 species in our pool are pres-

ent in some of the environments.

In general, more competitive species tend to survive in a larger subset of environments (see the

dashed curve in Figure 4B). For example, in our pool there is one species which happens to be the

most competitive for both its carbon and nitrogen sources. This species is present in all of the states

in every environment. However, we also find that some of the least competitive species (those at the
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right end of the x-axis in Figure 4B) survive in a broad range of environments. For example, one spe-

cies with average competitiveness rank of 5.5 corresponding to the last and next to last rank for its

two resources still has relatively high prevalence of around 20%. This illustrates complex ways in

which relative competitiveness of all species in the pool shapes their prevalence in a broad range of

environments.

We also explore the relationship between species richness of a state (i.e. its total number of sur-

viving species) and its other properties. Figure 4C shows an exponential increase of the number of

uninvadable states as a function of species richness. In our 6C � 6N � 36S model all uninvadable

states with less than 10 species are dynamically stable (solid line in Figure 4C), while those with 10

or more species can be both stable or unstable (dashed line in Figure 4C). Overall, the fraction of

stable states to dynamically unstable ones decreases with species richness. In other words, the

Figure 4. Patterns of diversity and structural stability of states. (a) Average species richness (y-axis) of uninvadable stable states feasible for a given

fðcÞ : fðnÞ nutrient supply ratio (x-axis). Error bars correspond to standard deviation of species richness of individual states feasible for a given nutrient

supply ratio (see Figure 4—figure supplement 1 for the number of states contributing to each point). (b): Scatter plot of the prevalence (y-axis) of each

of the 36 species in the 6C � 6N � 36S model plotted vs its average competitiveness rank for its carbon and nitrogen sources. The latter is calculated

from the rank order of lðcÞ and lðnÞ among all species consuming each resource (rank one corresponds to the largest l for this resource among all

species). Species prevalence is quantified as the fraction of environments where a given species can survive. The dashed line shows the average trend.

(c) The number of uninvadable dynamically stable (solid line) and unstable (dashed line) states with a particular species richness (x-axis). (d) Boxplot of

nutrient feasibility ranges of uninvadable stable states plotted as a function of their species richness. All plots were calculated for the 6C � 6N � 36S

model.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Number of unique uninvadable stable states that are feasible for a given fðcÞ : fðnÞ nutrient supply ratio (x-axis is binned as in

Figure 4A).
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probability for a state to be dynamically unstable increases with the number of species. In this

aspect, our model behaves similar to the gLV model in Robert May’s study (May, 1972).

In Figure 4D, we show a negative correlation between the species richness of a stable state and

its feasible range of nutrient supplies. Thus in our model the number of species in an ecosystem has

detrimental effect on the structural stability of the community quantifying its robustness to fluctuat-

ing nutrient supply (Rohr et al., 2014). The empirically observed exponential decay of state’s feasi-

ble range with its number of species is well described by a two-fold decrease per each species

added (see Serván et al., 2018 and Grilli et al., 2017 for related results in the gLV model). Note

that the observed decrease in feasible range with species richness goes hand-in-hand with an

increase in the overall number of states. Thus, in well-balanced environments a large number of

states are carving all possible combinations of nutrient supply into many small and overlapping

ranges.

Overall, the results of our model with a large number of nutrients suggest the following picture.

In nutrient-balanced environments, we expect to observe a high diversity of species in the existing

communities. These species can form a very large number of possible combinations (uninvadable

states). Each of these states could be realized only for a narrow range of nutrient supply rates indi-

cating their low structural stability. Moreover, in such environments we predict common appearance

of multistability between some of these states.

Discussion
The inspiration for our model was the common appearance of alternative stable states in ecosystems

in general, and microbial communities in particular (Sutherland, 1974; Tilman et al., 1997;

Schröder et al., 2005; Fukami and Nakajima, 2011; Bush et al., 2017; Pagaling et al., 2017;

Gonze et al., 2017). For example, eutrophication of shallow lakes caused by algal competition for N

and P is one of the best studied examples of alternative stable states and regime shifts

(Scheffer and Jeppesen, 2007). To the best of our knowledge our model is the first consumer-

resource model capable of multistability between several states, each characterized by a high diver-

sity of species. We extend Tilman’s scenario (Tilman, 1982) in which the growth of two species is

limited by a pair of essential resources to the case of multiple nutrients of each type. This allows us

to assemble complex communities with large number of co-existing species and provides additional

insights into patterns of multistability in such communities.

Multistability requires diverse species stoichiometry
We find that multistability in our model requires a mix of species with different nutrient stoichiome-

tries. In this aspect it is similar to both the Tilman model (Tilman, 1982), and the MacArthur model

(MacArthur and Levins, 1964; MacArthur, 1970; Chesson, 1990). Common variants of the MacAr-

thur model assume identical biomass yields of different species growing on a given nutrient

(Tikhonov and Monasson, 2017; Posfai et al., 2017; Goldford et al., 2018; Goyal et al., 2018;

Butler and O’Dwyer, 2018). In this case, the absence of multistability is guaranteed by a convex

Lyapunov function (MacArthur, 1970) guiding any dynamical trajectory of the system to its unique

minimum. However, a MacArthur model with different nutrient yields of different species is capable

of multistability. For some growth functions gðC;NÞ multistability is possible even in a community of

species with identical nutrient yields/stoichiometries. For example, the growth function

gðC;NÞ ¼ l � C � N has been numerically studied in the context of autocatalytic polymer growth and

shown to be capable of multistability (Tkachenko and Maslov, 2018). This model had 1:1 stoichiom-

etry: a ligation always eliminates one left end and one right end of two polymer chains and gener-

ates one autocatalytic polymer segment. Another type of growth function with two essential

resources has been shown to have bistable solutions even for identical species stoichiometries (see

Figure 5C in Marsland et al., 2019b). The Minimum Environmental Perturbation Principle introduced

in this study may provide additional insights on the necessary conditions for multistability in con-

sumer resource models.

Given that multistability in our model is impossible in communities of species with identical stoi-

chiometries, it is reasonable to expect that the larger is the variation of C:N ratio of individual

microbes, the higher is the likelihood to observe multistability. We investigated this question in the

2C � 2N � 4S model and summarized the results in Figure 5. It shows that the likelihood of finding
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nutrient supply rates with multistability systematically decreases with standard deviation of the loga-

rithm of species stoichiometry. We also found that about half of the combinations of species stoi-

chiometries yielded no multistable states at all. Multistability in our model is caused by a complex

interplay between species’ competitiveness abilities l and their C:N stoichiometries YðnÞ

YðcÞ. Appendix 4

explains why multistability is impossible for half of yield combinations for which the enumerator in

Equation S11 exceeds its denominator.

Nutrient stoichiometry of phytoplankton species in marine ecosystems has been known to be rela-

tively universal with C:N:P ’ 106:16:1 known as Redfield ratio (Redfield, 1958). Thus species-to-spe-

cies variability of C:N ratio for phytoplankton is rather small with logarithmic standard deviation

estimated to be around 0.05 based on data from Finkel et al. (2016). In this limit, the multistability

in our model is rather unlikely (observed in ~3% of nutrient supply combinations, see green arrow in

Figure 5). The likelihood of multistability is also low (~1%) for the mammalian gut microbiome,

where variability of the logarithm of C:N ratio in different ’keystone’ gut species studied in

Reese et al. (2018) is around 0.03. The chances of multistability increase in terrestrial ecosystems

such as soil, where significant deviations from the Redfield ratio have been reported (Cleveland and

Liptzin, 2007). For example, using the data for the microbial species from grassland leaf litter com-

munity reported in Mouginot et al. (2014), with log(C:N) variability of 0.12 we predict the likelihood

of multistability to be around 10%.

Figure 5. Statistics of multistability for different combinations of yields. Heatmap of the fraction of nutrient supply rate combinations that permit

multistability for the 2C � 2N � 4S model with the same set of l’s but different combinations of microbial growth yields (4000 model variants in total).

Standard deviations of yields (x-axis) and the fraction of nutrient supply rates with multistability (y-axis) were logarithmically binned into 50 bins along

each axis. The color scale represents log10 of the normalized count in each bin. The counts were normalized to add up to 100% in each column (same

bin of the x-axis) to approximate the probability distribution of multistability fraction for given standard deviation of species stoichiometry. The bottom

row (0) corresponds to 2069 yields combinations where no multistability was observed for any nutrient supply combinations in our Monte-Carlo

simulations of 106 flux points. The red arrow on the x-axis corresponds to the approximate yield variation for mammalian gut microbes from

Reese et al. (2018). The red arrow on y-axis highlights the predicted likelihood of multistability in our model for a microbial community with the same

yield variation in our model. Light green arrows show an estimation of these numbers for phytoplankton species from Finkel et al. (2016). Dark green

arrows correspond to the soil microbes studied in Mouginot et al. (2014).
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Multistability requires balanced nutrient supply matching the average
species stoichiometry
Another important factor favoring multistability in our model is the balanced supply of two essential

nutrients (see Figure 3B). It occurs when the average ratio of supply rates of two essential nutrients

matches the average C:N stoichiometry of community’s species (see Figure 3B). When nutrient sup-

plies are balanced, microbial community multistability is relatively common. Furthermore, for bal-

anced nutrients the community can be in one of many different states, characterized by different

combinations of limiting nutrients. These states tend to have high species diversity (Figure 4A) – a

trend consistent with lake ecosystems in Interlandi and Kilham (2001) – and relatively small range

of feasible supply rates (Figure 4D). Hence, regime shifts can be easily triggered by changes in nutri-

ent supply. The balanced region is characterized by a complex relationship between species com-

petitiveness and survival, so that even relatively poor competitors could occasionally have high

prevalence (species in the upper right corner of Figure 4B).

In the opposite limit, the supply of nutrients of one type (say nitrogen) greatly exceeds that of

another type (say carbon). For such imbalanced supply, the community has a unique uninvadable

state, where every carbon nutrient supports the growth of the single most competitive species.

Nitrogen nutrients are not limiting the growth of any species and thus have no impact on species

survival and community diversity. As a consequence, the average diversity of microbial communities

in such nutrient-imbalanced environments is low (about one half of that for balanced supply condi-

tions). This is in agreement with many experimental studies showing that addition of high quantities

of one essential nutrient (e.g. as nitrogen fertilizer) tends to decrease species diversity. This has

been reported in numerous experimental studies cited in the chapter ’Resource richness and species

diversity’ of Tilman (1982) as well as in recent experiments in microbial communities (Mello et al.,

2016).

Multistability and the total number of states are affected by tradeoffs
Species in our model are characterized by their competitiveness abilities lðcÞ, lðnÞ and nutrient yields

YðcÞ and Y ðnÞ. As we showed above, the rank order of the former fully defines the total number of sta-

ble states and their invadability. On the other hand, multistability highly depends on combination of

species’ nutrient yields. While in the current version of our model we did not assume any specific

correlations between these parameters, imposing such correlations due to various

biologically motivated tradeoffs may affect multistability and the total number of states of the

ecosystem.

One possibility is a negative correlation between the competitive abilities of a given species for

different nutrients. Such tradeoff may exist due to a limited amount of internal resources (such as

the overall number of transporters) this species can allocate for consumption of all nutrients. This

type of tradeoff was shown to result in an increased species diversity in well-balanced environments,

but does not lead to multistability (Posfai et al., 2017; Tikhonov, 2016). Similar negative (positive)

correlations to increase (decrease) the number of stable states in a very different consumer-resource

model based on the stable marriage problem (Goyal et al., 2018). We expect these results to also

apply to our model with tradeoff between lðcÞa and lðnÞa . Negative correlations between species’ com-

petitive abilities for carbon and nitrogen are expected to increase the total number of stable states

in our model, while positive correlations - to decrease it.

Another possibility is a negative correlation between species’ competitive ability and its yield for

the same nutrient. It is known as a ‘growth-yield tradeoff’, which states that microbial species with

faster growth on a given nutrient tend to use it less efficiently (have a smaller yield) (Pfeiffer et al.,

2001; Beardmore et al., 2011; Novak et al., 2006). Growth-yield tradeoff is expected to increase

the likelihood of multistability in our model. It could be demonstrated already in the model of Til-

man (1982) with two species competing for two essential resources. If the species with the higher

growth rate on, say, carbon source has a smaller yield on this resource than the other species - bist-

ability always ensues. Note that, while growth-yield tradeoff is known to be common among micro-

organisms, the macroscopic (e.g. plant) ecosystems, which are the main focus of Tilman (1982),

have the opposite correlation in which species’ yield Y is proportional to its competitive ability l.

This type of tradeoff leads to a relative scarcity of multistability in macroscopic ecosystems.
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Conversely, multistability is expected to be more common in microbial ecosystems due to the

growth-yield tradeoff.

Interplay between diversity and stability in ecosystems with multiple
essential nutrients
Ever since Robert May’s provocative question ‘Will a large complex system be stable?’ (May, 1972)

the focus of many theoretical ecology studies has been on investigating the interplay between

dynamic stability and species diversity in real and model ecosystems (Ives and Carpenter, 2007).

May’s prediction that ecosystems with large number of species tend to be dynamically unstable

needs to be reconciled with the fact that we are surrounded by complex and diverse ecosystems

that are apparently stable. Thus, it is important to understand the factors affecting stability of eco-

systems in general and microbial ecosystems in particular .

Here, we explored the interplay between diversity and stability in a particular type of microbial

ecosystems with multiple essential nutrients. We discussed three criteria for stability of microbial

communities shaped by the competition for nutrients: (i) how stable is the species composition of a

community to fluctuations in nutrient supply rates; (ii) the extent of community’s resilience to species

invasions; and (iii) its dynamical stability to small stochastic changes in abundances of existing spe-

cies. Naturally-occurring microbial communities may or may not be stable according to either one of

these three criteria (Ives and Carpenter, 2007). The degree of importance of each single criterion is

determined by multiple factors such as how constant are nutrient supply rates in time and space and

how frequently new microbial species migrate to the ecosystem.

Our model provides the following insights into how these three criteria are connected to each

other. First, as evident from Figure 1F, the three types of stability are largely independent from

each other. Second, communities growing on a well balanced mix of nutrients tend to have high spe-

cies diversity (see peak in Figure 4A). The similar effect was demonstrated in other consumer

resource models (Posfai et al., 2017; Tikhonov and Monasson, 2017; Taillefumier et al., 2017;

Marsland et al., 2019a). However, each of the community states in this regime tends to have a low

structural stability with respect to nutrient fluctuations. In environments with highly variable nutrient

supplies the community will frequently shift between these states. That is to say, some of the species

will repeatedly go locally extinct and the vacated niches will be repopulated by others. Furthermore,

many of the steady states in this regime are dynamically unstable giving rise to multistability and

regime shifts. In this sense our model follows the general trend reported in May (1972). Conversely,

microbial communities growing on an imbalanced mix of essential nutrients have relatively low diver-

sity (Figure 4A) but are characterized by a high degree of structural and dynamic stability (see

Figure 4D and Figure 4C respectively). We expect these trends to apply to a broad variety of con-

sumer-resource models.

The existence of dynamically unstable states always goes hand in hand with multistability

(Scheffer and Carpenter, 2003) (see the dashed line in Figure 2D for an illustration of this effect in

our model). Interestingly, in our model we always find V � 1 dynamically unstable states coexisting

with V dynamically stable ones for the same environmental parameters (see Figure 3C and Fig-

ure 3—figure supplement 1 for some examples). All states (both dynamically stable and unstable)

shown in Figure 3C are positioned along some one-dimensional curve in PCA coordinates. This

arrangement hints at the possibility of a non-convex one-dimensional Lyapunov function whose V

minima (corresponding to stable states) are always separated by V � 1 maxima (unstable stable

states) as dictated by the Morse theory (Milnor, 1963). This should be contrasted with convex multi-

dimensional Lyapunov functions used in MacArthur (1970), Case and Casten (1979) and

Chesson (1990).

Extensions of the model
Our model can be extended to accommodate several additional properties of real-life microbial eco-

systems. First, one could include generalist species capable of using more than one nutrient of each

type. The growth rate of such species is given by:

ga ¼min
X

iusedbya

l
ðcÞ
ai ci;

X

jusedbya

l
ðnÞ
aj nj

 !
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Here, the sum over i (respectively j) is carried out over all carbon (nitrogen, respectively) sources

that this species is capable of converting to its biomass. One may also consider the possibility of dia-

uxic shifts between substitutable nutrient sources. In this case, each generalist species is following a

predetermined preference list of nutrients and uses its carbon and nitrogen resources one-at-a-time,

as modelled in Goyal et al. (2018). Since at any state each of the species is using a ‘specialist strat-

egy’, that is to say, it is growing on a single carbon and a single nitrogen source, we expect that

many of the results of the current study would be extendable to this model. Interestingly, the stable

marriage problem can be used to predict the stable states of microbial communities with diauxic

shifts between substitutable resources (Goyal et al., 2018) and those in communities growing on a

mix of two essential nutrients as in this study. It must be pointed out that these models use rather

different variants of the stable marriage model.

It is straightforward to generalize our model to Monod’s growth equation and to take into

account non-zero death rate (or maintenance cost) of individual species (see Appendix 1).

One can extend our model to include cross-feeding between the species. In this case some of the

nutrients are generated as metabolic byproducts by the species in the community. These byproducts

should be counted among nutrient sources and thus would allow the number of species to exceed

the number of externally supplied resources.

Above we assumed a fixed size of the species pool. This constraint could be modified in favor of

an expanding pool composed of a constantly growing number of species. These new species corre-

spond to either migrants from outside of the community or mutants of the species within the com-

munity. This variant of the model would allow one to explore the interplay between ecosystem’s

maturity (quantified by the number of species in the pool) and its properties such as multistability

and propensity to regime shifts.

Control of microbial ecosystems exhibiting multistability and regime
shifts
In many practical situations we would like to be able to control microbial communities in a predict-

able and robust manner. That is to say, we would like to be able to reliably steer the community into

one of its stable states and to maintain it there for as long as necessary. Alternative stable states and

regimes shifts greatly complicate the task of manipulation and control of microbial ecosystems.

Indeed, multistability means that the environmental parameters alone do not fully define the state of

the community. In order to get it to a desired state, one needs to carefully select the trajectory along

which one changes the environmental parameters (nutrient supply rates). Changing these parame-

ters could lead to disappearance (local extinction) of some microbial species and open the ecosys-

tem for colonization by others thereby changing its state. However, not all the states could be

directly converted to each other in one step due to them being restricted to vastly different environ-

ments. Thus, densely interconnected networks of regime shifts shown in Figure 2E–F can be viewed

as maps guiding the selection of the optimal environmental trajectory leading to the desired stable

species composition.

These maps also suggest that microbial ecosystems described by our model might have a rela-

tively small number of key drivers of regime shifts roughly corresponding to network modules (see

Figure 2F). Regime shifts in each of the modules are driven by the competition between two mutu-

ally exclusive sets of keystone species. In addition to these keystone species, states also include ‘sat-

ellite’ species that do not generally affect the bistable switch. The exploration of different

manipulation strategies of microbial ecosystems and the role of keystone and peripheral species in

regime shifts is the subject of our future research (Maslov et al., unpublished).

Materials and methods

Identification of all states and classification of them as invadable or
uninvadable
The competitive exclusion principle states that, in general, two species competing for the same

growth-limiting nutrient cannot coexist with each other. Accounting for non-limiting nutrients pres-

ent in our model, the competitive exclusion principle can be reformulated as the following two rules:
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. Rule 1: In a given steady state each nutrient (either carbon or nitrogen) limits the growth of no
more than one species.

. Rule 2: Any number of species can use a given nutrient in a non growth-limiting fashion. How-
ever, each of such species needs to be able to survive at the steady state concentration of this
nutrient set by the growth-limited species. That means that for every nutrient each of the non
growth-limited species b needs to be more competitive than the grow-limited species a for

the same resource: lðcÞa <l
ðcÞ
b (or lðnÞa <l

ðnÞ
b in case of a nitrogen nutrient).

Note that in any state of our model every species has a unique nutrient limiting its growth. By the

virtue of the Rule 1, if a nutrient is limiting the growth of any species at all, such species is also

unique. Hence, in a given state the relationship between surviving species and their growth-limiting

nutrients (marked as shaded ovals in Figure 1A) is an example of a matching on a graph of resource

utilization. Rule two imposes additional limitations on this matching. As we show in the Appendix 2 ,

uninvadable states correspond to stable matchings in a variant of the celebrated stable marriage

problem (Gale and Shapley, 1962; Gusfield and Irving, 1989).

Just like in the MacArthur model (MacArthur and Levins, 1964) or any other consumer-resource

model for that matter, the number of species present in a steady state of the community cannot

exceed the total number of nutrients they consume. Any community constructed using Rules 1 and 2

represents a steady state of the ecosystem feasible for a certain range of nutrient supply rates. This

state can be either invadable or uninvadable, and either dynamically stable or not.

For simplicity in our simulations we use equal numbers of C and N resources (L carbons and L

nitrogens), with one unique species capable of utilization of every pair of resources (L2 species in

total). One must reiterate that our theory is not restricted to the specific values of K, M, and S. We

first selected the values of l
ðcÞ
ði;jÞ and l

ðnÞ
ði;jÞ from a uniform random distribution between 10 and 100.

Note that in the regime of high nutrient supply (fðc;nÞ>> d2

lðc;nÞ
) all steady states of the community can

be identified and tested for invadability using only the relative rank order of species’ competitive-

ness for nutrients. For this we used the following exhaustive search algorithm:

Step 1 - Select the subset of species whose growth is limited by C (C-limited species). For every

carbon nutrient there are L ways to choose a species using this nutrient. There is also an additional

possibility that this nutrient is not limiting the growth of any species. Thus, the total number of possi-

bilities is Lþ 1 for each of L carbon nutrients. There are ðLþ 1ÞL ways to choose the set of C-limited

species and our algorithm will exhaustively investigate each of these potential steady states one-by-

one.

Step 2 - Given the set of C-limited species selected in Step 1, we now select the set of N-limited

species. We first eliminate from our search any species that doesn’t have enough carbon to grow.

That is to say, we go over all carbon nutrients one-by-one and eliminate all species whose lðcÞ is

smaller than that of the C-limited species (if any) for this carbon nutrient. Among the remaining spe-

cies we go over the nitrogen nutrients one-by-one and look for all possible ways to add a species

limited by a given nitrogen source nj that satisfy the Rule 2. More specifically, we identify all species

that use nj and can grow on their carbon sources (those are the only species that remained after the

elimination procedure described above). We then compare lðnÞs of these species to lðnÞs of all C-lim-

ited species using nj. To satisfy the Rule 2 for each nj we can add at most one N-limited species and

its lðnÞ has to be smaller than lðnÞs of all C-limited species using nj. Let Mj be the number of such spe-

cies (Mj ¼ 0 if there are no such species for a given nj). The total number of possible steady states of

our model for a given combination of C-limited species selected in Step 1 is given by
QL

j¼1
ðMj þ 1Þ.

Here the þ1 factor in Mj þ 1 takes into account an additional possibility to not add any N-limited

species for nj.

The unique way to construct an uninvadable state by following this algorithm is to go over all

nitrogen sources one-by-one and for each of them add the N-limited species with the largest lðnÞ

among all species using this resource, whose growth is allowed by carbon constraints. If for every nj

this species is allowed by the Rule 2, that is to say, if its lðnÞ is smaller than lðnÞ of all C-limited spe-

cies using nj, we successfully constructed a unique uninvadable state for a given set of C-limited spe-

cies. Indeed, all possible invading species that are allowed to grow by their carbon nutrients will be

blocked by their nitrogen nutrients. If, however, for any of nj, the species with the largest lðnÞ is not

Dubinkina et al. eLife 2019;8:e49720. DOI: https://doi.org/10.7554/eLife.49720 17 of 37

Research article Ecology

https://doi.org/10.7554/eLife.49720


allowed by the Rule 2, that is to say, if its lðnÞ is larger than lðnÞ of at least one of the C-limited spe-

cies, this species would make a successful invader of any state we construct. In this case, there is no

uninvadable state for the set of C-limited species selected during the Step 1.

We used the above procedure to identify all possible steady states and to classify them as invad-

able and uninvadable for different numbers of resources used in our 2C � 2N � 4S and 6C � 6N �
36S examples. Note that, while this method is computationally feasible for a relatively small number

of nutrients (we were able to successfully use it for up to 9 nutrients of each type), for larger systems

one should rely on computationally more efficient algorithms based on the stable marriage problem

(Gale and Shapley, 1962; Gusfield and Irving, 1989) as described in the Appendix 3.

Monte-Carlo sampling of nutrient supply rates to identify feasible
ranges of states
Given the parameters defining all species (i.e., the set of their ls and Ys) and the chemostat dilution

constant d, each state p is feasible within a finite region in the nutrient supply space (a K þM dimen-

sional space ~f ¼ ffðcÞ
i ;f

ðnÞ
j g), where all microbial populations and nutrient concentrations are non-

negative and the limiting nutrients of every surviving species do not change. It is easy to show that

in a steady state our system satisfies mass conservation laws for each of the nutrients:

ci þ P

allausingci

Ba

Y
ðcÞ
a

¼ f
ðcÞ
i

d
;

nj þ
P

allausingnj

Ba

Y
ðnÞ
a

¼ f
ðnÞ
i

d
:

(4)

To simplify the process of calculating the feasible volumes of all states we worked in the limit of

high nutrient supply where f
ðcÞ
i � d2

l
ðcÞ
a

and f
ðnÞ
j � d2

l
ðnÞ
a

for all species a. In this case the concentration

d=lðc;nÞa of any nutrient limiting growth of some species (a in this case) is negligible compared to its

‘abiotic concentration’f
ðc;nÞ
i =d, that is to say, its concentration before any microbial species were

added to the chemostat. In this case one can ignore the terms ci and nj in Equation 4 for all nutrient

limiting growth of some species and leave only the ones that are not limiting the growth of any spe-

cies. It is convenient to introduce the K + M � dimensional vector ~Xp of microbial abundances and

non-limiting nutrient concentrations in a given state p. For example, for the uninvadable state #5 in

the 2C � 2N � 4S model we have: ~X5 ¼ fBð1;1Þ;Bð1;2Þ;Bð2;2Þ;n2g.
The mass conservation laws (Equation 4) can be used to obtain the feasible volumes of all states

and can be represented in a compact matrix form for each state p:

~f¼ R̂p
~Xp ; (5)

where f is the vector of KþM nutrient supply rates and R̂p is a matrix composed of inverse yields

Y�1 of surviving species and ’1’ for each of the non-limiting nutrients in a given state p. For example,

for the state #5 in our 2C � 2N � 4S model the Equation 5 expands to:

f
ðcÞ
1

f
ðcÞ
2

f
ðcÞ
3

f
ðcÞ
4

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

1

Y
ðcÞ
ð1;1Þ

1

Y
ðcÞ
ð1;2Þ

0 0

0 0
1

Y
ðcÞ
ð2;2Þ

0

1

Y
ðnÞ
ð1;1Þ

0 0 0

0
1

Y
ðnÞ
ð1;2Þ

1

Y
ðnÞ
ð2;2Þ

1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

Bð1;1Þ
Bð1;2Þ
Bð2;2Þ
n2

2

6

6

6

4

3

7

7

7

5

: (6)

Using Equation 5, it is easy to check if a given state is feasible at a particular nutrient supply rate

~f by multiplying R̂p
�1 (the inverse of the matrix R̂p) with ~f. If all of the elements of the resulting vec-

tor ~Xp are positive, then the state p is feasible at ~f. If the matrix R̂p is not invertible

that is detðR̂pÞ ¼ 0, the state is feasible only on a low-dimensional subset of nutrient supply rates.

This is not possible for a general choice of yields Y and is not considered in our study.
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The parameters l and Y for 2C � 2N � 4S and 6C � 6N � 36S realizations of the model were

drawn from the uniform random distributions and are listed in Supplementary files 1,2 and

3,4,5,6. For l’s the distribution ranges between 10 and 100. For Y ’s it is between 0.1 and 1.

In our numerical simulations, for each model realization, we sampled 106 random nutrient supply

rate combinations ~f. Supply rates of each individual nutrient were independently selected from a

uniform distribution on the [10, 1000] interval. We refer to this procedure as Monte Carlo sampling.

The lower bound ensures that the system is always in the limit of high nutrient supply since

max ðd2
la
Þ ¼ 0:1 � 10:.

Then we checked the feasibility of each of the 33 possible steady states (both invadable and unin-

vadable) in the 2C � 2N � 4S model and each of the 1211 uninvadable steady states in the 6C � 6N

� 36S model. That is to say, for every set of nutrient supply rates ~f and for every state p we checked

whether all elements of ~Xp are positive. The feasible range of nutrient supply rates of each state was

estimated as the fraction of nutrient supply rate combinations (out of 1 million vectors ~f sampled by

our Monte Carlo algorithm) where this state was found to be feasible.

The network of regime shifts from overlaps of feasible ranges
Two stable states are said to be capable of a regime shift if their feasibility ranges overlap with each

other, that is if there exists at least one nutrient supply rate combination at which both these states

are feasible. We used the data obtained by the Monte-Carlo sampling to look for such cases and to

construct networks shown in Figure 2E, Figure 2F.

We performed additional simulations to look for boundaries between uninvadable states in our

realization of the 2C � 2N � 4S model. In order to do that, for each state we generated a large

ensemble of random vectors of bacterial abundances of surviving species and concentrations of all

not-limiting nutrients. The population of one of the species (also randomly selected) was set to be a

small negative number (�0.01). This represents continuous gradual extinction of this species upon

crossing of the boundary, The populations of state’s other surviving species and the concentrations

of its non-limiting nutrients were drawn from the uniform distribution between (0,1]. Using Equa-

tion 5, we calculated the nutrient supply rates f corresponding to this case. For these nutrient sup-

ply rates lying just across the feasibility boundary of the originally selected state, we checked the

feasibility of other five uninvadable dynamically stable states. If any of these states ended up being

feasible, we assumed that this state shares a boundary with the originally selected one. Using these

procedure we found four bordering pairs of states shown as red edges in Figure 2E.

We used Gephi 0.9.2 software package to visualize the network in Figure 2F and to perform its

modularity analysis. Seven densely interconnected clusters shown with different colors in Figure 2F

were identified using Gephi’s built-in module-detection algorithm (Blondel et al., 2008) with the res-

olution parameter set to 1.5.

Dynamic stability of states
We checked the dynamic stability of every 33 possible steady state (both invadable and uninvadable)

(for the 2C � 2N � 4S model) and each of the 1211 uninvadable states (for the 6C � 6N � 36S

model) using the following two algorithms:

1. Small perturbation analysis
For 2C � 2N � 4S example and each of the 33 states we selected many supply rate combina-
tion where this state is feasible. For each of these supply rates we generated the populations
in our ecosystem to be equal to their steady state values. We then subjected them to small
perturbations of of all nutrient concentrations and of all microbial populations of species pres-
ent in the state. If after some transient period all populations and concentrations returned to
their steady state values - the state was declared to be dynamically stable. If they drifted to
these in some other steady state - the original state was declared to be dynamically unstable.
Based on our numerical simulations the dynamical stability of the state was independent of the
nutrient supply rates at which this numerical experiment has been performed. We choose to
perturb only the populations of the species present in the state because an invadable state, by
definition, would always be dynamically unstable against an addition of a very small population
of at least one invading species from the species pool. This instability should not render it
dynamically unstable. The numerical integration of the system dynamics following a
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perturbation was done in C programming language using the CVODE solver library of the
SUNDIALS package (Hindmarsh et al., 2005).

2. Inference of state’s dynamic stability from the pattern of its overlaps with other states
The number of uninvadable states (1211) in our 6C � 6N � 36S model was too large to be
directly tested for dynamic stability as we did for the 2C � 2N � 4S model. Their dynamic sta-
bility was instead inferred from our Monte-Carlo simulations listing all feasible uninvadable
states for every sampled nutrient supply rate combination. We first identified 1022 uninvad-
able states, which were the unique feasible state for at least one nutrient supply point. All such
states should be dynamically stable, since for every nutrient supply rate there should be at
least one uninvadable dynamically stable state representing the end point of system’s dynam-
ics. The remaining 173 uninvadable states, which were feasible for at least one of 1 million
sampled nutrient supply rates were labelled as potentially dynamically unstable. Note that in
our Monte-Carlo analysis we only sampled a finite (albeit large) number of nutrient supply rate
combinations. Thus it is entirely possible that we missed some crucial supply rate combinations
for which one of these states was the only uninvadable state. Any such point would have ren-
dered this state as dynamically stable. Such false assignments might lead to a violation of the
basic empirical rule in our model stating that V uninvadable stable states are always accompa-
nied by V � 1 uninvadable dynamically unstable states (V=ðV � 1Þ rule) for some sampled nutri-
ent supply rates. In our Monte Carlo simulations of the 6C � 6N � 36S model the V=ðV � 1Þ
rule was violated for only 370 nutrient supply rates combinations out of 1,000,000 sampled
points. We believe that these violations were caused by an incorrect identification of dynami-
cally unstable states mentioned above. To iteratively refine the lists of stable and unstable
states, we went over all potentially unstable states one-by-one and checked whether reclassify-
ing the state involved in the largest number of violations as stable would reduce the overall
number of violations. If it did, we reclassified this state as stable and recalculated the number
of violations for all remaining points. By the end of this iterative procedure we were able to
completely eliminate violations by reassigning 36 potentially unstable states as dynamically sta-
ble. This left us with 1022 + 36 = 1058 dynamically stable and 173 � 36 = 137 dynamically
unstable uninvadable states in the 6C � 6N � 36S model. The remaining 1211 � 1058 �
137 = 16 uninvadable states were not feasible for any of 1,000,000 sampled nutrient supply
rates. Hence their dynamic stability remains unidentified. Both 36 reassigned states and 16
undetected states are expected to have very small ranges of feasible nutrient supply rates.

Multistability as a function of variation in stoichiometric ratios of
different species
To investigate how multistability in our model depends on variation in stoichiometric ratios of differ-

ent species, we simulated 4000 variants of the 2C � 2N � 4S model. In these variants, we kept the

same choice of species competitiveness (quantified by their l’s) but reassigned their yields Y . To

cover a broad range of standard deviations of N:C stoichiometry of different species (their YðcÞ
a =YðnÞ

a )

we randomly sampled yield combinations from gradually expanding intervals. First we simulated

1000 model variants, where yields of four species were independently drawn from uniform

distribution Uð0:45; 0:55Þ. These simulations were followed by 1000 model variants, where yields of

four species were drawn from Uð0:3; 0:7Þ, 1000 model variants with yields from Uð0:1; 0:9Þ and, finally,
1000 model variants with yields from Uð0:01; 1:0Þ. In each variant of the model with a particular set of

yields of four species, we calculated the fraction of multistable points among 105 nutrient supply

rate combinations as described in the section 5.2 Monte-Carlo sampling of nutrient supply rates to

identify feasible ranges of states of Materials and methods. The results are shown in Figure 5.

GitHub repository of the code used in our project
The PCA analysis, plots and statistical tests were implemented using R version 3.4.4. Other simula-

tions were carried out in C (using compiler gcc version 5.4.0) and Python 3.5.2. Matlab analysis was

done using MATLAB and Statistics Toolbox Release 2018a, The MathWorks, Inc, Natick, Massachu-

setts, United States. The code for both our simulations and statistical analysis can be downloaded

from: https://github.com/ssm57/CandN (Dubinkina and Maslov, 2019; copy archived at https://

github.com/elifesciences-publications/CandN).
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Appendix 1

General form of growth laws
It is straightforward to generalize our model to allow a more general functional form for

growth laws than Liebig’s law, minðlðcÞa ci; l
ðnÞ
a njÞ. Microbial growth on two essential substrates

is thought to normally follow Monod’s equation for the rate-limiting nutrient:

gðmÞa minðci=ðKðcÞ
a þ ciÞ; nj=ðKðnÞ

a þ njÞÞ (See Kovárová-Kovar and Egli, 1998 for a discussion of

limitations of Monod’s law). For low concentrations of the rate-limiting nutrient, say carbon

source, the Monod’s law simplifies to the linear growth law used throughout this study:

ga ¼ lðcÞa ci. Microbes’ competitive abilities, also known as their specific affinities towards each

substrate, are related to the parameters of Monod’s law via

lðcÞa ¼ gðmÞa

K
ðcÞ
a

; lðnÞa ¼ gðmÞa

K
ðnÞ
a

(S1)

In another variant of growth laws, two essential nutrients at low concentrations jointly affect

the growth rate of the microbe: gðmÞa ci � nj=½ðKðcÞ
a þ ciÞ � ðKðnÞ

a þ njÞ� (see Bader, 1978 for a

discussion of these and other forms of double-substrate growth law). For simplicity of

mathematical calculation we limited this study to Liebig’s law. However, many of the essential

results we obtained (e. g. possible multistability in a system where species have different

yields) hold for any growth laws listed above. In fact, the low concentration version of the

previous growth law, where gðmÞa ci � nj has been studied by one of us in the context of

autocatalytic growth of heteropolymers (Tkachenko and Maslov, 2018). Instead of

exponentially replicating microbial species Tkachenko and Maslov (2018) considers pairs of

mutually catalytic (and thus exponentially growing) complementary ‘2-mers’ (a specific

sequence of two consecutive monomers anywhere within a polymer chain). This minor

difference complicates the math, while leaving the basic properties unchanged. Just like in our

system, where up to 2L species (out of L2 candidates) may simultaneously survive in the steady

state of an ecosystem grown on of L carbon and L nitrogen sources, the polymer systems have

no more than 2Z 2-mer ‘species’ (out of Z2 candidates) surviving in the steady state with

polymers having Z possible monomers on their right ends and Z possible monomers on their

left ends. Many (but not all) results of this paper are largely consistent with the present study.

Note that for polymers the yields of all ‘species’ are equal to 1, that is to say, one new 2-mer is

formed upon ligation of one left end of a polymer with one right of another polymer chain.

Yet, the model in Tkachenko and Maslov (2018) is capable of (at least) bistability. At present,

it is not clear if this is due to autocatalytic cycles having length two or this property would

survive in a simpler version of the model in which instead of the Equation (1) of

Tkachenko and Maslov (2018) one has

_dij ¼ dijðlijlirj � dÞ

and the overall fluxes of left and right ends are independent from each other (instead of both

being equal to ci ¼ fi=d as in Tkachenko and Maslov, 2018).

Another variant of the model is where each species a has its own unique ‘death’ or

‘maintenance’ rate da, playing the role of the same dilution rate d. The steady states of this

model (but not the dynamics leading to these states) can be calculated by dividing both sides

of Equations 2 by da. This is equivalent by redefining the competitiveness parameters to ~la ¼
la=da and setting the chemostat dilution rate to ~d ¼ 1. All of our results in the high-flux regime

f � d2=l would remain unchanged.

From (Equation 5-Equation 6) one can see that when all species have the same C:N

stoichiometry, the maximal number of microbialspecies in a state is equal to the number of

nutrients minus 1. Indeed, one can show that a state p with Ssurv ¼ K þM has detðR̂pÞ ¼ 0,

which means that the feasible volume of any such state is zero. These states are only possible
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on a lower-dimensional manifold in the ðK þMÞ-dimensional space of supply rates (these

results have been already discussed by Tilman in his special case; Tilman, 1982).

Multistability is also possible in a variant of the MacArthur model (MacArthur and Levins,

1964; MacArthur, 1970; Chesson, 1990) in which different species have different yields on

individual carbon sources (Maslov, unpublished). A convex Lyapunov function

(MacArthur, 1970) precluding multistability does not exist in this case.
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Appendix 2

Constraints on steady states from microbial and nutrient
dynamics
A steady state of equations describing the microbial dynamics (Equation 2) is realized when

either Ba ¼ 0 (the species was absent from the system from the start or subsequently went

extinct) or when its growth rate ga is exactly equal to the chemostat dilution rate d. This

imposes constraints on steady state nutrient concentrations with the number of constraints

equal to the number of microbial species present with non-zero concentrations. Since, in

general, the number of constraints cannot be larger than the number of constrained variables,

no more than K þM of species could be simultaneously present in a steady state of the

ecosystem. For Liebig’s growth law used in this study, each resource can have no more than

one species for which this resource limits its growth, that is to say, which sets the value of the

minimum in minðlðcÞa ci; l
ðnÞ
a njÞ The steady state concentrations of these resources are given by

c
ð�Þ
i ¼ d=lðcÞa (if the growth is limited by the carbon source) and n

ð�Þ
j ¼ d=lðnÞa (if the growth is

limited by the nitrogen source). Here a is the species whose growth is rate-limited by the

resource in question. In a general case, no more than one species can be limited by the same

resource (carbon in our example), since the species with the largest lðcÞ would outcompete

other species with smaller values of lðcÞ by making the steady state concentration c
ð�Þ
i so low

that other species can no longer grow on it. Note however, that multiple species b could

consume the same resource as the rate-limiting species a, as long as their growth is not

limited by the resource. Each of these species must then be limited by their other nutrient (a

nitrogen source in our example). However, their survival requires that carbon concentration set

by species a is sufficient for their growth. Thereby, any species growing on a resource in a

non-limited fashion must have l
ðcÞ
b >lðcÞa .

Mathematically, it cane be proven by observing that, since species b is limited by its

nitrogen resource, one must have l
ðcÞ
b c

ð�Þ
i >l

ðnÞ
b n

ð�Þ
j . At the same time in a steady state, the

concentrations of all rate-limiting resources are determined by the dilution rate d via

l
ðnÞ
b n

ð�Þ
j ¼ d, and lðcÞa c

ð�Þ
i ¼ d. Combining the above three expressions one gets:

l
ðcÞ
b c

ð�Þ
i >l

ðnÞ
b n

ð�Þ
j ¼ d ¼ lðcÞa c

ð�Þ
i , or simply l

ðcÞ
b >lðcÞa . The constraints on competitive abilities l for

species present in a steady state in our model are then:

. Exclusion Rule 1: Each nutrient (either carbon or nitrogen source) can limit the growth of

no more than one species a. From this it follows that the number of species co-existing in any

given steady state cannot be larger than K þM, the total number of nutrients.
. Exclusion Rule 2: Each nutrient (e.g. specific carbon source) can be used by any number of

species in a non-rate-limiting fashion (that is to say, where it does not constrain species growth

in Liebig’s law). However, any such species b has to have l
ðcÞ
b >lðcÞa , where lðcÞa is the

competitive ability of the species whose growth is limited by this nutrient. In case of a nitrogen

nutrient, the constraint becomes l
ðnÞ
b >lðnÞa .

Note that the steady state solutions of equations Equation 2 do not depend on

populations Ba of surviving species. Their steady state populations Bð�Þ
a are instead determined

by Equation 3. Taking into account that, in a steady state, the growth rate of each surviving

species is exactly equal to the dilution rate d of the chemostat, after simplifications one gets:
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f
ðcÞ
j

d
¼ c

ð�Þ
i þ

X

allausingci

Bð�Þ
a

Y
ðcÞ
a

f
ðnÞ
j

d
¼ n

ð�Þ
j þ

X

allausing

nj
Bð�Þ
a

Y
ðnÞ
a

(S2)

As described above, the steady state concentration of resources are given by d=lðcornÞa ,

where a are the species rate-limited by each resource. In the absence of such species, the

concentration of a resource is given by anything left after it being consumed by surviving

species in a non-rate-limiting manner. One can show that in this case, the resource (e.g.

carbon) concentration has to be larger than d=l
ðcÞ
b , where l

ðcÞ
b is the smallest affinity among

microbes utilizing this resource.

One convenient approximation greatly simplifying working with Equation S2 is the ‘high-

flux limit’ in which f
ðcÞ
i � d2=lðcÞa and f

ðnÞ
j � d2=lðnÞa . In this approximation one can

approximately set to zero the steady state concentrations of all resources that have a species

rate-limited by them. The steady state concentrations of the remaining resources can take any

value as long as it is positive. Hence, in this limit the Equation S2 can be viewed as a simple

matrix test of whether a given set of surviving species limited by a given set of resources is

possible for a given set of nutrient fluxes. Indeed, my multiplying the vector of fluxes with the

inverse of the matrix R̂ composed of inverse yields of surviving species and one for nutrients

not limiting the growth of any species one formally gets the only possible set of steady state

species abundances, Bð�Þ
a , and a subset of non-limiting resource concentrations c

ð�Þ
i and n

ð�Þ
j . If

all of them are strictly positive - the steady state is possible. If just one of them enters the

negative territory - the steady state cannot be realized for these fluxes of nutrients.

The above rule can be modified to apply even below the high-flux limit with the following

modifications: 1) Instead of fðcÞ (or fðnÞ), one uses their ‘effective values’ ~fðcÞ (or ~fðnÞ)

introduced in Goyal et al. (2018), determined as

~f
ðcÞ
i ¼ f

ðcÞ
i � d2

l
ðnÞ
aðiÞ

~f
ðnÞ
i ¼ f

ðnÞ
i � d2

l
ðcÞ
aðiÞ

;

(S3)

where aðiÞ is the (unique) species limited by the nutrient i. If the nutrient is not limiting for any

os the species in the steady state, aðiÞ is the species using the nutrient in a non-limited

fashion, which has the smallest value of l. This last rule comes from the observation that in

order for a non-limiting resource not to become limiting for a species b currently using it in a

non-limiting fashion, its concentration cannot fall below d=l
ðxÞ
b . Thus, when checking the

feasibility of a given state, the concentration of a non-limiting resource can be written as

d=l
ðxÞ
b þ a positive number, or (more conveniently) the influx of this resource can be offset as

described in Equation S3
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Appendix 3

Stable matching approach for identification and
classification of steady states
First we describe the exact one-to-one mapping between all uninvadable steady states (UIS) in

our model and the complete set of ‘stable marriages’ in a variant of a well-known stable

marriage or stable allocation problem developed by Gale and Shapley in the 1960s (Gale and

Shapley, 1962) and awarded the Nobel prize in economics in 2012. This mapping provides us

with constructive algorithms to identify and count all uninvadable steady states in our

ecosystem.

We start by considering a special case of our problem with L carbon and L nitrogen sources

and a pool of L2 species, such that for every pair of sources ci (carbon) and nj (nitrogen) there

is exactly one microbe Bij capable of using them. For the sake of simplicity we have switched

the notation from Ba to Bij, where a ¼ ðijÞ is the unique microbe in our pool capable of

growing on ci and nj. Having considered this simpler situation we will return to the most

general case of unequal numbers of carbon (K) and nitrogen (M) resources and any number of

microbes from a pool of S species competing for a given pair of resources.

This is where we need to revise in certain ways the network representation of a steady state

used in the main text (see Figure 1A). In the marriage game related theory, the notion of

(stable or unstable) matching explicitly refers to a bipartite graph with two distinct sets of

vertices and edges arranged in such a way that each one may join only a pair of elements

belonging to different sets. In our case, it is natural to consider two sets of resource nodes

(vertices), one including all carbon nodes and the other one containing all nitrogen nodes. An

edge, or link, will appear between a carbon ci and nitrogen nj node if the microbe Bij using

these two nutrients is present in the state represented by this particular bipartite network.

Furthermore, the specifics of our version of ’marriage game’, or rather ’residents vs

hospitals’, problem requires us to consider directed bipartite graphs as the steady state

representations in our model. For any species Bij present in a given state, we choose the

direction of the edge joining node ci with node nj to be pointing from ci to nj if the microbe is

limited by its carbon nutrient (and the other way around, from nj to ci, on the case of Bij being

nitrogen-limited). Appendix 3—figure 1A shows the directed bipartite graph representation

of the state #5 of a particular example of 2C � 2N � 4S system considered in the ’Results’

section of the main text.

In what follows we will refer to a resource as occupied if in a given steady state there is a

microbe for which this resource is rate-limiting. In our bipartite network representation

occupied resources have an outgoing edge (their out-degree is equal to 1), while unoccupied

resources have out-degree equal to 0.

Review of results about stable matchings in the hospitals/residents
problem
The hospitals/residents problem (Gale and Shapley, 1962) is known in various settings. The

one directly relevant to our problem is the following. There are L applicants for residency

positions in H � L hospitals. A hospital number i has Vi vacancies for residents to fill, Vi

ranging from zero to L,
P

Vi ¼ L. Each hospital has a list of preferences in which residency

applicants are strictly ordered by their ranks, from 1 (the most desirable) to L , (the least

desirable). These lists are generally different for different hospitals. Each applicant has a

ranked list of preferred hospitals ranging from 1 (the most desirable) to H (the least desirable).

Those lists can also vary between applicants. A matching is an assignment of applicants to

hospitals such that all applicants got residency and all hospital vacancies are filled. A matching

is unstable if there is at least one applicant a and hospital h to which a is not assigned such

that:

1. Condition 1. Applicant a prefers hospital h to his/her assigned hospital;
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2. Condition 2. Hospital h prefers applicant a to at least one of its assigned applicants.

If such a pair ða; hÞ exists, it is called ‘a blocking pair’ or ‘a pair that blocks the matching’. A

stable matching by definition has no blocking pairs. Gale and Shapley proved that for any set

of applicant/hospital rankings and hospital vacancies there is at least one stable matching

(Gale and Shapley, 1962). Generally the number of stable matching is larger than one. For

example, for stable marriages and random rankings the average number of stable matchings is

given by L=e logL(Gusfield and Irving, 1989). To the best of our knowledge, the dependence

of this number on the distribution of hospital vacancies has not been investigated. The fact

that the actual number of uninvadable states is rather close to its lower bound indicates that,

at least for L � 9, the number of stable matchings averaged over all possible in-degree

allocations is rather close to 1.

Gale and Shapely not only proved the existence of at least one stable matching, but also

proposed a constructive algorithm on how to find it. Listed below are the main steps in this

algorithm optimized for for applicants. Each applicant first submits his/her application to the

hospital ranking 1 in his/her preference lists. Each hospital considers all applications it received

so far and accepts all of the applicants if their number is less or equal than hospital’s

announced number of vacancies, Li. If the number of applicants exceeds Li, the hospital gives

a conditional admission to the best-ranking Li applicants according to hospital’s own

preference list. Each applicant not admitted to their top hospital goes a step down on his/her

preference list and applies to the second-best hospital. The latter admits this applicant if (1)

this hospital has not yet filled all of its vacancies or (2) all vacancies are filled, but among the

conditionally admitted applicants there is at least one who ranks lower (according to hospital’s

list) than the new applicant. Such lower-ranked applicants are declined admission and

replaced with better ones. They subsequently lower their expectations and apply to the next

hospital on their list. After a number of iterations all applicants are admitted and all vacancies

are filled so that this process stops. As Gale and Shapley (1962) proved, the resulting

matching is stable. Furthermore, the theorem states that in this matching every applicant gets

admitted to the best hospital among all stable matchings, while every hospital gets the worst

set of residents among all stable matchings. Later research described in Gusfield and Irving

(1989) describe more complex constructive algorithms allowing one to efficiently find all of

the stable matchings starting with the applicant-optimal one.

Well developed mathematical apparatus of stable matching problem provides an invaluable

help in the task of identifying all uninvadable states in microbial ecosystems. Indeed, without

its assistance this task would require exponentially long time. To connect the problem of

finding all uninvadable states to that of finding all stable matchings between hospitals and

residents, we start with the following three observations:

1. In any uninvadable steady state, either all carbon sources or all nitrogen sources (or both)

are occupied. Indeed, if in a steady state a carbon source ci and a nitrogen source nj are not-

limiting to any microbes, then microbe Bij can always grow and thereby invade this state. Thus

uninvadable states can be counted separately: one first counts the states where all nitrogen

sources are occupied, and then counts those in which all carbon sources are occupied. Double

counting happens when both carbon and all nitrogen sources are occupied. We will keep the

possibility of double counting in mind and return to this problem later.

2. For a pool of species, where for every pair of resources there is exactly one microbe using

each (carbon, nitrogen) pair, one can think of each of L carbon (alternatively, nitrogen) sources

as if it had a list of ‘preferences’ ranking all nitrogen (correspondingly carbon) sources. Indeed,

the ranking of competitive abilities l
ðcÞ
ik of different microbes using the same carbon source ci

but different nitrogen sources nk can be viewed as the ranking of nitrogen sources k by the

carbon source i. Conversely, the ranking of l
ðnÞ
mj with the same nj but variable cm can be

thought of as ranking of carbon sources cm by the nitrogen source nj.

3. Consider a steady state in which all nitrogen sources are occupied. In our network

representation it corresponds to every nitrogen source sending an outgoing link to some

carbon source. Let Li be the number of microbes using the carbon source i in a non-limiting
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fashion (the in-degree of these outgoing links ending on ci, see Appendix 3—figure 1C).

Then, obviously, L ¼P Li (note that some of the terms in this sum might be equal to zero).

One can prove that if the state is uninvadable, then the matching given by all edges going

from nitrogen sources to carbon sources must be stable in the Gale-Shapley sense. To prove

this, let’s think of nitrogen sources as ‘applicants’ and carbon sources as ‘hospitals’ with their

numbers of ‘vacancies’ given by Li. Indeed, any unstable matching has at least one blocking

pair ðnj; ciÞ such that:

. Condition 1. The nitrogen source (‘applicant’) nj‘prefers’ the carbon source (‘hospital’) ci
to its currently assigned carbon source (the one used by the current microbe Bkj limited nj).

This means that l
ðnÞ
ij >l

ðnÞ
kj . Thus the microbe Bij can grow on its nitrogen source (provided that

it can also grow on its carbon source).
. Condition 2. The carbon source (‘hospital’) ci‘prefers’ the nitrogen source (‘applicant’) nj
to at least one of Li of its currently assigned carbon sources (the set of microbes using ci in a

non-rate-limiting fashion). Thereby l
ðcÞ
ij must be larger than the smallest lðcÞ among these

microbes. According to the Exclusion Rule 2, this smallest lðcÞ is still larger than lðcÞ of the

microbe limited by ci (if it exists). Thus the microbe Bij can also grow on its carbon source.

This proves that the microbe Bij corresponding to any blocking pair can grow on both its

carbon and its nitrogen sources, and thereby can successfully invade the steady state. This

finishes the proof that any uninvadable state has to be a stable matching in the Gale-Shapley

sense.

Appendix 3—figure 1. Network representation of a state in Stable Marriage analogy. (a)

Schematic representation of state #5 in the 2C � 2N � 4S model (the same state is shown in

Figure 1A in Main text). Here each species represented as an arrow connecting two resources

it is utilizing for growth, with the color and direction of arrow representing growth-limitation of

a species (red corresponds to C-limited species, blue N-limited one). (b)-(c) Schematic

representation of two-step construction of state #991 in the 6C � 6N � 36S model. (b) We

first assign all species that are growth-limited by N (blue links outgoing from N sources). The

numbers above C sources indicate number of vacancies for a given resource. (c) Then for a

given set of N-limited species we populate the remaining C-limited ones that are allowed by

the Condition 2 (red links outgoing from C sources).

However, this does not prove that any stable matching corresponds to exactly one

uninvadable state. To prove this we first notice that, up to this point, our candidate

uninvadable state contained only the nitrogen-limited species (See Appendix 3—figure 1B) .

We will now supplement it with carbon-limited species in such a way that (1) added species do
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not violate the exclusion rule 2; (2) added species render the state completely uninvadable.

Let is introduce a new notation (applicable to our case in which all nitrogen sources are

occupied). Let l
ðcÞ
minðiÞ denote the smallest lðcÞ among all species using ci in a non-rate-limiting

fashion. The Gale-Shapley theorem only guarantees the protection of our state from invasion

by a species ði; jÞ with l
ðcÞ
ij larger than l

ðcÞ
minðiÞ (see the Condition 2 above). To ensure that our

state is uninvadable by the rest of the species, one needs to add some carbon-limited species

to this state. In order to do this in a systematic way, for each ci we compile the list of all

species using this carbon source with lðcÞ<lðcÞminðiÞ. Each of these species is a potential invader.

Some species could be crossed off from the list of potential invaders because they cannot

grow on their nitrogen source. These species have lðnÞ below that of the (unique) species

limited by their nitrogen source. Among the species that remained on the list of invaders after

this procedure, we select that with the largest lðcÞ and add it to our steady state as a C ! N

directed edge, that is to say, as a carbon-limited species. This will prevent all other potential

invaders on our list, since they have smaller lðcÞ and thus, following the addition of our top

carbon-limited species, they would no longer be able to grow based on their carbon source.

We will go over all ci and add such carbon-limited species if they are needed. The only

scenario when such species is not needed if our list of potential invaders would turn up to be

empty. In this case we will leave this carbon source unoccupied. See Appendix 3—figure 1C

for the illustration of an uninvadabe state constructed by the above procedure in 6C � 6N �
36S model. Since for each carbon source the above algorithm selects the carbon-limited

species (or selects to add no such species) in a unique fashion, there is a single uninvadable

state for every stable matching in the Gale-Shapley sense. We are now in a position to predict

and enumerate all uninvadable states in our model.

Lower bound on the number of uninvadable states
To count the number of partitions ðL1; L2; :::; LLÞ such that

P

Li ¼ L, one can use a well known

combinatorial method. According to this method, one introduces L� 1 identical ‘separators’

(marked with |) which are placed between L identical objects (marked �) separating them into L

(possibly empty) partitions. For example, for L ¼ 4 a partition 0; 1; 0; 3 would be denoted as

j � jj � ��. The combinatorial number of all possible arrangements of separators and objects is

obviously 2L�1

L

� �

. For every such partition the Gale-Shapley theorem guarantees at least one

stable matching (that is, at least one uninvadable steady state). The lower bound on the

number of uninvadable steady states has to be doubled to account for reversal of roles of

carbons and nitrogens. There is a small possibility that we double counted one partition

ð1; 1; :::; 1Þ. Indeed, the unique uninvadable stable state corresponding to this partition could in

principle be counted both when we start from nitrogen sources and when we start from

carbon sources. While such uninvadable steady states can and do occur, if only under rather

special circumstances described below, they cannot be obtained by the classical Gale and

Shapley resident(nitrogen)-proposing algorithm. Indeed, at the last step of the nitrogen-

proposing algorithm all carbon sources except just one carbon sources have all their vacancies

already filled. Since the algorithm makes all nitrogen sources to go down their preference lists,

at this point none of the carbon source whose outgoing arrow has already been accepted

would prefer the last nitrogen with a vacancy to the one they have sent an arrow to. Thus, in

terms of our adaptation of the Gale-Shapley algorithm to identify all uninvadable states, the

last carbon to receive the incoming link from the last nitrogen does not need to be occupied

(send a link from C to N) to prevent an invasion, as there is no one willing to invade it because

of nitrogen preferences. Thus, in the uninvadable state identified by the Gale and Shapley

nitrogen-proposing algorithm, this carbon source would have an incoming arrow but no

outgoing arrow. Such states would not be double counted and would not affect our lower

bound on the total number of uninvadable states in the model. A partition in which each

carbon and each nitrogen source have exactly one vacancy could have more than two

(possibly identical) stable states found by the Gale and Shapley nitrogen-proposing and

carbon-proposing algorithms could lead to double counting. Hence, in general one may need
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to merge a handful of identical states independently found starting from carbon and nitrogen

sides.

Then we have NUIS � 2
2L�1

L

� �

¼ 2L
L

� �

. The Sterling approximation for this expression is

2
2L=

ffiffiffiffiffiffi

pL
p

. Thus the overall lower bound for the number of uninvadable stable states is given by

NUISðL;LÞ � � 2L

L

� �

’ 2
2L

ffiffiffiffiffiffi

pL
p : (S4)

More generally, the number of carbon sources, K, is not equal to the number of nitrogen

sources, M. The resource type with a larger number will always have at least one resource left

without input. Thus here one never needs to correct for double counting. Using the same

reasoning as for K ¼ M ¼ L, the lower bound on the number of resources in this case is given

by KþM�1

K�1

� �

þ KþM�1

M�1

� �

¼ KþM
K

� �

. Here, the first term counts the uninvadable steady states in

which all nitrogen sources are occupied and the partition divides M edges sent by nitrogen

sources among K carbon sources, which requires K � 1‘dividers’. The second term counts the

number of uninvadable steady states in which all carbon sources are occupied. Denoting the

fraction of carbon resources among all resources as p ¼ K=ðK þMÞ and using the Stirling

approximation one gets

NUISðK;MÞ � � KþM

K

� �

’

’ exp ðKþMÞð�p logp�ð1� pÞ logð1� pÞ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðKþMÞpð1� pÞ
p :

(S5)

In the case of multiple microbial species using the same pairs of resources, our version of

the Gale-Shapley resident-oriented algorithm must be further updated. Let M be the number

of nitrogen sources, and K — the number of carbon sources in the ecosystem, S the number of

species in our pool, each requiring a pair of resources to grow. As now there may be more

than one microbe that uses a given pair of resources ci and nj, we introduce the notation B
ðrÞ
ij

for the rth microbe using the same pair of sources ci and nj. On average, each nitrogen

(carbon) source has S=K (S=M) microbes, which are capable of using it. As in the traditional

Gale-Shapley algorithm, each nitrogen (carbon) source ranks all microbes capable of using it

by their lðnÞ (lðcÞ).

The way to identify all uninvadable stable states in this case is determined by a variant of

the stable marriage problem (or rather the hospital/resident problem) in which every man (and

every woman) may have more than one way to propose marriage to the same woman (man). In

our model, this corresponds to more than one microbe (a type of marriage) capable of

growing on the same pair of carbon (corresponding to, say, men) and nitrogen (corresponding

to women) sources. You may think of it as if each participant has several different ways to

propose to the person of the opposite sex (send flowers, take to a restaurant, etc). Each of

these proposals is ranked by both parties independent of other ways. As far as we know, this

variant has not been considered in the literature yet. However, all of the results of the usual

stable marriage (or hospital-resident) problem remain unchanged.

One can easily see that our lower bound (Equation S5) on the number of uninvadable

states (equal to the number of stable marriages in all partitions) remains unchanged. Indeed, it

is given by the number of partitions and hence depends only on K and M and not on S.

However, for S � K �M one expects to have many more stable marriages for each partition.

Thus the lower bound we have established is likely to severely underestimate the actual

number of UIS in the ecosystem.
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Appendix 4

Conditions of multistability in the 2C � 2N � 4S
ecosystem
Below we consider the general case of a 2C � 2N � 4S ecosystem. Let’s assume that the

selected set of l parameters allow potentially unstable state in which all four species are

present. These species form a single loop in the network representation (like state S7 in our

2C � 2N � 4S example). Without loss of generality we may assume that l– parameters satisfy

l
ðnÞ
11
>l

ðnÞ
21
; l

ðcÞ
21
>l

ðcÞ
22
; l

ðnÞ
22
>l

ðnÞ
12
; l

ðcÞ
12
>l

ðcÞ
11
. The 4-species loop is then formed by the links C1 ! N1,

N1 ! C2, C2 ! N2, and N2 ! C2 In all other cases we may rename C and N resources until the

direction of the loop is as stated above. The system also has two uninvadable steady states (A)

in which two microbes (N1 ! C1 and N2 ! C1) are limited by their nitrogen sources and (B) in

which two other microbes are limited by their carbon sources (C1 ! N2 and C2 ! N1). These

two states have their regions of feasibility in the influx space. In order for these regions to

overlap with each other, thereby resulting in bistability within the overlapping region, the yield

parameters of species and nutrient supply rates have to satisfy the following conditions.

For the state (A), the conservation laws read as

f
ðcÞ
1

d
¼ c1 þ

B11

Y
ðcÞ
11

f
ðcÞ
2

d
¼ c2 þ

B22

Y
ðcÞ
22

f
ðnÞ
1

d
¼ d

l
ðnÞ
11

þ B11

Y
ðnÞ
11

f
ðnÞ
2

d
¼ d

l
ðnÞ
22

þ B22

Y
ðnÞ
22

(S6)

The last two relations in (Equation S6) define microbe concentrations as

B11 ¼ Y
ðnÞ
11

ð f
ðnÞ
1

d
� d

l
ðnÞ
11

Þ, B22 ¼ Y
ðnÞ
22

ð f
ðnÞ
2

d
� d

l
ðnÞ
22

Þ. Substituting these expressions into the first two

relations in (Equation S6) and invoking the requirements c1>
d

l
ðcÞ
11

; c2>
d

l
ðcÞ
22

(guaranteeing that

neither of two carbons limits microbes’ growth), in the high flux limit we obtain

Y
ðnÞ
11

f
ðnÞ
1

< Y
ðcÞ
11
f
ðcÞ
1

Y
ðnÞ
22

f
ðnÞ
2

< Y
ðcÞ
22
f
ðcÞ
2

(S7)

The inequality conditions above are only natural given that the microbes use up their

nitrogen fluxes very thoroughly in the state (A) while (at least in the high-flux limit) they not

getting even close to consuming all of their carbon supply rates .

The state (B) in the high flux limit will require different conditions, although obtained in a

perfectly similar way:

Y
ðnÞ
12

f
ðnÞ
2

< Y
ðcÞ
12
f
ðcÞ
1

Y
ðnÞ
21

f
ðnÞ
1

< Y
ðcÞ
21
f
ðcÞ
2

(S8)

Combining Equation S7 and Equation S8 one gets
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Y
ðcÞ
11

Y
ðnÞ
11

f
ðcÞ
1

>f
ðnÞ
1
>
Y
ðcÞ
21

Y
ðnÞ
21

f
ðcÞ
2

Y
ðcÞ
22

Y
ðnÞ
22

f
ðcÞ
2

>f
ðnÞ
2
>
Y
ðcÞ
12

Y
ðnÞ
12

f
ðcÞ
1

(S9)

Hence, for the carbon fluxes ratio, one would have

Y
ðcÞ
21

Y
ðnÞ
11

Y
ðnÞ
21

Y
ðcÞ
11

<
f
ðcÞ
1

f
ðcÞ
2

<
Y
ðcÞ
22

Y
ðnÞ
12

Y
ðnÞ
22

Y
ðcÞ
12

(S10)

which implies that for multistability to be possible at least for some ratio of fluxes the yields

have to satisfy the following inequality:

Y
ðcÞ
21

Y
ðnÞ
11

Y
ðnÞ
22

Y
ðcÞ
12

Y
ðnÞ
21

Y
ðcÞ
11

Y
ðcÞ
22

Y
ðnÞ
12

<1 (S11)

Note that the Equation S11 is both necessary and sufficient for bistability between (A) and

(B) for some set of supply rates. Indeed, if Equation S11 is satisfied, fc
2
can be chosen

arbitrarily (the only thing one would have to mind here is the high-flux limit requirements),

then fc
1
should be chosen in accordance with Equation S10, and any nitrogen fluxes satisfying

Equation S9. All the procedures are legitimate whenever Equation S11 holds. Once chosen in

the way described above, the point ðfðcÞ
1
; f

ðcÞ
2
; f

ðnÞ
1
; f

ðnÞ
2
Þ of the influx space will make both (A)

and (B) steady states feasible.

In a more general case of an arbitrary number of nutrients of each type, the conditions

allowing for bistability or even multistability can be expressed by simple inequalities

connecting yields and fluxes in combinations dictated by network topology of potentially

bistable states in a very similar way to the simple case presented above. Thus the solution to

the puzzle of why roughly half of all possible yield combinations has no multistability

whatsoever becomes intuitively clear. Indeed, these yields and fluxes must come in

‘dimensionless’ combinations so that any inequality can be written as a function of only C:N

stoichiometry S
ðC:NÞ
ij ¼ Y

ðnÞ
ij Y

ðcÞ
ij for all microbial species present in any of the set of potentially

multistable states. Note that should nitrogen and carbon yields exchange places for each of

these microbes, the key inequality similar to Equation S11 would be reversed, thus

prohibiting multistability where it was permitted and vice versa.

In the yield space, the proposed swap of carbon and nitrogen yields of all species Y ðcÞ !
YðnÞ; YðnÞ ! YðcÞ is a volume preserving transformation. This means that, for each set of

potentially multistable states, the fraction of the yield space favouring multistability is exactly

the same as the fraction prohibiting multistability. In a possible (albeit unlikely) scenario when

the suggested permutation affects not only the potential multistability in question, but also

some other multistable conditions, ‘turning off’ one multistability might in some cases ‘turn on’

others. This is why the ultimate empirical probability of multistability for a given combination

of species’ yields might somewhat deviate from 1/2.
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Appendix 5

Proof of the absence of multistability when all species
have identical nutrient stoichiometries
For randomly selected nutrient supply rates, the chance for the system to end up in a given

steady state is proportional to the volume of its region of feasibility. In a ðK þMÞ�
dimensional space, where each point corresponds to the set of K carbon and M nitrogen

nutrient supply rates, regions of feasibility for some uninvadable states may intersect. In this

case, the area they have in common defines the initial conditions at which multistability can

occur. Naturally, for the effect to be observable, that shared area has to be ðK þMÞ�
dimensional, else its volume and, correspondingly, the chance to encounter such a situation in

a real ecosystem would be negligibly small.

In the general case, when the microbes differ in terms of their stoichiometry, the steady

state conditions dictate, for carbon supply rates:

f
ðcÞ
i

d
¼
X

k

Bik

Y
ðcÞ
ik

þ ci (S12)

where
f
ðcÞ
i

d
is the abiotic value of the concentration of the nutrient ci, i ranging from 1 to K, Bik,

as usual, is the concentration of the microbe growing on ci and nk (equal to zero if the microbe

is absent in the state), Y
ðcÞ
ik — the yield of the microbe with respect to its carbon source.

Similarly, for nitrogen supply rates one would have:

f
ðnÞ
j

d
¼
X

l

Blj

Y
ðnÞ
lj

þ nj (S13)

here f
ðnÞ
j being the abiotic value of the concentration of the nutrient nj, Y

ðnÞ
lj – the yield of the

microbe using cl and nj with respect to its nitrogen source, j ranging from 1 to M.

When multistability occurs, there exist at least two different sets of values of Bij, cl and nm

such that either of them can fit both Equation S12 and Equation S13 for the same values of

nutrient supply rates. After marking one of them with the symbol ~ for carbon sources one

gets:

X

k

Bik

Y
ðcÞ
ik

þ ci ¼
X

m

~Bim

Y
ðcÞ
im

þ~ci (S14)

and for nitrogen sources:

X

l

Blj

Y
ðnÞ
lj

þ nj ¼
X

p

~Bpj

Y
ðnÞ
pj

þ ~nj (S15)

In the general case, where the microbes differ in their yields, Equation S14 and

Equation S15 taken together for all relevant i, j, describe a ðK þMÞ–dimensional area. Indeed,

the nutrient concentration on any occupied resource is fixed to d=lðc;nÞa , where a is the species

limited by this resource. Conversely, for any unoccupied resource nutrient concentration is free

to vary as long as it is larger than d=l
ðc;nÞ
b , where b is the species using this resource in a given

state which has the smallest value of lðc;nÞ. In other words each unoccupied resource

contributes one degree of freedom, while occupied resources do not. There is also a positive

microbe concentration value for any occupied nutrient source. Thus, the total number of the

unknowns is being equal to K þM on the left side and K þM on the right side of the system

of the equations. The total number of the unknowns is thus 2K þ 2M. The number of

restrictions provided by Equation S14 and Equation S15 being K þM, the area defined by

the system of the equations turns out to be ðK þMÞ� dimensional.
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If the stoichiometry (yields) of all species are equal to each other, without loss of generality

one can assume them all to be equal to unity. Indeed, in this case the units of resource

concentrations or bacterial abundances can be universally changed to match each other so

that one unit of resource is used to make exactly one unit of bacterial abundance.

For identical stoichiometry of species there is an additional constraint on our 2K þ 2M

variables. Indeed, after adding up all equations Equation S14 and then, separately, all

equations Equation S15, and comparing the results of these additions we get

X

i

ðf
ðcÞ
i

d
� ciÞ ¼

X

j

ð
f
ðnÞ
j

d
� njÞ : (S16)

This reflects the fact that for identical stoichiometries both sides of Equation S16 are equal

to the total biomass concentration
P

ij Bij of all surviving microbes. Hence, if the two sets of

concentrations satisfying both Equation S14 and Equation S15 exist, under the degenerate

stoichiometry condition they must also satisfy an additional constraint
X

l

cl�
X

m

nm ¼
X

k

~ck �
X

p

~np (S17)

as the difference between the total concentration of carbon nutrients and that of nitrogen

nutrients must be the same in both states by the virtue of Equation S16.

The additional constraint Equation S17 reduces the dimensionality of the multistability area

to K þM � 1, so in the ðK þMÞ� dimensional space of nutrient concentrations it has zero

volume.
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