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Abstract

It is well known that numerous long noncoding RNAs (lncRNAs) closely relate to the physio-

logical and pathological processes of human diseases and can serves as potential biomark-

ers. Therefore, lncRNA-disease associations that are identified by computational methods

as the targeted candidates reduce the cost of biological experiments focusing on deep study

furtherly. However, inaccurate construction of similarity networks and inadequate numbers

of observed known lncRNA–disease associations, such inherent problems make many

mature computational methods that have been developed for many years still exit some limi-

tations. It motivates us to explore a new computational method that was fused with KATZ

measure and space projection to fast probing potential lncRNA-disease associations

(namely KATZSP). KATZSP is comprised of following key steps: combining all the global

information with which to change Boolean network of known lncRNA–disease associations

into the weighted networks; changing the similarities calculation into counting the number of

walks that connect lncRNA nodes and disease nodes in bipartite graphs; obtaining the

space projection scores to refine the primary prediction scores. The process to fuse KATZ

measure and space projection was simplified and uncomplicated with needing only one

attenuation factor. The leave-one-out cross validation (LOOCV) experimental results

showed that, compared with other state-of-the-art methods (NCPLDA, LDAI-ISPS and

IIRWR), KATZSP had a higher predictive accuracy shown with area-under-the-curve (AUC)

value on the three datasets built, while KATZSP well worked on inferring potential associa-

tions related to new lncRNAs (or isolated diseases). The results from real cases study (such

as pancreas cancer, lung cancer and colorectal cancer) further confirmed that KATZSP is

capable of superior predictive ability to be applied as a guide for traditional biological

experiments.
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Introduction

Long non-coding RNAs (lncRNAs) whose length are longer than 200 nucleotides (nt) have

crucial roles in gene expression control during developmental and differentiational processes

[1]. Therefore, there is no surprise that mutation and dysregulation of lncRNAs could contrib-

ute to the development of various human complex diseases [2], such as HOTAIR in breast can-

cer [3] and MALAT1 in early-stage non-small cell lung cancer [4]. LncRNAs can also drive

many important cancer phenotypes through their interactions with other cellular macromole-

cules including DNA, protein, and RNA [5–8]. There is urgent need to discern potential func-

tional roles of lncRNAs to further study the pathology, diagnosis, therapy, prognosis,

prevention of human complex diseases, and detect disease biomarkers at lncRNA level [9, 10].

With strong data support from lncRNA related databases (such as LncRNAdb [11], LncRNA-

Disease [12], NRED [13], and NONCODE [14]) and similarity calculation based on miRNA

information [15–20], the computational prediction models that were built to infer lncRNA–

disease associations could supply more accurate targeted candidates [21]: 1) saving cost and

time for biological experiments; 2) making bio-experiments focus on deeper study of targets;

3) speeding up understanding the pathogenesis of complex diseases.

The computational models used for inferring lncRNA–disease associations have been

divided into three main categories: 1) Machine learning-based inferring models use naive

Bayesian classifier model [22, 23], support vector machine (SVM) [24, 25], matrix completion

[26, 27], matrix factorization [28–30] to infer potential lncRNA–disease associations. How-

ever, the models categorized to this category are not able to achieve high predictive accuracy.

2) Network-based inferring models, based on the biological premise that lncRNAs with similar

functions tend to be associated with similar diseases [31, 32], use random walk [33–35], KATZ

measure [36, 37], hyper geometric distribution [15], label propagation algorithm [38], propa-

gating information streams [39], lncRNA-miRNA interaction [15, 30] to identify potential

lncRNA–disease associations. Nevertheless, the models categorized to this category rely heavily

on the information integrated from diverse biological data sources, and it is difficult to inte-

grate heterogeneous data from multiple sources deeply. 3) Convolutional neural network

(CNN) based inferring models [40–43], are at the early research stage, with consuming rela-

tively high time complexity and relying on the quality of multiple sources biological data as

well. Therefore, those above models still have different limitations, such as, needing negative

samples, not being able to infer associations related to isolated diseases and new lncRNAs

directly, not high accuracy with singular methodology. Addressing these limitations, we

explored a novel prediction method based on the fusion of KATZ Measure and Space Projec-

tion to infer potential lncRNA-disease associations in bipartite graphs, namely KATZSP.

KATZ measure such a graph-based computational method could be used to transform the

problem of calculating similarities between nodes to link prediction in bipartite graph. In the

context of lncRNA-disease association prediction, the heterogeneous networks are represented

by matrices (also called bipartite graph). Therefore, calculating similarities between the nodes

of lncRNAs and diseases is further transformed into the problem of counting the number of

walks that connect the interactive lncRNA-disease pairs in bipartite graph. Furthermore, the

number of walks as the lengths decided the potential association probability of this lncRNA-

disease pair [36, 44]. Space projection method [45, 46] could improve the lncRNA-disease

association predictive ability easily with few regulation parameters, even though the known

lncRNA-disease associations exist inherent data sparsity. After simplified and uncomplicated

fusion process, KATZ measure and space projection method were fused to form an integrated

computational model KATZSP with needing only one attenuation factor, while dropping

above limitations.
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Experimental evaluation and discussion

Evaluation metrics

Leave One Out Cross Validation (LOOCV) experiments were implemented for evaluating the

predictive performance of KATZSP. We divided the dataset of known associations into two

parts: the testing subset and the training subset. In the testing subset, each known association

was used as a test data in turn, and the remaining known associations formed the training sub-

set. Under the framework of LOOCV, we compared the prediction results on some specific

threshold to obtain the following four metrics: true positive (TP), false positive (FP), false nega-

tive (FN), true negative (TN). Furthermore, according to some specified thresholds, we calcu-

lated the true positive rate (TPR ¼ TP
TPþFN) against false positive rate (FPR ¼ FP

TNþFP) with which

to plot out the receiver operating characteristic curve (ROC). The area under the ROC curve

(AUC) was finally calculated to numerically evaluate the overall predictive performance of

KATZSP.

Impact with parameter selection

Coefficient β plays as an attenuation factor of weight to control the contribution of lengths

coming from walks on calculating the similarities between any two interactive nodes. Accord-

ing to the convergence properties of sequences required by KATZ method, the value of β
should be less than the reciprocal of the max-eigenvalue of the adjacency matrix A. In order to

obtain the optimal value of β, we set β = 1/max(eig(A))�K where max(eig(A)) denotes the

max-eigenvalue of adjacency matrix A. Then the value of K was increased from 0.1 to 0.9 with

step size of 0.1. With changing the value of K, LOOCV was implemented on all the three data-

sets built (dataset 1, dataset 2 and dataset 3). The results in Fig 1 showed that AUC could

achieve the maximum value on all the three datasets when K = 0.1.

Fig 1. Impact with parameter variation on model prediction accuracy.

https://doi.org/10.1371/journal.pone.0260329.g001
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Compare predictive abilities under different solutions

To demonstrate how our technical solution selected performed better than others, LOOCV

experiments were implemented under following four technical solutions: only using space pro-

jection (SP), only using KATZ (KATZ), using space project first and then KATZ (SPKATZ),

using KATZ first and then space projection (KATZSP). The results compared on three datasets

(dataset 1, dataset 2 and dataset 3) were shown in Figs 2–4, respectively.

From the comparison results shown in Figs 2–4, we easily found the solution used in our

model (KATZSP) achieved AUC values of 0.9324, 0.9403 and 0.9472 on dataset 1, dataset 2

and dataset 3, respectively. Among above four solutions, our KATZSP which performed the

best predictive ability on all three datasets with distinct advantage than other three solutions.

Compare performance with other models

To further demonstrate the reliable predictive ability of our model, we chose some the-state-

of-art computational models in similar type (NCPLDA [47], LDAI-ISPS [48] and IIRWR [49])

to compare with our model in the framework of LOOCV. To make comparison fairly, we con-

figured the same experimental environment and condition for all models on dataset 1, dataset

2 and dataset 3. From the comparison results shown in Figs 5–7, our KATZSP achieved the

highest AUC values on all three datasets with detail analysis shown in Table 1.

Verify predictive ability for new lncRNAs and isolated diseases

To implement the verification in this section, we simulated each lncRNA in the known

lncRNA-disease associations dataset to be a new lncRNA by removing all known associations

relating to it. Similarly, we simulated each disease in the known lncRNA-disease associations

Fig 2. Predictive abilities with different technical solutions on dataset 1.

https://doi.org/10.1371/journal.pone.0260329.g002
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Fig 4. Predictive abilities with different technical solutions on dataset 3.

https://doi.org/10.1371/journal.pone.0260329.g004

Fig 3. Predictive abilities with different technical solutions on dataset 2.

https://doi.org/10.1371/journal.pone.0260329.g003
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dataset to be an isolated disease by removing all known associations relating to it. Each

new lncRNA (or isolated disease) simulated was specified to be the test sample for model eval-

uation and the rest lncRNAs (or diseases) in the known lncRNA-disease associations dataset

worked as the training samples for model learning. Until the associations between each new

Fig 5. Predictive abilities of KATZSP and other models on dataset 1.

https://doi.org/10.1371/journal.pone.0260329.g005
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lncRNA and diseases or the associations between lncRNAs and each isolated disease were

inferred by our KATZSP, the inferred results on dataset 1, dataset 2 and dataset 3 were shown

in Fig 8.

With the AUC values in Fig 8, it demonstrated that our KATZSP could be effectively applied

to infer associations related to new lncRNAs and associations related to isolated diseases.

Fig 6. Predictive abilities of KATZSP and other models on dataset 2.

https://doi.org/10.1371/journal.pone.0260329.g006
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Cases study

Case study for three specific diseases

To further demonstrate the predictive performance of our KATZSP on real cases study, we

selected three specific diseases (pancreas cancer, lung cancer and colorectal cancer) as the

cases to examine. With using the training samples composed of the known associations in

dataset 2 and the testing samples composed of the unknown associations, our KATZSP

Fig 7. Predictive abilities of KATZSP and other models on dataset 3.

https://doi.org/10.1371/journal.pone.0260329.g007
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focused on inferring the potential lncRNAs relating to above three cases. The lncRNAs with

the top five highest prediction scores of each case were listed in Table 2. If the same associa-

tions predicted by KATZSP were also found in some literatures or the newest databases, such

as LncRNADisease 2.0 (http://www.rnanut.net/lncrnadisease) and Lnc2Cancer 3.0 (http://

www.biobigdata.net/lnc2cancer), it could further validate with the supporting evidences that

our KATZSP was capable of the reliable predictive ability and practicability.

Case study for isolated diseases

In recent years, many new diseases without any known association r lncRNAs have been grad-

ually discovered, namely isolated diseases. It is important to verify if our KATZSP could be

applied to infer the potential lncRNAs associated to such kind of isolated diseases. Above three

cases (pancreas cancer, lung cancer and colon cancer) were simulated as the isolated diseases

by removing all known associations relating to them in dataset 2. Our KATZSP only used

other information to infer the potential lncRNAs associated with these three isolated diseases

simulated. The top five lncRNAs with highest prediction scores of each disease were listed in

Table 3 where only two prediction results (TC0101441 and KRASP1) couldn’t be found sup-

porting evidence from any databases or published literatures.

In Tables 2 and 3, all predicted results except two were confirmed with extra evidences,

which validated our KATZSP could be effectively applied in real life with supplying calculated

candidates to guide biological experiments.

Materials and methods

Obtain data source

Known lncRNA-disease associations. From a publicly accessible address at http://www.

cuilab.cn/lncrnadisease, three versions of the databases which consist of associations between

lncRNAs and human diseases were obtained for our work. With processing of the database in

version 2013, we built a new dataset (namely dataset 1) with 352 known lncRNA–disease asso-

ciations involved in 156 lncRNAs and 190 diseases. With processing of the database in version

2016, a new-built dataset (namely dataset 2) consists of 621 known lncRNA–disease associa-

tions involved in 285 lncRNAs and 226 diseases. With processing of the database in version

2017, a similar new-built dataset (namely dataset 3) consists of 1695 known lncRNA–disease

associations involved in 828 lncRNAs and 314 diseases. The observed lncRNA–disease associa-

tions with lncRNA nodes and disease nodes form the bipartite graph denoted by the Boolean

Table 1. AUCs of KATZSP and other models on all three datasets.

Model

AUC value

NCPLDA LDAI-ISPS IIRWR KATZSP

AUC on dataset 1 0.9107 (2.3%) 0.9154 (1.9%) 0.7883 (18.3%) 0.9324

AUC on dataset 2 0.9012 (4.3%) 0.8341 (11.8%) 0.8230 (14.3%) 0.9403

AUC on dataset 3 0.9307 (1.7%) 0.8455 (12%) 0.8745 (8.3%) 0.9472

From data of “AUC on dataset 1” in Table 1, our KATZSP was demonstrated with higher AUC values which were 2.3%, 1.9% and 18.3% higher than that of NCPLDA,

LDAI-ISPS and IIRWR, respectively. Similarly, the comparison results on dataset 2 demonstrated the AUC values of our KATZSP were 4.3%, 11.8% and 14.3% higher

than that of NCPLDA, LDAI-ISPS and IIRWR, respectively. In the last row of Table 1, the 1.7%, 12% and 8.3% higher AUC values of our KATZSP were compared with

that of NCPLDA, LDAI-ISPS and IIRWR, respectively. Therefore, our KATZSP was demonstrated with more reliable predictive ability over other previous models on

all the three datasets under the evaluation framework of LOOCV.

https://doi.org/10.1371/journal.pone.0260329.t001
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matrix LD = (ldij)nl×nd, whose element ldij is 1 when lncRNA li relates to disease dj. Otherwise,

the value of element ldij is 0. The number of lncRNAs and the number of diseases in matrix

LD are denoted by nl and nd, respectively.

Disease–disease semantic similarity. Referring to the description by Wang et al. [51], in

DAG (Directed Acyclic Graph), the contribution of a disease dt to the semantics of disease di

Fig 8. Predictive ability of KATZSP for new lncRNAs and isolated diseases.

https://doi.org/10.1371/journal.pone.0260329.g008
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has following definition with denotation of Ddi
ðdtÞ:

Ddi
ðdtÞ ¼

1; if dt ¼ di

maxfD � Ddi
ðdt0 Þjdt0 2 children of dtg; if dt 6¼ di

(

ð1Þ

where Δ was set to be the most suitable value of 0.5.

Based on both the addresses of diseases in DAG graphs and the semantic relations with

ancestor diseases, the element ddij in matrix DD = (ddij)nd×nd denotes the semantic similarity

Table 2. Top 5 specific diseases-related candidate lncRNAs.

Case LncRNA Evidences Rank

Pancreas cancer H19 LncRNADisease 1

Pancreas cancer MEG3 LncRNADisease 2

Pancreas cancer CDKN2B-AS1 LncRNADisease 3

Pancreas cancer GAS5 LncRNADisease 4

Pancreas cancer UCA1 LncRNADisease 5

Lung cancer PVT1 LncRNADisease 1

Lung cancer GAS5 LncRNADisease 2

Lung cancer CDKN2B-AS1 LncRNADisease 3

Lung cancer UCA1 LncRNADisease 4

Lung cancer NPTN-IT1 Lnc2Cancer 5

Colorectal cancer PVT1 LncRNADisease 1

Colorectal cancer CDKN2B-AS1 Lnc2Cancer 2

Colorectal cancer LSINCT5 Lnc2Cancer 3

Colorectal cancer GAS5 Lnc2Cancer 4

Colorectal cancer UCA1 LncRNADisease 5

The data in column “Evidences” of Table 2 showed that all the potential lncRNAs inferred relating to the three specific diseases have been found the evidence in

LncRNADisease 2.0 or Lnc2Cancer 3.0. It validated the reliability of the inferred results coming from our KATZSP.

https://doi.org/10.1371/journal.pone.0260329.t002

Table 3. Top 5 specific isolated diseases-related candidate lncRNAs.

Disease lncRNA name Evidences Rank

pancreas cancer HOTAIR LncRNADisease 1

pancreas cancer MALAT1 LncRNADisease 2

pancreas cancer H19 LncRNADisease 3

pancreas cancer MEG3 LncRNADisease 4

pancreas cancer TC0101441 No evidence 5

lung cancer HOTAIR LncRNADisease 1

lung cancer MALAT1 LncRNADisease 2

lung cancer H19 LncRNADisease 3

lung cancer MEG3 LncRNADisease 4

lung cancer PVT1 LncRNADisease 5

colon cancer HOTAIR LncRNADisease 1

colon cancer MALAT1 LncRNADisease 2

colon cancer H19 LncRNADisease 3

colon cancer EPB41L4A-AS1 Literature [50] 4

colon cancer KRASP1 No evidence 5

https://doi.org/10.1371/journal.pone.0260329.t003
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between diseases di and dj with definition as follows:

ddij ¼

X

dt2Tdi\Tdj
ðDdi
ðdtÞ þ Ddj

ðdtÞÞ

X

dt2Tdi
Ddi
ðdtÞ þ

X

dt2Tdj
Ddj
ðdtÞ

ð2Þ

where Tdi
is the set of all ancestor nodes relating to disease di, including node di itself in DAG.

LncRNA–lncRNA functional similarity. How to accurately measure the functional simi-

larity between two lncRNAs was detailly descripted in many literatures [47–49, 52]. A group of

diseases which have associations with lncRNA li were denoted by DðliÞ ¼ fdi1
; di2

; � � � ; dik
g, and

the similarity between any disease dt in DðliÞ and the whole set DðliÞ has following definition:

Sðdt;D
ðliÞÞ ¼ max

1�x�k
ddtix

ð3Þ

Similarly, set DðljÞ ¼ fdj1
; dj2

; � � � ; djk0
g denotes a group of diseases associate with lncRNA lj.

The similarity between any disease dt in DðljÞ and the whole set DðljÞ has following definition:

Sðdt;D
ðljÞÞ ¼ max

1�x�k0
ddtjx

ð4Þ

Functional similarities between the lncRNAs were denoted by LL = (llij)nl×nl whose element

llij represents the functional similarity between li and lj with calculation as follows:

llij ¼

X

1�x�k

Sðdix
;DðljÞÞ þ

X

1�y�k0
Sðdjy

;DðliÞÞ

kþ k0
ð5Þ

Central similarity of the Gaussian interaction profile. Compared to the number of

unknown lncRNA–disease associations, the number of known lncRNA–disease associations is

very small, which leads the bipartite graph represented by Boolean matrix of known lncRNA–

disease associations to have sparsity. In order to reduce the influence from sparsity on predic-

tion precision, the central similarities of Gaussian interaction profile were calculated in accor-

dance with the description in Laarhoven’s work [53]. Therefore, the central similarities of

Gaussian interaction profile between the diseases were denoted by DDðgÞ ¼ ðddg
ijÞnd�nd whose

element ddg
ij represents the central similarity of Gaussian interaction profile between disease di

and dj with following definition:

ddg
ij ¼ expð� gdkLDð:; iÞ � LDð:; jÞk2

Þ ð6Þ

where the ith column of matrix LD was denoted by LD(:,i) which represents all the known

associations relating to disease di; The Gaussian kernel bandwidth here was denoted by γd with

following definition in accordance to the previous study [54]:

gd ¼
1

1

nd

Xnd

i¼1
kLDð:; iÞk2

ð7Þ

Similarly, the central similarities of Gaussian interaction profile between the lncRNAs were

denoted by LLðgÞ ¼ ðllgijÞnl�nl whose element llgij represents the central similarity of Gaussian

interaction profile between lncRNA li and lj with definition as follows:

llgij ¼ expð� glkLDði; :Þ � LDðj; :Þk2
Þ ð8Þ

where the ith row of matrix LD was denoted by LD(i,:) which represents all the known
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associations relating to lncRNA li; The Gaussian kernel bandwidth here was denoted by γl with

following definition:

gl ¼
1

1

nl

Xnl

i¼1
kLDði; :Þk2

ð9Þ

Integrated similarity of lncRNAs and diseases. The final similarity matrix of diseases

denoted by DDðf Þ ¼ ðddf
ijÞnd�nd comes from an integration of DD and DD(g), and the final sim-

ilarity matrix of lncRNAs denoted by LLðf Þ ¼ ðllfijÞnl�nl comes from an similar integration of LL

and LL(g). When the original semantic similarity between disease di and dj was 0, the value of

element ddf
ij in matrix DD(f) was set as the central similarity of the Gaussian interaction profile,

otherwise it was set as the original semantic similarity between disease di and dj. The value of

element llfij in matrix LL(f) has a similar setting process as above. For clarity, the formalized

acquirement for element values was defined as follows:

ddf
ij ¼

ddij; if ddij 6¼ 0

ddg
ij; otherwise

(

ð10Þ

llfij ¼
llij; if llij 6¼ 0

llgij; otherwise

(

ð11Þ

Obtain primary prediction scores

Construct adjacency matrix. Based on KATZ measurement, the number of walks that

connect lncRNA nodes and disease nodes in the original bipartite graph were calculated to

measure the similarities between these nodes as the potential association probabilities. The dif-

ferent lengths of walks between lncRNA nodes and disease nodes contributed differently to

the similarities between these two kinds of nodes. The shorter length of walks contributed

more to the similarities than the longer one. To make full use of the heterogeneous network

constructed above, matrix DD(f), LL(f) and LD were integrated into a new heterogeneous net-

work A(nl+nd)×(nl+nd) as the adjacency matrix with definition as follows:

A ¼
LLðf Þ LD

LDT DDðf Þ

" #

ð12Þ

Calculate primary prediction score on KAZT measurement. By applying KATZ mea-

surement, potential association probabilities between node li and node dj could be calculated

as follows with denotation of SKATZðli; djÞ:

SKATZðli; djÞ ¼
Xm

w¼1

b
w
ðAwÞli ;dj ð13Þ

where β is a non-negative coefficient to control the contribution of lengths coming from walks

on the similarities between any two nodes, such as li and dj, βw raised to the power of w,

ðAwÞli ;dj denotes the number of paths whose length of walks equals w between corresponding

nodes pair, such as li and dj, m denotes the maximum value of the length of walks.
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Because bigger value of the length of walks contributes less to the similarities between two

nodes, the above formula for similarity calculation could be approximately described in matrix

when the value of m tends to be infinity (m!1):

SKATZ ¼
X1

w¼1

b
wAw ¼

X

w�1

b
wAw ¼ðI � bAÞ� 1

� I ð14Þ

where the value of coefficient β was set in range of (0,min{1,1/kAk2}), matrix SKATZ has the

same size as adjacency matrix A.

Submatrix SKATZ[1:nl,nl+1:nl+nd] denotes the elements that located at the rows 1 to nl and

the columns nl+1 to nl+nd in matrix SKATZ, which has the same location as matrix LD in adja-

cency matrix A. In order to express in a consistent way, submatrix SKATZ[1:nl,nl+1:nl+nd] was

denoted by matrix LDðpÞnl�nd ¼ ðld
p
ijÞnl�nd to represent the primary prediction results in the first

stage.

Refine primary prediction scores

In order to improve the prediction performance of the proposed model, matrix space projec-

tion was used to refine the primary prediction scores obtained in the first stage (LDðpÞnl�nd).
Project on lncRNA space. Project the final similarity matrix of lncRNAs (LL(f)) on the

matrix of primary prediction scores (LD(p)) to obtain the projection scores on the lncRNA

space, which were denoted by LDðplÞnl�nd ¼ ðld
pl
ij Þnl�nd with detailed definition as follows:

ldpl
ij ¼

LLðf Þði; :Þ � LDðpÞð:; jÞ
kLDðpÞð:; jÞk

ð15Þ

where ldpl
ij denotes the predicted score of the association between lncRNA li and disease dj with

lncRNA space projection, kLD(p)(:,j)k is the 2-norm of vector LD(p)(:,j).
Project on disease space. Similarly, project the final similarity matrix of diseases (DD(f))

on the matrix of primary prediction scores (LD(p)) to obtain the projection scores on the dis-

ease space, which were denoted by LDðpdÞnd�nl ¼ ðld
pd
ij Þnd�nl with detailed definition as follows:

ldpd
ij ¼

DDðf Þðj; :Þ � ðLDðpÞði; :ÞÞT

kLDðpÞði; :Þk
ð16Þ

where (LD(p)(i,:))T denotes the transpose of vector LD(p)(i,:), and kLD(p)(i,:)k is the 2-norm of

vector LD(p)(i,:).
Integrate space projection scores. In order to fully capture the information of disease

similarity, lncRNA similarity, and known lncRNA–disease associations, we integrated the pro-

jection scores on lncRNA space (LDðplÞnl�nd) and the projection scores on disease space (LDðpdÞnd�nl)

to obtain the final prediction scores (LDðf Þnl�nd) with detailed definition as follows:

LDðf Þ ¼
LDðplÞ þ ðLDðpdÞÞT

2
ð17Þ

Represent workflow model

With the related data preparation, the inferring process with each key step of KATZSP for

lncRNA-disease associations was graphically reprensented in Fig 9.
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Conclusions

In recent years, even though many computational models for inferring lncRNA–disease asso-

ciations have emerged, those computational methods still have some limitations that moti-

vated us to propose a new model (KATZSP) to infer lncRNA–disease associations. The main

contribution of KATZSP is composed of: only needing one attenuation factor β to control the

contribution of walk lengths between any two nodes in bipartite graphs; making up the spar-

sity with simply integrating KATZ measurement and space projection; no needing negative

samples; being able to be applied to isolated diseases and new lncRNAs directly. Compared

with some state-of-the-art methods in similar type (NCPLDA, LDAI-ISPS and IIRWR), our

model KATZSP achieved higher prediction accuracy on all three datasets (dataset 1, dataset 2

and dataset 3). The results from case study further confirmed the stronger predictive perfor-

mance of KATZSP to be applied for real cases. Our KATZSP still has following limitations that

need to be improved in future: further reducing the biases that the predicted results prefer the

data with more known associations; the prediction accuracy needing to be enhanced further

with fusion of more heterogeneous data.

Supporting information

S1 File. We have released our code publicly at the address of https://github.com/zywait/

KATZSP. In the public repository released includes our minimal underlying datasets

(data352.mat, data621.mat, data1695.mat).

(ZIP)

Fig 9. Workflow model of KATZSP.

https://doi.org/10.1371/journal.pone.0260329.g009
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