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Arrhythmogenic cardiomyopathy (ACM) is a rare inherited cardiac disease characterized

by arrhythmia and progressive fibro-fatty replacement of the myocardium, which leads to

heart failure and sudden cardiac death. Inflammation contributes to disease progression,

and it is characterized by inflammatory cell infiltrates in the damaged myocardium

and inflammatory mediators in the blood of ACM patients. However, the molecular

basis of inflammatory process in ACM remains under investigated and it is unclear

whether inflammation is a primary event leading to arrhythmia and myocardial damage

or it is a secondary response triggered by cardiomyocyte death. Here, we provide

an overview of the proposed players and triggers involved in inflammation in ACM,

focusing on those studied using in vivo and in vitromodels. Deepening current knowledge

of inflammation-related mechanisms in ACM could help identifying novel therapeutic

perspectives, such as anti-inflammatory therapy.

Keywords: arrhythmogenic cardiomyopathy, inflammation, immune cells, inflammatory cytokines, autoimmunity,

infectious agents, sudden cardiac death

INTRODUCTION

Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic entity not secondary to ischemic,
hypertensive, or valvular heart disease that incorporates a broad spectrum of genetic, systemic,
infectious, as well as inflammatory disorders. Therefore, ACM includes mainly arrhythmogenic
right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left
ventricular non-compaction (1). In our review, we focus on the classic form of ACM which is
a genetically determined cardiomyopathy caused by heterozygous or compound rare deleterious
variants in genes encoding mainly proteins of desmosomes. It is a rare genetic disease associated
with malignant ventricular arrhythmias and sudden cardiac death (SCD) (2). The histological
hallmark is progressive loss of cardiomyocytes and fibro-fatty replacement in the myocardium,
originally described as affecting mainly the right ventricle (RV) (3), but left ventricular (LV), or bi-
ventricular involvement are now recognized (1). The estimated prevalence of ACM ranges from
1:2,000 to 1:5,000, with age of diagnosis highly variable (young to elderly), but ACM remains
the leading cause of SCD in young individuals, especially in athletes (4). Indeed, SCD often
occurs as first manifestation of the disease, even in the absence of cardiac structural abnormalities
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(5). Phenotypic expression is two-three times more common
in males, playing putative key role sex hormones (anti-
fibrotic effects of estradiol) or sex-based difference in exercise
intensity as a disease modifier (6). Even though ACM has
a broad and heterogenous phenotypic spectrum, typically
disease progression and precipitation are accompanied by
the disruption of the myocardial architecture and fibro-
fatty replacement, which leads to heart failure. Therefore, an
International Expert Consensus Document has proposed amulti-
parametric assessment (Padua criteria) including genetics, tissue
characterization by cardiac magnetic resonance, depolarization-
repolarization ECG abnormalities, and ventricular arrhythmia
features to assist a proper ACM diagnosis (7).

The major molecular mechanism involved in the pathogenesis
of ACM is the disruption of mechanical integrity at cell-
cell junctions due to defects in the desmosomes; however,
desmosomal disarray also result in dysregulation of molecular
pathways involved in cell differentiation and proliferation
(8). Active myocardial inflammation has been observed in
up to 70% ACM post-mortem tissues (9–12), where foci of
inflammatory cell infiltrates are found especially in areas with
extensive fibro-fatty replacement and contain T-lymphocytes,
macrophages, neutrophils, and mast cells (10). However, it
is currently unknown whether inflammation is a primary
event, actively contributing to the disease phenotype, or
a secondary event triggered by cardiomyocyte death (13).
Although considerable progress has been made in understanding
ACM etiopathogenesis, the exact mechanisms associated
with the disease are complex and multi-faceted, so that
different theories have been proposed to explain ACM
etiology. Here, we focus on the “inflammatory theory” by
summarizing and critically discussing the most up-to-date
information on inflammation/immune response in ACM,
focusing on both in vivo and in vitro models that are helping
researchers unraveling the association between inflammation
and ACM pathogenesis.

GENETICS OF ACM

The genetics of ACM mostly follows an autosomal dominant
pattern with reduced penetrance and variable expressivity (14).
However, recessive variants of the disease (Naxos disease
and Carvajal syndrome, in which ACM is associated with
palmoplantar keratosis and wooly hair) (15, 16) and compound
and digenic heterozygosity have also been reported (17).
Approximately 60% of ACM patients harbor deleterious rare
variants in genes encoding proteins of the desmosome (18,
19), with plakophilin-2 (PKP2) alterations accounting for 30–
40% of the cases (20) (Table 1). Rare deleterious variants in
genes encoding non-desmosomal proteins (Table 1) have been
associated with ACM phenocopies, accounting for <5% of ACM
cases (8).

It is important to remark the overlap of ACM with other
inherited cardiac entities. First, LV-ACM shows similarity with
a subset of dilated cardiomyopathy (DCM) whose hallmark is
the electrical instability and highly arrhythmogenic episodes (1).

TABLE 1 | List of ACM-associated genes.

Gene symbol Protein name

Desmosomes

JUP

Plakoglobin

PKP2 Plakophilin-2

DSP Desmoplakin

DSG2 Desmoglein-2

DSC2 Desmocollin-2

Area Composita and connexome

structure

CTNNA3 αT-catenin

CDH2 Cadherin-2

SCN5A Sodium Voltage-Gated Channel

Alpha Subunit-5

ANK2 Ankyrin-B

TJP1 Tight junction protein 1

TMEM43 Transmembrane protein 43

Cytoskeleton

DES Desmin

LMNA Lamin A/C

TTN Titin

FLNC Filamin C

ILK Integrin-linked kinase

Calcium handling machinery

RYR2 Ryanodine receptor 2

PLN Phospholamban

Cell signaling pathways

TGFB3 Transforming growth factor-β3

TP63 Tumor pro

tein P63

PPP1R13L Protein phosphatase 1 regulatory

subunit 13

PNPLA2 Patatin-like phospholipase domain

containing 2

In addition, two inherited channelopathies phenocopy ACM:
catecholaminergic polymorphic ventricular tachycardia (CPVT)
and Brugada syndrome (BrS). CPVT is mainly caused by
mutations in the RYR2 gene, but a causative role of RYR2 for
ACM remains to be clarified (21). Similarly, the link between
ACM and BrS, mainly caused by mutations in the SCN5A gene,
is still controversial (22, 23).

Guidelines for a proper ACM diagnosis recommend genetic
testing (see Taskforce Criteria) (24). However, after a complete
genetic analysis in ACM families, large part of rare variants
remains classified without a definite role (25), impeding a proper
clinical translation in each family in a personalized manner (26).
Finally, incomplete penetrance and variable expressivity even
in carriers of the same mutation indicate a complex etiology
and the existence of unknown mechanisms in which genetic
heterogeneity, modifier genes and environmental factors (such
as physical exercise) might contribute to the disease onset and
progression (27).
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ETIOPATHOGENESIS THEORIES FOR ACM

Although it is clear that disruption of desmosomes and cell-
cell contacts are the main mechanisms leading to ACM onset
and progression, several theories have been advanced to explain
ACM pathogenesis.

The dysontogenetic theory considers ACM a congenital
disease in which the absence of myocardium is the consequence
of aplasia or hypoplasia of the RV wall, due to abnormal
embryonic development. For this reason, Marcus and Fontaine
reported the first comprehensive clinical description of the
disease using the term “Arrhythmogenic Right Ventricular
Dysplasia” (ARVD) (28). The dysontogenic theory has been
finally abandoned since the pathology is now recognized
as an acquired cardiomyopathy in which patients typically
manifest symptoms from adolescence or later (29). Therefore,
the name has been replaced with “Arrhythmogenic Right
Ventricular Cardiomyopathy” (ARVC) (9). Nowadays, the
increasing evidences of left-dominant and biventricular forms led
to the broader term “Arrhythmogenic Cardiomyopathy” (ACM)
(30), which encompasses all the phenotypical expressions of
the disease.

The degenerative/dystrophic theory has been proposed
by Basso and colleagues because of the similarity between
ACM and the skeletal muscular dystrophies (9). Progressive
loss of ventricular myocardium is determined by myocyte
death (apoptosis and/or necrosis) triggered by ultrastructural
defects and inflammation followed by abnormal fibro-fatty
deposition, which acts as a reparative response to replace dead
cardiomyocytes (9, 31). This remains the most comprehensive
theory to describe the pathogenesis of ACM.

The myocyte apoptotic theory strictly correlates with the
dystrophic hypothesis proposing that programmed cell death,
also known as apoptosis, is responsible for progressive myocyte
death followed by fibro-fatty replacement (32, 33).

Both dystrophic and apoptotic theories imply that the fibro-
fatty replacement of ventricular myocardium is an aberrant
reparative response to myocardial loss.

The trans-differentiation theory has been advanced to
elucidate the origin of the fibro-fatty deposition, suggesting
that cardiomyocytes undergo a reprogramming of their cell fate
and a switch into adipocytes as consequence of genetic defects
(34). Recently, in vivo fate mapping and clonal analysis of
murine cardiovascular progenitors demonstrated that a subset of
cardiomyocytes and cardiac adipocytes develop from common
Isl1+/Wt1+ precursors, thus suggesting a strong developmental
relationship between the two lineages (35). However, it is
well-known that adult cardiomyocytes exhibit limited de-
differentiation ability and therefore, it is unlikely that this
hypothesis could exclusively explain the source of fibro-adipose
tissue in the ACM heart.

The infiltrative theory proposes other resident cardiac cells
as source of adipocytes in the myocardium of ACM patients,
such as epicardial cells (36), cardiac progenitor cells of the
second heart field (37), cardiac fibro-adipogenic progenitors (38),
and cardiac stromal cells (39). Altogether, these studies suggest

novel non-contractile cell types as contributors to exaggerated
adipocyte accumulation in ACM hearts.

Finally, the inflammatory theory addresses the origin of
inflammatory infiltrates observed in ACM patients’ myocardium
(up to 70%) (12) and the pro-inflammatory mediators detected
in their blood (40, 41). The inflammation might be a response
to cell death/apoptosis, or to viral infection. Indeed, cardiotropic
viruses (i.e., enterovirus and adenovirus) are common findings
in the ACM hearts (42). The inflammatory hypothesis is not in
contrast with a familial transmission of the disease, since genetic
factors may play a role in the susceptibility to infections or
may amplify the myocardial damage, leading to a progression
and worsening of the disease phenotype (43). However, it
remains unclear whether the inflammation occurs as a primary
infective/immune mechanism causing myocyte damage or as
consequence to degenerative loss of myocytes followed by fibro-
fatty deposition (44).

In this review, we will further discuss the inflammatory
theory, providing an overview of several mechanisms that have
been postulated.

ROLE OF INFLAMMATION IN
CARDIOVASCULAR DISEASES AND
HEART FAILURE

Both the innate and adaptive immune responses in the heart are
activated by myocardial damage and the inflammatory process
plays a crucial role in the progression of cardiac dysfunction
in heart failure (45). The activation of the immune system
in cardiovascular diseases leads to the expression of pro-
inflammatory molecules (cytokines, chemokines, interleukins)
and the recruitment of macrophages, mast cells, B cells,
and T cells. Under inflammatory conditions, cardiac resident
macrophages are joined and sometimes replaced by recruited
monocyte-derived macrophages (46). Myocardial injury triggers
the recruitment of monocytes that infiltrate the damaged tissue,
differentiate into macrophages and proliferate locally (47). The
newly expanded macrophage population establishes cross-talk
with other cell types in the heart such as cardiomyocytes,
endothelial cells or fibroblasts by secreting pro-inflammatory
mediators such as tumor necrosis factor α (TNF-α) (48),
transforming growth factor-β (TGF-β) (49), interleukins (IL-
1β and IL-6) (50) and matrix metalloproteinases (46). The
macrophages exposed to inflammatory signals stimulate cardiac
fibroblasts and cardiomyocytes to adopt a proinflammatory
phenotype (51), which in turn secrete proinflammatory cytokines
(IL-1 and IL-6), thus propagating the pre-existing inflammation
(52). Macrophages play a dominant role in the activation
of inflammatory pathways such as Toll-like receptor (TLR),
nuclear factor-κB (NFκβ), MAPK and caspase-1 inflammasome
pathways, which are then implicated in the activation of
oxidative stress, cytokine release and cardiac injury (53).
Several studies have also highlighted the role of inflammatory
molecules in myocardial remodeling based on their ability to
influence cardiac contractility, cardiomyocyte apoptosis, fibrosis,
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ultimately leading to cardiac hypertrophy and heart failure
(48–50, 54). Specifically, myocardial fibrosis induced by cardiac
inflammation results in electrical abnormalities and reduction of
nutrient supply toward the myocardium, perpetuating a vicious
cycle of fibrosis, myocyte death and inflammation (55). Of note,
it cannot be excluded that inflammatory infiltrates themselves
may also create an arrhythmogenic substrate, in absence of
fibrosis (44).

A recent study demonstrated also a direct role of macrophages
in collagen deposition during the fibrotic process of heart
repair (56). Indeed, cardiac macrophages directly connect to
cardiomyocytes by connexin 43 (CX43) gap junction and
are electrically coupled with cardiomyocytes, mainly in the
atrioventricular (AV) node (57). Notably, depletion or specific
CX43 deletion in murine macrophages led to an impairment of
AV node conduction (57). This suggests an unexplored role of
resident macrophages in the development of cardiac conduction
abnormalities in response to myocardial infarction and heart
failure, but also under inflammatory conditions as myocarditis
or sarcoidosis. Although myocardial inflammation is present in
patients with advanced heart failure, regardless of the initial
pathogenesis, inflammation itself can be a primary pathological
event in cardiomyopathies (55).

Finally, it is now clear that inflammation could contribute
directly to electrical remodeling and the risk of arrhythmia. For
example, a canine model of sterile pericarditis demonstrated
an association between inflammation and alterations in the
amount and distribution of CX43 and connexin 40, which
led to impaired conduction and atrial arrhythmia vulnerability
(58). Furthermore, an NFκB-mediated mechanism contributed
to arrhythmic risk by altering the sodium channel transcriptional
regulation in rat neonatal ventricular myocytes and rat
embryonic cardiomyocyte cell line H9c2 (59).

Altogether this indicates how a deeper understanding
of the role of inflammation and immune system in
cardiovascular diseases may elucidate new pathophysiologic
mechanisms, identifying potential novel therapeutic targets and
strategies to modulate the onset, progression and outcome of
cardiac disorders.

INFLAMMATION IN ACM ANIMAL MODELS

Several transgenic animal models have been used to gain
insights into the structural, electrophysiological, cellular, and
molecular pathways involved in ACM pathogenesis, including
inflammation. Identifying the molecular pathways that might
promote or facilitate the inflammatory environment in ACM is
one of the biggest challenges in understanding the pathological
mechanisms of the disease.

In vitro Rat Models
Several in vitro studies pointed to key role of inflammation
in ACM pathogenesis. These studies mainly focused on the
two main desmosomal genes associated with ACM, namely JUP
and PKP2.

The human JUP2157del2 mutant plakoglobin was expressed
using adenovirus in an in vitro model of neonatal rat ventricular

myocytes (NRVMs) (60). Beside showing subcellular localization
redistribution of plakoglobin and myocyte apoptosis, myocytes
expressing JUP2157del2 released more inflammatory mediators
such as TNF-α, IL-6, macrophage inflammatory protein-1
α (MIP-1α), and the chemokine regulated upon activation
normal T cell expressed and secreted (RANTES) compared to
controls (60). Of note, SB216763, a synthetic small molecule
inhibitor of glycogen synthase kinase-3 β (GSK3β), reduced the
secretion of inflammatory cytokines (60), thus suggesting a link
between abnormal Wnt signaling pathway and inflammation
in ACM. These results might open the possibility for a
tailored pharmacological treatment directed to the molecular
mechanism, even though limited by the adverse effects caused
by long-term use of Wnt agonists (55). Indeed, long-term
inhibition of GSK3β and its consequential activation of Wnt/β-
catenin signaling pathways might have unacceptable adverse
consequences, including increased risk of developing cancer
(61). Recently, the same in vitro model was used to study the
role of a master regulator of cellular inflammatory process, the
NFκB pathway (62), since activation of GSK3β signaling induces
inflammation through NFκB pathway. The NFκB inhibitor
BAY 11-7082 reduced inflammatory cytokines production and
prevented the development of ACM features in vitro (63),
supporting the link between abnormal Wnt signaling and
inflammation through NFκB pathway. In addition, NRVMs
infected with adenovirus containing Pkp2 knock-down construct,
displayed higher expression of fibrotic (Fn1, Col2A1, Col3A1)
and inflammatory (Il1a andCcl12) genes, as well as higher STAT3
and NF-κB transcriptional activity compared to control cells
(64), revealing a link between loss of Pkp2 and activation of
TGF-β1/p38 MAPK pathway, known to increase inflammation
and fibrosis (65). Interestingly, TGF-β1/p38 MAPK signaling
inhibition by the small molecule inhibitor (5Z)-7-Oxozeaenol
reduced the expression of inflammatory and fibrotic genes
(64). Finally, short-term exposure of wild type NRVMs to
inflammatory cytokines IL-17 and TNF-α determined loss of
junctional plakoglobin signal (40), thus supporting the role of
inflammatory cytokines in altering plakoglobin distribution also
observed in ACM patients (66).

Taken together, in vitro observations in rat models support a
role of inflammatory process in the pathogenesis of ACM.

In vivo Mouse Models
Several transgenic mice harboring mutations in human (JUP
and DSC2) and murine (Jup, Dsg2, and Pkp2) desmosomal
genes support the implication of inflammation in ACM
pathogenesis (67).

Cardiomyocyte-restricted conditional Jup knockout mice
developed a phenotype similar to human ACM clinical
manifestation with spontaneous ventricular arrhythmia and
progressive cardiac dysfunction associated with massive cell
death, extensive inflammatory infiltration and fibro-fatty
replacement (68). The presence of inflammatory infiltrates
in these mice, mainly neutrophils and macrophages, was
accompanied by increased expression of pro-inflammatory
IL-1β and IL-6 in the myocardium. In line with NRVMs
expressing the same mutation, cardiac-specific expression of
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JUP2157del2 in mice caused arrhythmia, deterioration of cardiac
function, redistribution of intercalated disc proteins and signs
of fibrosis, apoptosis, and focal areas of inflammatory infiltrates
(69). In these mice, SB216763 restored cardiac function,
with relocalization of proteins at cell-cell junctions and no
histological evidence of myocardial fibrosis or inflammatory
cell infiltrates. Similar results were confirmed in a different
transgenic mouse model with homozygous knock-in of mutant
Dsg2, in which loss of exons 4 and 5 causes a frameshift mutation
and premature termination of translation (Dsg2mut/mut) (69).
These results confirm that GSK3β inhibition can rescue signs of
inflammation together with other features of ACM phenotype
in two different transgenic mouse models, emphasizing the tight
link between inflammation and ACM. The same Dsg2mut/mut

mouse model was used to corroborate the results obtained in
vitro about the role of NFκB signaling in ACM pathogenesis.
Dsg2mut/mut mice developed arrhythmia and progressive
ventricular contractile dysfunction associated with extensive
myocardial cell death, fibrosis, and inflammation (63). Multiple
inflammatory cytokines, including IL-1β, TNF-α, and monocyte
chemoattractant protein-1 (MCP1), were expressed in both
cardiomyocytes and infiltrating inflammatory cells. Sections
of myocardium from Dsg2mut/mut mice showed the presence
of inflammatory infiltrates, both macrophages (CD68+ cells)
and T-cells (CD3+ cells). BAY 11-7082 treatment improved
cardiac function, reduced both cytokine levels and the number of
infiltrating inflammatory cells, thus supporting NFκB inhibition
as potential therapeutic option in vivo (63). Inflammatory
response was also reported in other mouse models carrying
different mutations in DSG2. Transgenic mice with cardiac
specific overexpression of Dsg2N271S (corresponding to human
mutation DSG2N266S) exhibited spontaneous ventricular
arrhythmia and sudden death, impaired cardiac function and
myocardial damage triggered by massive myocardial necrosis
(70). Inflammatory infiltrates of neutrophils and macrophages
were observed following myocyte cell death. Similar findings
were reported in transgenic mice bearing a cardiac specific
deletion of the adhesive extracellular domain in murine Dsg2
protein (71, 72).

Recently, the inflammatory cellular response has been
dissected at the different stages of ACM in two Dsg2 mutant
mouse strains, one expressing a truncated Dsg2 protein
and another being a cardiomyocyte-specific Dsg2 knock-
out (73). Distinct immune cell infiltrates and chemokine
signaling were specifically involved at the different stages.
During the early stage of the disease, necrotic cardiomyocytes
triggered an inflammatory response characterized by neutrophils
recruitment with few macrophages, T cells and by increased gene
expression of inflammatory chemokines Ccl2/Ccr2, Ccl3/Ccr5,
and Cxcl5/Cxcr2. The acute disease progression was instead
associated with tissue remodeling, formation of collagenous
scars and changes in immune cell types (neutrophils were
gradually replaced by macrophages and T cells in the scar)
and inflammatory chemokine gene expression (upregulation of
Cx3cl1/Cx3cr1, Ccl2/Ccr2, and Cxcl10/Cxcr3, Tnfa and Il1b).
During the chronic stage of the disease, inflammatory cells
(macrophages and T cells) and cytokine production (Ccl12,

Cx3cl1, Tnfa, and Il1b) persisted within mature scars, although
at lower level than in the acute phase.

Transgenic mice with cardiac specific overexpression of
human wild-type DSC2 also developed severe cardiomyopathy
characterized by fibrotic and inflammatory remodeling (74).
Gene expression analysis revealed the activation of several
inflammatory pathways such as cytokine-cytokine receptor
interaction, chemokine signaling pathway or Toll-like receptor
signaling. In particular, different chemokines (e.g. Ccl3) and
their receptors (Ccr2), toll-like receptors (Trl9), interleukins (Il6,
Il33), and their receptors (Il7r) were upregulated in the mutant
hearts. The activation of inflammatory response shown by gene
expression analysis was confirmed by immunohistochemistry
displaying higher signal for CD11b, a molecular marker
of macrophages. Recently, transcriptome analysis of adult
cardiomyocytes derived from cardiac-specific Pkp2-knockout
mice revealed a link between Pkp2 transcript abundance and
the expression of genes involved in inflammatory and immune
response (75). Notably, the transcriptional changes in Pkp2-
knockout myocytes mirrored the presence of cell infiltrates
positive for T-cell marker CD45 and for neutrophil marker
Ly-6G/Ly-6C. These results suggested that endogenous Pkp2
deficiency is able to regulate the expression of genes involved
in inflammatory and immune response, even in the absence of
exogenous trigger, as pathogens.

Both primary cardiomyocytes and transgenic animal models
have the advantage of making it possible to control for both
environmental and genetic factors, circumventing the limitations
associated with restricted availability of human cardiac samples,
individuals’ different genetic background and the limited number
of patients carrying the same deleterious variant.

However, the limitation of animal models is mainly related
to their non-human origin. Therefore, human samples need to
be tested to confirm that findings obtained with in vivo animal
models accurately reflect the human ACM pathobiology.

INFLAMMATION IN ACM HUMAN
SAMPLES

In this section, we summarize the observations of inflammatory
process in ACM patients obtained by the evaluation of
myocardial samples from autopsy and endomyocardial biopsies,
in vitro model based on human induced pluripotent stem cell
(hiPSC)-derived cardiomyocytes (hiPSC-CMs) and circulating
inflammatory biomarkers from serum/plasma.

Inflammatory Infiltrates (T-Cells) in
Explanted Hearts and Endomyocardial
Biopsies
Histological analysis of explanted hearts, post-mortem samples,
and endomyocardial biopsies provided evidence of infiltrating
inflammatory cells in ACM human cardiac tissues (12)
(Figure 1). Autoptic studies identified myocardial inflammation
as T- cell infiltrates, consisting of CD45+ lymphocytes (9).
Patchy inflammatory infiltrates in proximity to necrotic or
degenerative myocytes were detected in ∼70% of all the
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FIGURE 1 | Effect of inflammation on ACM heart. The progressive myocyte death (apoptosis and/or necrosis) and myocardial degeneration due to desmosomal

defects leads to the accumulation of inflammatory cell infiltrates, that ultimately results in tissue remodeling by abnormal fibro-adipose deposition as a reparative

response to replace loss of cardiomyocytes. It remains to be clarified whether the inflammatory process is the first event that determines the death of cardiomyocytes

and the consequent repair process or rather is a reactive phenomenon.

ACM cases (9, 11). Specifically, the inflammatory infiltrates
were found mainly in association with fibro-fatty replacement
and LV involvement (75%). On the contrary, inflammation
was observed only in 30% of ACM patient with the right
ventricular form (11). A correlation between the presence of
multifocal T-lymphocyte infiltrates and the severity of structural
alterations (such as biventricular disease and extended fatty
accumulation in the atria) was also confirmed in an independent
study (10).

One study described that ALVC often showed patterns
of sub-epicardial scarring with a predilection for the left
ventricular inferior and lateral walls, similar to that seen
following myocarditis (76). Another study reported increased
levels of macrophage-related markers (CD68, CD163, CD45)
in endomyocardial biopsies from patients with biventricular
ACM (77). Of note, a recent study on a subset of patients
carrying pathogenic rare alterations in DSP with severe LV
predominant cardiomyopathy showed distinct LV myocardial
injury associated with myocardial inflammation (78). It is worth
mentioning that, even in the absence of inflammatory infiltrates,
higher expression of inflammatory cytokines IL-17 and TNF-
α were detected in ACM post-mortem myocardial samples and
endomyocardial biopsies compared to autoptic samples from
individuals with no history of cardiac diseases (40). The first
report on children with clinical suspicion of myocarditis who
had genetic testing for ACM showed that the disease can present

as recurrent myocarditis-like episodes with cardiac magnetic
resonance evidence of myocardial inflammation despite absent
infectious trigger, suggesting an active “hot phase” of ACM that
may lead to disease progression (79).

Altogether these reports suggest that inflammatory process
might have a key role in the modulation of disease severity.
Further studies are needed to investigate inflammatorymolecular
pathways associated with progression of the disease and
induction of malignant arrhythmias.

Human ACM in vitro Models and the Role
of Inflammation
Soon after their discovery (80), hiPSCs were differentiated
into cardiomyocytes (hiPSC-CMs) to model cardiac diseases,
including ACM (81–83). The signaling pathway of NFκB was
investigated in PKP2-mutated hiPSC-CMs from a patient with
ACM (63). Under basal conditions, ACM hiPSC-CMs displayed
higher expression and nuclear accumulation of phosphorylated
transcription factor RelA/p65, an essential transcription factor
responsible for heterodimer formation and nuclear translocation
of the NFκB complex (62), indicating the activation of
this pathway. Furthermore, similarly to NRVMs transfected
with human JUP2157del2 (60) and transgenic Dsg2mut/mut mice
(63) as described above, ACM hiPSC-CMs expressed and
secreted larger amounts of inflammatory cytokines such as
IL-1β, IL-12, interferon-γ, TNFα, and RANTES (63). In
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addition, several chemotactic molecules were greatly increased,
including cytokine-induced neutrophil chemoattractant (CINC-
1), macrophage colony-stimulating factor (M-CSF) and the
neutrophil chemoattractant LIX. Interestingly, BAY 11-7082
treatment in ACM hiPSC-CMs reduced phospho-RelA/p65
nuclear accumulation and cytokines levels (63). These results
support a signature of immune activation in a pure population of
ACM hiPSC-CMs (>95%) under the control of NFκB signaling,
independently of the presence of circulating or tissue-resident
inflammatory cells, such asmacrophages or lymphocytes. HiPSC-
CMs overcome the disadvantage of limited availability and
short in vitro life-span of primary human cells, as well the
disadvantages of species-specific differences of animal models.
However, the immaturity of hiPSC-CMs represents their main
limitation, even though solutions to maturation are starting to
emerge (84).

Pro- and Anti-inflammatory Mediators’
Imbalance in Serum/Plasma of ACM
Patients
Several studies have looked for inflammatory cytokines in the
blood of ACM patients, in an attempt to identify potential
circulating inflammatory biomarkers (85). Interestingly, higher
levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α
were reported in ACM patients, while the anti-inflammatory
cytokine IL-10 was not significantly different compared with
controls groups (41). Of note, circulating IL-1β correlated
positively to regional myocardial inflammation as assessed by
67Ga scintigraphy, even though statistical significance was not
reached, probably due to the small number of individuals
(8 patients) involved in this study. In another study, ACM
samples displayed increased levels of pro-inflammatory cytokines
including IL-6 receptor (IL-6R), IL-8, MCP1, macrophage
inflammatory protein1b (MIP-1β), and TNF-α receptor types 1
and 2 (TNFR1 and TNFR2) compared with controls (40). In
addition, the anti-inflammatory cytokine IL-1 receptor 2 (IL-
1R2) was significantly reduced in ACM patients compared with
controls (40), thus suggesting imbalance between pro- and anti-
inflammatory mediators in ACM. Notably, elevated levels of
TNF-α and IL-1β have been associated with the production of
inducible nitric oxide synthase (iNOS) (86) that can ultimately
lead to apoptosis and progressive loss of myocardium followed
by fibro-adipose deposition (87).

Higher levels of C-reactive protein (CPR) were also detected
in the plasma of individuals affected by ACM right after
ventricular arrhythmia (VA) compared to patients with
idiopathic ventricular tachycardia (88), suggesting a correlation
between inflammation and arrhythmic events, even in the
absence of morpho-functional anomalies of the right ventricle.

Although these studies are crucial for potential identification
of circulating biomarkers specific for ACM, no diagnostic
significance for elevated cytokine levels has been proved yet,
especially because unbalanced inflammatory mediators have
been described in several cardiovascular diseases (89–91).
Further investigation is required together with validation in
larger cohorts of ACM patients.

Autoimmune Response in Serum of ACM
Patients
An autoimmune etiology has been recently proposed for ACM
pathogenesis (92, 93), hypothesizing that mutated proteins
with unmasked cryptic epitopes (94) might be released
into the intercellular space and/or circulation as a result
of desmosomal disruption and myocardial damage, thus
stimulating autoantibodies production (92). A recent study
reported the presence of autoantibodies against desmoglein 2
(DSG2) in the serum of ACM patients, while these were absent
in healthy controls and individuals affected by other genetic
cardiomyopathies (92). DSG2 antibody density measured by
Western blot or ELISA correlated with disease severity estimated
by the occurrence of premature ventricular contractions within
the ACMgroup. The presence of serum anti-heart autoantibodies
(AHAs) and anti-intercalated disk autoantibodies (AIDAs) has
been recently detected in 85% of familial ACM cases and in 45%
of sporadic ACM cases, including some healthy relatives. On
the contrary, autoantibodies were absent in the control group,
including individuals with non-inflammatory cardiac diseases,
ischemic heart failure, and healthy donors (93). Serum levels
of AHAs and AIDAs were also associated with disease severity
in ACM patients evaluated as chest pain, palpitation, lower
ventricular ejection fraction and ICD implantation (93).

Although these results are promising in providing new tools
for prognosis or risk stratification, larger and independent
cohorts of patients are needed to clarify whether the
autoantibodies may predict the development and progression
of the disease. Further investigation is required to elucidate the
molecular mechanisms of autoimmunity and its specificity as a
test for ACM, in order to discriminate among other inflammatory
myocardial diseases such as myocarditis or sarcoidosis.

The Overlap of ACM With Myocarditis and
Cardiac Sarcoidosis
During the past few years, advancements in molecular, clinical
and instrumental diagnosis of ACM have been made. The
diagnostic criteria defined by the International Task Force (ITF)
have been updated in 2010 in order to increase sensitivity, still
maintaining specificity (24). However, the clinical diagnosis is
often challenging due to the broad spectrum of phenotypes
which includes left-dominant disease variants and the absence
of a family history in about 50% of ACM patients (95).
For this reason, an international expert report has been
published in 2019 to critically review the current ITF diagnostic
criteria, recommending potential areas of improvements for
a more appropriate clinical use in differential diagnosis
(96). Notably, other inflammatory cardiac diseases such as
myocarditis (97–99) and cardiac sarcoidosis (100–102) may
occasionally phenocopy ACM, resulting in misdiagnosis (103).
Inflammation could represent the pre-phenotypic/early stage
of ACM in a subgroup of patients, showing an uncommon
clinical presentation defined as “hot phase,” characterized by
acute chest pain and/or release of myocardial enzymes (104).
In this view, strict follow-up and differential diagnosis are
required to exclude myocardial infarction and myocarditis. A
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recent study described a cohort of 12 young female patients with
an initial clinical presentation of myocarditis syndrome (chest
pain, troponin elevation) who were subsequently diagnosed
with ACM (103). These findings highlight that these patients
have distinct clinical and genetic features including female
predominance, LV involvement and pathogenic variants in DSP
gene (103). Specifically, genetic testing was essential for the ACM
diagnosis in this cohort, suggesting the importance of genetic
analysis in myocarditis patients. Non-invasive methods such
as electrocardiogram, Holter monitoring, echocardiography and
cardiac magnetic resonance, might be insufficient to discriminate
among inflammatory diseases mimicking ACM, emphasizing the
need for a more specific diagnosis. Endomyocardial biopsy is
more invasive but revealed myocarditis in 30–50% of individuals
originally classified as ACM using non-invasive criteria (97, 98).
Anyways, myocarditis reflects an active phase of inflammation
in ACM, leading to changes in the phenotype and to an abrupt
complication of the disease.

Several case reports of cardiac sarcoidosis mimicking ACM
have been described as well (105, 106). Cardiac sarcoidosis was
found in 15% of patients meeting criteria for ACM only after
endomyocardial biopsy evaluation (102). Interestingly, reduction
of plakoglobin signal at cardiomyocyte cell-cell junctions was also
reported in patients with sarcoidosis and giant cell myocarditis
(40), associating for the first time these highly arrhythmogenic
inflammatory diseases with a specific alteration of intercalated
disks previously only observed in ACM (66).

These findings suggest a potential new mechanistic
link between ACM and sarcoidosis/myocarditis, in which
inflammatory cytokines might promote the disruption of
desmosomal proteins, thus explaining the clinical similarities
among those diseases (40).

The Role of Infectious Agents in ACM
Pathogenesis
Several infectious agents such as cardiotropic viruses, bacteria
and protozoans, have been frequently found in ACM patients.
Together with the common findings of inflammatory infiltrates
in the myocardium, these observations suggest a possible
etiologic role for infectious agents in the onset and the
progression of ACM.

Cardiotropic viruses have been often identified in the
myocardium of ACM patients and, among them, enteroviruses
were the first to be investigated in association with ACM based
on results obtained from a mouse model. Indeed, BALB/c
mice inoculated with Coxsackie virus B3 developed clinical
manifestations similar to ACM, including severe myocarditis
limited to the right ventricle, myocardial cell death and fibrosis,
and mononuclear cell infiltration (107). Several studies reported
the detection of coxsackieviruses type B more frequently in
ACM endomyocardial biopsies compared to patients with non-
inflammatory cardiac disorders, or undergoing transplantation
for end-stage congenital diseases or autoptic samples from
individuals with no history of cardiac diseases (42, 108, 109).
On the contrary, enteroviral genome was not detected in a study
where the myocardium of 20 ACM patients was analyzed (110).

The discrepancy of these results may relate to technical issues
such as low sensitivity of PCR, degradation of viral RNA during
extraction or might reflect different patient selection (43). Other
cardiotropic viruses such as adenovirus (42), cytomegalovirus,
hepatitis C virus, and parvovirus B19 have been also detected
in ACM sporadic forms (43). However, the role of viruses in
the pathogenesis of ACM remains an unsolved issue. Further
investigations will help to clarify whether viruses are true
etiological agents contributing to the disease or whether viral
infection is a consequence of the increased vulnerability of
diseased myocardium.

Similar to cardiotropic viruses, several other infectious agents
including protozoans and bacteria have been associated with
ACM such as Trypanosoma cruzi (111), Mycoplasma (112),
and Bartonella henselae (113, 114), a bacterial agent associated
with endocarditis.

Notably, patients diagnosed with non-familial forms of ACM
revealed a significantly elevated IgG antibody titres to Bartonella
henselae compared to healthy blood donors (113). Although
of interest, the possible causal relationship between Bartonella
henselae-induced myocarditis and non-familial cases of ACM
was based only on this single study and therefore larger patient
cohorts need to be studied. Also, further validation of serological
findings with Bartonella henselae detection in endomyocardial
biopsies of ACM patients is required.

Link Between Genetic Defect in ACM and
Viral Infection Susceptibility: A Potential
Genetic Predisposition?
The frequent detection of cardiotropic viruses in ACM patients
suggested that viral infections might be relevant environmental
factors for the progression of the disease and its adverse
clinical outcomes. However, this hypothesis does not conflict
with the familial incidence of ACM since genetic factors
may influence the susceptibility to infection (43). In the
setting of pathogenic alterations in genes encoding desmosomal
proteins, a genetically defective myocardium may create an
environment more vulnerable to an infectious agent, leading to
the amplification of myocardial inflammation, severe myocyte
damage and subsequent precipitation of the disease (115, 116).
The first study establishing a link between genetics and viral
susceptibility in ACM patients showed that family members
carrying the same causative rare variant in the DSP gene seemed
to be particularly vulnerable to develop viral myocarditis (116).
Recently, some reports have also suggested the relation between
DSP mutations and a family history of recurrent myocarditis
(117, 118). In another study, genetic analysis on three cases
of myocarditis-related SCD and their family members revealed
the presence of rare novel variants predicted as deleterious and
potentially pathogenic in ACM-related genes (PKP2, DSP DSC2,
and TTN) (115), also including DSP as a crucial gene involved.
Taking all data into account, DSP cardiomyopathy was proposed
as a distinct form of ACM, characterized by episodic myocardial
injury, left ventricular fibrosis that precedes systolic dysfunction,
and a high incidence of ventricular arrhythmias (78). In addition,
acute myocarditis should be considered as an additional criterion
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for ACM in diagnosed families (119). A recent study suggested
clinical myocarditis as an initial ACM presentation proposing
that these patients have distinct characteristics including female
gender, LV involvement and DSP gene variants (103).

Collectively, all the data reinforces the use of genetic
testing in patients with a family history of cardiomyopathy
or SCD who experienced acute myocarditis. The extension
of this intriguing hypothesis to other deleterious variants
associated with ACM remains to be supported by further genetic
studies on larger cohorts of patients with myocarditis. Another
theory linking genetic factors with viral susceptibility suggests
that pathogenic variants in unrelated-ACM genes encoding
cellular receptors or immune system components may increase
the vulnerability to infectious agents inducing myocarditis
(43). Recently, deleterious variants in genes associated with
cardiomyocyte integrity have been reported in a cohort of
children withmyocarditis, progressingmore rapidly and showing
a more severe outcome (120).

In this view, viral infection might be considered the
trigger necessary for myocardial apoptosis directly mediated
by the virus or indirectly by inflammation, thus leading to
progressive myocyte loss and consequent fibro-fatty replacement
(43). However, this theory remains to be demonstrated by
further investigation.

ROLE OF EXERCISE AND IMMUNE
RESPONSE IN ACM

Several epidemiological studies showed the benefit of exercise
and physical activity for the health in the general population,
especially limiting the aging process and preventing the incidence
of cardiovascular diseases, heart failure, and many chronic
disorders (121, 122). An interplay between physical activity
and immune response has been proposed (123) and growing
evidence from animal and human studies indicate that intense
exercise promotes the production of pro-inflammatory cytokines
(TNF-α, IL-1β, and IL-6) (124) and the mobilization and the
functional capacity of lymphocyte population, mainly controlled
by adrenergic signaling (125, 126). This indicates that the
immune system is stimulated in response to exercise. At the same
time, adverse effects exerted by physical activity are well-known
in the context of life-threatening arrhythmias and SCD in several
inherited arrhythmogenic conditions (127), including ACM
(128), so that changes in lifestyle and refrain from competitive
sports is one of the first recommendations in ACM patients.

In ACM patients, due to the genetically determined fragility
of desmosomes, the mechanical stretch of myocytes during
endurance exercise may favor cell injury and accentuate
apoptosis, the initial phase in the remodeling process, by
initiating an inflammatory response, myofibroblast activation,
and myocardial scar formation (129). Specifically, the role
of exercise as a trigger or even precipitating factor in the
development and progression of ACM has been recognized
by evidences in both mouse models (130, 131) and clinical
studies in ACM patients with (132, 133) and without (129,
134) deleterious variants in desmosomal genes. The association

of endurance exercise and ACM pathogenesis in the setting
of desmosome deleterious variants was established using
transgenic mouse model with heterozygous plakoglobin knock
out (Jup+/−), demonstrating that the development of right
ventricular dysfunction and arrhythmias were accelerated by
endurance training in Jup+/− mice (131). A recent study
showed that Dsg2mut/mut mice undergoing chronic physical
exercise exhibited myocardial dysfunction, myocyte apoptosis
and necrosis, myocardial inflammation and fibrosis, and
premature exercise-induced sudden death (130). Of note,
exercised Dsg2mut/mut myocytes displayed release of nuclear
high mobility group box-1 (HGMB1), an endogenous “danger
signal” that works as chemotactic molecule, inducing the
activation of the immune response and the recruitment of
immune cells (135). In line with this, exercised Dsg2mut/mut

mice showed high number of nuclear HMGB1+ positive cells,
corresponding to inflammatory infiltrating cells surrounding
necrotic myocytes (130).

In a clinical study, the risk of developing ventricular
arrhythmia and heart failure positively correlated to the intensity
and frequency of exercise in ACM patients carrying desmosomal
deleterious variants (132). It is clear that myocardium with
defective desmosomes might be more susceptible to cell-cell
detachment and death, but also to impairment of the electrical
coupling and consequent pathological remodeling when exposed
to excessive mechanical load during exercise (136). Notably,
“gene-elusive” ACM patients required more intense physical
activity to exacerbate and accelerate the disease phenotype
compared to desmosomal deleterious variants carriers (134), thus
suggesting more beneficial effects from exercise reduction in the
patients with mutations in genes encoding desmosomal proteins
(129). A new potential link has been identified between the
activation of immune response and desmosomal perturbation
in the heart of ACM patients (40) that might harmonize the
adverse impact of intense exercise in both patients with and
without desmosomal deleterious alterations. Wild-type NRVMs
exposed to pro-inflammatory cytokines (IL-17, IL-6, and TNFα)
displayed abnormal internalization of plakoglobin, mimicking
the disruption of desmosomes observed in ACM but also in
the other inflammatory cardiac conditions which can phenocopy
ACM as discussed above, namely sarcoidosis and giant cell
myocarditis (40). In this view, the stimulation of the immune
response and the production of pro-inflammatory mediators
triggered by intense exercise might have a negative impact on
desmosomal stability and integrity in general, but this would
accelerate the development and progression of ACM. Although
this is an intriguing hypothesis, it remains to be determined
whether the immune response enhanced by physical activity
might be the mediator for the altered distribution of desmosomal
proteins at the intercalated disks in ACM. Future studies are
required to provide novel insights in the molecular mechanisms
underlying the role of exercise in the detrimental progression
of ACM.

Future studies are required to provide novel insights into
the molecular mechanisms underlying the role of exercise in
the detrimental progression of ACM. The next challenge is to
translate all the results in the field of exercise to the clinics. In
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particular it will be necessary to better clarify the definition of
“intense/strenuous exercise” in patients, to be able to provide
clear, and maybe patient-tailored, recommendation to balance
between a good quality of life and the risk of sudden cardiac death
(137, 138).

MITOCHONDRIA-MEDIATED
INFLAMMATION IN ACM

Several reports demonstrated a correlation between oxidative
stress and inflammation in many cardiovascular disorders
such as hypertension, ischemia/reperfusion damage, cardiac
hypertrophy, fibrosis, diastolic dysfunction and heart failure
(139). Inflammation and oxidative stress are closely related to
each other since inflammatory cells secrete different reactive
species resulting in oxidative stress, whereas reactive species can
induce intracellular signaling response leading to the expression
of pro-inflammatory genes (140). The role of mitochondria in
modulating oxidative stress is well-known but recent evidences
indicated mitochondria as key players also in the regulation
of inflammation (141). During tissue injuries and cell death,
damaged mitochondria release biomolecules as endogenous
danger-associated molecular patterns (DAMPs), among them
reactive oxygen species (ROS) and mitochondrial (mt)DNA
fragments (141). DAMPs can trigger an immune response
that leads to the activation of neutrophils, T-lymphocytes,
macrophages and the imbalance of T helper cytokine profile,
thus resulting in a complex inflammation process culminating
into fibrosis, arrhythmia, and sudden cardiac death (142,
143), typical features of ACM. Myocardial inflammation and
cardiac dysfunction induced bymitochondrial ROS (mtROS) was
attenuated by the administration of mtROS specific antioxidant
improvingmitochondrial function, reducing tissue inflammation
and enhancing cardiac function (144).

Recent studies demonstrated a potential link between mtROS
and mtDNA with molecular pathways previously associated with
ACM pathogenesis. Specifically, mtROS can directly promote
differentiation of cardiac fibroblasts into myofibroblasts and
extracellular matrix (ECM) deposition by activation of TGF-β1
expression (the most well-known pro-fibrotic cytokine involved
in cardiac fibrosis) (145, 146), whereas aberrant mtDNA can
stimulate the activation of p38 mitogen-activated protein kinase
(MAPK) signaling cascade (147). Interestingly, both pathways
are associated with increased expression of both inflammatory
and fibrotic genes in ACM in vitro model of NRVMs with Pkp2
knockdown (64), as described above in this review.

Although numerous pieces of evidence concur to a
role of oxidative stress in fibrosis, its implication in ACM
fibrotic remodeling still has to be investigated. An important
independent fibrosis cofactor in ACM hearts is inflammation.
A recent study hypothesized a novel mechanistic pathway
that links myocyte cell death and myocardial inflammation
induced by endurance exercise with mitochondrial dysfunction
in Dsg2mut/mut mice (130). Specifically, chronic physical activity
in Dsg2mut/mut mice induced the activation of Ca2+-dependent
cysteine protease calpain-1 (CAPN1) and its association with

mitochondria, leading to the cleavage of mitochondrial-bound
apoptosis-inducing factor (AIF) (130). Nuclear translocation
of truncated AIF in Dsg2mut/mut myocytes triggered large-
scale DNA fragmentation and cell death, also enhanced by
mitochondrial AIF oxidation due to abundant myocardial ROS
and reduced mtROS buffering.

Despite these studies, it is currently unclear whether
the activation of these pathways is actually preceded by
mitochondrial dysfunction and higher ROS levels in ACM. Up to
now, the role of mitochondrial biology in the ACM pathogenesis
remains understudied.

Exploring the link between inflammatory pathogenesis of
ACM and mitochondrial dysfunction has emerged as a novel
interesting topic in order to identify new molecular mechanisms
and alternative therapeutic targets as anti-oxidant treatment.

MOLECULAR INTERACTIONS BETWEEN
INFLAMMATORY PATHWAYS AND ACM
PATHOGENESIS

The major molecular mechanism involved in the pathogenesis
of ACM is the disruption of mechanical integrity at cell-
cell junctions due to defects in the desmosomes. This
leads to structural and functional impairment, including
abnormal ion channels distribution and gap junction remodeling
with consequent electrical abnormalities, impaired protein
trafficking, and mitochondrial and calcium dysregulation (8).
However, proteins of the desmosome play also a role in
transduction pathways, so that desmosomal disarray can result
in dysregulation of signaling cascades involved in ACM
pathogenesis. The activation of TGF-β pathway in the presence
of desmosomal mutations has been proposed as a possible
mechanism for the loss of CMs, the accumulation of fibrotic
tissue and inflammation observed in ACM (64, 68). Moreover,
the suppression of Wnt/β-catenin signaling (148) linked to
increased level of GSK3β (69), and activation of Hippo
pathway (149) have been associated with the pathological
remodeling observed in ACM patients, including activation of
pro-apoptotic and inflammatory process, myocyte death and
accelerated epithelial to mesenchymal transition that leads to
fibro-fatty deposition. Importantly, free plakoglobin can compete
with β-catenin in the transcriptional regulation of the Wnt
signaling cascade through T-lymphocyte, enhancing binding
transcription factors (150). In addition, the activation of NFκB
signaling pathway secondary to desmosomal disruption has been
identified in different in vivo and in vitro experimental models,
carrying different deleterious desmosomal variants as previously
illustrated in details in this review (63). This pathway is a
master regulator of cellular inflammatory responses that directly
links to the GSK3β pathway based on the fact that activation
of GSK3β promotes inflammation through NFκB (151). The
evidence of NFκB signaling as inflammatory pathways directly
implicated in ACM pathogenesis has been also corroborated
by other studies in a mouse model (152) and hiPSCs (153)
carrying the deleterious TMEM43-p.S358L variant. The specific
activation of NFκB pathway in Tmem43 knock-in mouse
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FIGURE 2 | Players involved in the inflammatory theory of ACM pathogenesis, ultimately leading to fibro-fatty replacement. Defects in the desmosomes caused by

pathogenic mutations (A) trigger signaling cascades leading to the dysregulation of the Wnt pathway (inhibition) and the Hippo, GSK3β, NFκB, and TGF-β1/p38

MAPK pathways (activation) (B). Abnormalities in these signaling pathways lead to the activation of inflammatory, apoptotic, and fibrotic/adipogenic genes, thus

resulting in the secretion of inflammatory cytokines (i.e., TNF-α, IL-1, IL-6, IL-8, IL-17) and the infiltration of inflammatory cells (i.e., T-lymphocytes, neutrophils,

macrophages, mast cells) (C) and cellular damage associated with cardiac cell death (D) and fibro-fatty replacement (E). During tissue injury and myocardial

degeneration, damaged mitochondria release danger-associated molecular patterns (DAMPs, as reactive oxygen species (ROS) and mitochondrial (mt)DNA

fragments), thus further precipitating the immune responses and perpetuating inflammation, apoptosis and fibro-adipogenesis (F). Physical stress due to strenuous

exercise not only causes mechanical injury and cell death in the presence of damaged desmosomes, but also stimulates the activation of the immune response and

the production of pro-inflammatory mediators (G). The myocardium carrying pathogenic alterations in genes encoding desmosomal proteins is more vulnerable to the

presence of infectious agents (i.e., cardiotropic viruses, bacteria, protozoan), leading to the amplification of myocardial inflammation, severe myocyte damage and

subsequent precipitation of the disease (H). Desmosomal disruption and myocardial damage might stimulate an immune response by the production of

auto-antibodies such as anti-DSG2 (desmoglein 2), AHA (anti-heart), and AIDA (anti-intercalated disk) antibodies (I).

model directly drove the expression of profibrotic TGF-β1
and the subsequent downstream signal cascade, leading to
the typical ACM hallmarks as cardiomyocyte death and fibro-
fatty substitution (152). Finally, hiPSCs bearing the p.S358L
mutation also showed contractile dysfunction that was partially
restored after GSK3β inhibition (153), providing solid evidence
that targeting NFκB signaling might be beneficial also to
restore electrical abnormalities. In addition to NFκB pathway,
other inflammatory signaling cascades have been identified by
proteomic analysis on human explanted hearts from ACM
patients compared to DCM or control hearts (154). Specifically,
JAK/STAT3 and ERK pathways were specifically upregulated
in the ACM but not in DCM samples, thus suggesting a
specific activation of those pathways in cardiac tissue of ACM
patients. Also, most of the complement system proteins C3,

C4, C6, C7, C8, and C9 were significantly upregulated in ACM
samples compared to DCM, suggesting that the complement
system activation might be a characteristic molecular phenotype
of ACM and not just a common inflammatory heart failure
pathway (154). A significant complement activation in the
cardiac tissues of patients with ACM was also confirmed
by Mavroidis and colleagues (155). Specifically, they also
showed a massive complement activation in the myocardium
of desmin-null mouse (Des−/−) in areas of necrotic cells
debris and inflammatory infiltrate and they demonstrated that
the inhibition of complement systems activation significantly
reduced myocardial remodeling and improved cardiac function
and arrhythmias (155).

In conclusion, these findings indicate that specific
inflammatory pathways can be considered causative mechanisms
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related to cardiac degeneration, fibro-fatty substitution and
arrhythmia, specifically in ACM pathogenesis. However,
molecular mechanisms of inflammatory pathways remain
superficial and mainly associated to animal models, thus
requiring more in-depth studies for the translation to
human disease.

DISCUSSION

Many questions about ACM pathophysiological mechanisms
remain unanswered.

Inflammation in ACM is a multifaceted process involving
different players as immune cell infiltrates, infectious agents,
inflammatory cytokine secretion, autoimmune antibodies and it
can be mediated by mitochondria dysfunction and triggered by
physical exercise (Figure 2). The inflammatory process might
also modulate the disease severity.

Although growing evidence demonstrated inflammation
as an intrinsic feature of ACM, it remains controversial
whether inflammation and/or infection are primary events
promoting arrhythmia and myocardial damage by immune
mechanisms or whether inflammatory process is a secondary
reaction in response to progressive myocyte cell death.
Studies using transgenic mice carrying deleterious alterations
in desmosomal genes demonstrated that the recruitment
of inflammatory cells followed the structural damage of
myocardium due to progressive myocyte loss initiated bymassive
cell death (68, 70), thus suggesting myocyte necrosis as crucial
initiator of myocardial injury triggering inflammatory process as
secondary response.

On the other hand, exposure to pro-inflammatory cytokines
was sufficient to induce abnormal internalization of plakoglobin,
mimicking the junctional instability and desmosomal disruption
observed in ACM patients (40). Myocardial inflammation
in cardiac tissues (40) and hiPSC-derived CMs (63) from
ACM patients carrying desmosomal deleterious alterations
has been observed even in absence of inflammatory cell
infiltration. Moreover, a recent work suggested a relation
between abundance of Pkp2 transcripts and the activation of
inflammatory and immune pathways endogenous to adult Pkp2-
knock out cardiomyocytes, even without pathogens as external
triggers (75). These findings demonstrate that cardiomyocytes
themselves can activate an immune response and produce
inflammatory mediators, thus indicating a direct contribution
of myocytes to inflammatory process independently of cardiac
tissue degeneration and recruitment of specialized inflammatory
cells as main triggers. In this view, inflammation would act as
a driver instead of as simple modulator. It is worth noting that
ACM is now starting to be rewarded as a multicellular or even
multi-organ disease (156), which would support an active role for
the (mutated) innate immune cells.

A comprehensive analysis of the ACM inflammasome is still
lacking in both animal models and patients and there is a urgent
need to systematically investigate ACM inflammation process in
particular dissecting the different—concealed, overt, and end—
phases of the disease.

A complete characterization of the cross-talk among different
inflammatory mediators might distinguish an ACM-specific
inflammatory cascade (157), improving the understanding of
the immune response in ACM and identifying potential new
therapeutic targets to limit inflammatory process in ACM
patients. For example, the identification of autoantibodies
in ACM opens novel promising therapeutic opportunities,
including immune therapies, similar to those proposed for
autoimmune pemphigus vulgaris (158) and virus-negative
myocarditis/inflammatory dilated cardiomyopathy (159).

As additional note, expanding the knowledge of
inflammation-related pathogenic mechanisms in ACM might
provide new insights to improve diagnosis and risk stratification,
as well as to develop novel therapeutic opportunities by targeting
immune signaling. As promising new clinical perspective,
anti-oxidant (144), anti-inflammatory treatments (160), and
immunosuppressive therapy (161) might be beneficial to reduce
myocardial damage and arrhythmia in ACM patients, as recently
observed for other cardiac diseases.

Altogether, the studies we have reviewed here collectively
support a significant contribution of inflammation to ACM
pathogenesis, either as active driver or as modulator of the
disease phenotype.

It is tempting to speculate that inflammation in ACM acts
with both a primary and secondary role, depending on the
underlying genotype (gene mutation or even mutation-specific),
or on the different clinic-pathological phases (pre-histological,
preclinical, pre-symptomatic, and symptomatic), or even on the
interaction between genetic background and environment (e.g.,
gene modifiers, but also physical activity, psychological stress).
Further mechanistic studies are still required to dissect when
inflammation acts as active driver andwhen as secondary event in
the pathogenesis of ACM, so that mechanistic-targeted therapies
can be developed.
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