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Abstract: With the rise in public health awareness, research on point-of-care testing (POCT) has
significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates
for the future of POCT due to their quick and accurate response, ease of operation, and cost
effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that
has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic
and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow
for a better understanding of the development process. The influence of structural aspects of MNPs
in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs
for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA),
cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine,
hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus
(2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs
face in clinical applications are examined and possible pathways for overcoming these limitations
are discussed.

Keywords: electrochemical biosensors; point-of-care testing; metal nanoparticles; cancer biomarkers;
glucose; novel coronavirus

1. Introduction

Biosensors are chemical sensors that utilize biomolecules as the target recognizing component
and a transducer that produce an identifiable signal through their interaction [1,2]. In the case
of electrochemical biosensors (ECBs), the transducer converts the chemical signal to an electrical
signal that allows for qualitative and quantitative identification of the target biomolecules [1,3–5].
With the increasing risk of cancer, diabetes, viral infections, and other pathogenic diseases, point-of-care
testing (POCT) systems have become essential in the health sector [4,6–8]. As a result, research in ECBs
has seen an exponential growth because they are inexpensive, provide fast and accurate responses,
require almost no sample preparation, and are easy to use [3,8–13].
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ECBs often take advantage of the unique chemical properties possessed by nanomaterials [14–16].
Particularly, metal nanoparticles (MNPs) are mostly used due to their biocompatibility, low toxicity,
excellent conductivity, and high surface area [17–21]. Among many, gold (AuNPs), silver (AgNPs),
and platinum NPs (PtNPs) are some of the most commonly utilized in ECBs [21–28]. In fabricating
biosensors, these MNPs often provide the anchoring site for biorecognition components
such as antibodies, enzymes, single stranded RNA (ssRNA) and DNA (ssDNA), aptamers,
and affibodies [21–24,27,29–31]. The effectiveness and stability of these biochemical interactions
are largely dependent on the physicochemical properties of the MNPs [1,20,32]. This is why
material researchers have devised unique strategies for controlling size, shape, and other structural
features of these MNPs [32,33]. However, MNPs are often combined with a scaffold for increasing
stability and catalytic activity that is usually made of nanostructured material [34–37]. Of these,
the carbon nanostructures are the most popular candidate due to their availability, good conductivity,
and stability [9,35,38–40]. The various carbon nanostructures used are 0D fullerenes, 1D carbon
nanotubes (CNTs), 2D graphene (GR), and 3D graphite materials [41–44]. In ECBs, the composites
of MNPs and these carbon nanostructures are used to anchor the biorecognition components to
the transducer that converts the chemical signal to electronic signal. Figure 1 depicts the various MNPs
and their composites that are often utilized in ECBs.
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ECBs can be manufactured in miniaturized size that can be used as POCT devices for clinical
purposes [45,46]. These POCT devices are often fabricated on paper strips or carbon paste electrodes
based on lab-on-chip principles and can be used with a portable electroanalytical device [46,47].
Electrochemical glucose biosensors are one of the most successful and promising examples of this
technology [48]. However, the practical applications of ECBs for a wide variety of bioanalytes
have not been completely realized. Besides the cost of the electrodes, the key technical factors that
determine the applicability of ECBs in clinical purposes are: ease of preparation, sensitivity, accuracy,
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reproducibility, and stability of the modified electrode [49–51]. However, the use of biomolecules
makes it very challenging to meet all these criteria.

The review is devoted to discussing how using MNPs and carbon composites can help to overcome
the limitations of ECBs. The field of ECBs is enormous; hence a general classification of the ECBs is
considered for simplification purposes. The progress in the ECB research has also been discussed
to provide the reader with a better understanding of the development process over the last decade.
The design strategies for tailoring the properties of MNPs and carbon nanostructures that influence
the sensing ability has also been explored. The review also discusses the advances in ECBs for sensing
small biomolecules and cancer biomarkers. Beyond these, the challenges and perspective course of
actions to overcome them have been explored. Hence, the authors hope that the discussions and
concepts presented in this review would envisage the fabrication of ECBs that can be applied for POCT.

2. Electrochemical Biosensors

ECBs can achieve high selectivity and accuracy through combining bio-selectivity of biomolecules
and sensitivity of the electroanalytical techniques (EATs) [9,52]. Application of ECBs encompasses
a wide variety of research area from small biomolecules (dopamine, glucose, xanthine, etc.) to
cancer biomarkers and other large biological systems [3,25–37,42,44]. These biosensors vary from
each other based on the use of biorecognition components (BRC) and EAT for the detection
process [1,4]. Typically, ECBs comprise three electrodes (working electrode (WE), reference electrode
(RE), and counter electrode (CE)) that are placed in contact with the analyte solution in an electrochemical
cell [1,6,53]. These three electrodes are connected with an electrochemical workstation that is
capable of applying potential and measuring the electrochemical changes due to electron transfer
at the interfacial region between the WE (transducer) and solution [46,51]. The circuitry component
of the workstation converts such chemical changes at the WE into readable data in terms of current,
potential, or conductivity with respect to the WE [51]. That is why understanding the properties of
the WE is most important when discussing about ECBs. The WE acts as the transducer which can
convert electrochemical reactions into electrical signals [53,54]. The WE is modified with various BRCs
and utilizes different EATs to make them sensitive and selective towards a particular type of analyte.
In this review, ECBs have been categorized to simplify these wide varieties. Initially, ECBs can be
broadly categorized into two classes, based on the type of EATs and BRCs employed. The classification
of ECBs based on EATs and BRCs used are represented by a hierarchical list in Figure 2.

2.1. Classification of ECBs Based on BRCs

When considering how the biorecognition systems work, the ECBs can be categorized into two
classes:

1. ECBs modified with biocatalysts
2. ECBs operating through bioaffinity
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2.1.1. ECBs Modified with Biocatalysts

Biocatalysts are BRCs that can produce electroactive species by interacting with
biomolecules [55,56]. Enzymes, cells, tissues, and small biomolecules are often used as
biocatalysts in the ECBs [55,56]. These ECBs most commonly employ impedimetric, voltammetric,
and amperometric methods in their analyses [56,57]. Preparing ECBs with biocatalysts is often
cost-effective, simple, and easily scalable to make POCT devices [58]. Of the various biocatalysts
used, enzymes are most popular [59]. This is because of enzymes are amino acids that are capable of
inducing biochemical catalysis [1,56]. They are capable of interacting with electrochemically inactive
bioanalytes and producing electroactive species [26,27,60]. Enzymes often significantly increase
the rate of reaction and the kinetic parameters can be readily investigated with simple EATs [1,60].
However, these enzymes are often very sensitive to temperature, pH of the solution, and humidity [61].
That is why it is important to maintain optimal conditions while preparing and using this type of
sensors. Researchers are working towards fabricating enzymatic sensors that are more tolerant to
these limiting factors. Marzo and coworkers have reported the fabrication of horseradish peroxidase
(HRP)-based ECB for highly sensitive H2O2 detection [62]. The sensor uses a composite of AuNP-HRP
that is immobilized on 3D screen printed (3D-SP) GR-polylactic (PLA) substrate. The HRP acts as
the catalytic enzyme that induces electron transfer from H2O2. The 3D-SP electrode fabrication and
its H2O2 detection mechanism are illustrated in Figure 3a. The 3D-SP sensor showed relatively good
stability [62]. An enzymatic ECB has been reported, where virus (tobacco mosaic virus (TMV)) was
used as a carrier to enhance the sensitivity and stability of glucose oxidase (GOx) enzyme for glucose
detection [63]. The TMV carrier containing a glucose sensor showed almost double the current response
for the same concentration of glucose compared to the non-TMV containing sensor [63]. Figure 3b
shows the glucose sensor chips and their response towards glucose detection. Further research to
the advancement of biocatalytic sensors have made them a promising candidate for POCT.
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2.1.2. ECBs Operating through Bioaffinity

In these biosensors, a biorecognition element is used that can strongly bind with the target
biomolecules to produce a detectable electrical signal [64]. Affinity ECBs utilize antigens to bind with
antibodies, various oligomers, ssRNA or ssDNA, and membrane receptors to bind specifically [1,4,65].
These bioaffinity sensors are often used when biocatalytic systems are not applicable. For instance,
there are many biomolecules for which there is no enzyme that can selectively catalyze them [1,65,66].
Based on the type of biorecognition molecules used, the bioaffinity-based ECBs can be classified as
the following:

• Immunosensors
• Aptasensors
• Affibody-based sensors

Figure 4a shows schematic diagrams of the marker (signal inducer)-labeled sandwich and label-free
immunosensor, aptasensor and affisensor.

Immunosensors utilize antibody-antigen (Anb–Ang) interactions for producing detectable
electrochemical signals [67]. Immunosensors take advantage of the strong selective chemical affinity
between antigen and antibody [68]. As a result, immunosensors are highly selective, very sensitive,
and accurate in their detection. Immunosensors can be categorized as traditional label-free/direct,
indirect, sandwich, and competitive type based on the mode of operation [69]. Again, based on
the change of signal response immunosensors can be categorized as “signal on” and “signal off” [68,69].
In the case of label-free immunosensors, the electrode surface is tailored with an antibody that can
bind with the specific antigen [70]. The electrolyte solution usually contains an electroactive redox pair
that is responsible for the electrochemical signal. The redox pair interaction with the electrode surface
changes based on the concentration of the antigen present on the solution. As a result, the electronic
signal varies and allows for quantitative detection of the antigen [71]. The setup can be reversed,
where the antigen is immobilized for specific antibody detection. In the direct label-free method,
the antigen is immobilized on the substrate and allowed to interact with the antibody [72]. An antibody
of hantavirus has been detected from serum solution using an AuNP-hantavirus antigen-modified
electrode [73. The sensor used a linear sweep voltammetry (LSV) technique and showed linearity for
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hantavirus antibody detection for 0.4 to 300 µg/mL. Sensor fabrication and hantavirus detection is
shown in Figure 5a. The reported sensor also showed good stability over 21 days [73]. In another work,
prostate specific antigen (PSA) detection was carried out with direct label-free method by Camilo et
al [72]. The report showed that AuNPs and layer by layer (LBL)-assembled nanostructures can be used
for signal amplification in a direct immunosensor detection system while simultaneously lowering
the number of biomolecules (antibody) needed. Their proposed sensor required approximately 10 times
fewer antibodies compared to traditional PSA immunosensors [72]. Label-free immunosensors are
also employed for detecting proteins, hormones, bacteria, etc. [74].Molecules 2020, 25, x 6 of 60 
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In the case of indirect immunoassays, the quantitative analysis of antigens is carried out by
measuring the changes in electrochemical signal due to the conjugation of a labeled secondary antibody
with the primary antibody which is already bound to antigen [75]. The design of indirect immunoassay
follows two-step binding strategies in which the primary label-free antibody binds to antigen which is
first immobilized on the substrate. Later, a labeled secondary antibody is immobilized on it which can
recognize the primary antibody and subsequently bind to it. The secondary antibody can be labeled
with various electroactive compounds or enzymes which helps in generating the desired signal.

A competitive immunosensing process utilizes the ability of antigen–antibody binding affinity
along with the catalytic properties of biocatalysts [76]. Typically, different labeled secondary antibodies
compete to bind with inadequately available primary antibody sites. AuNP-modified electrodes
have been utilized for the detection of phenolic estrogens through indirect competitive binding
processes [75]. The four phenolic estrogens conjugated with the secondary antibody and the binding
affinity followed: diethylstilbestrol > dienestrol > bisphenol A > hexestrol. This work utilized
a differential pulse voltammetry (DPV) technique [75]. In another work, Hou et al. reported a direct
competitive ECB that utilized an electrochemical impedance spectroscopy (EIS) technique for detecting
chlorpyrifos [77]. Chlorpyrifos antibodies were initially anchored on a glassy carbon electrode (GCE)
surface. Analyte competitor was prepared by combining spherical AuNPs with HRP, bovine serum
albumin (BSA), and chlorpyrifos. This analyte competitor then competed with chlorpyrifos to bind
with the anchored antibody. This resulted in the formation of insoluble 4-chloro-1(4H)-naphthalenone
through biocatalytic process in the presence of H2O2 and 4-chloro-1-naphthol. The proposed electrode
linear range from 1.0 × 10−3 ng mL−1 ~10 ng mL−1 [77]. The competitive immunoassay method can be
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utilized with other immunoassay method for amplifying the signal. This is very effective in lowering
the limit of detection (LOD) of ECBs.

Although label-free immunosensors are very selective, they are not adequately sensitive [78].
Hence, sandwich type immunosensors were conceived to overcome this limitation [1,78]. Similar to
the label-free system, the antibody (Anb1) is first immobilized on the ECB surface and allowed to
interact with the antigen (Ang). However, a second antibody (Anb2) is introduced to the system
that interacts only with the Anb1–Ang sites on the electrode surface to produce the sandwich
(Anb1–Ang–Anb2) [68,79]. As a result, the change in electronic signal is amplified and the sensitivity
is improved. Jampasa et al. developed an ECB for the sensitive detection of LipL32 protein through
a “signal on” process [80]. The sensor utilized a graphene oxide (GO) layer for immobilizing the Anb1.
The modified electrode was allowed to interact with the antigen. Finally, Au conjugated Anb2 was
introduced to the electrode system. The electrode fabrication process is shown in detail in Figure 5b.
This interaction process ensured selectivity and high sensitivity. The DPV technique was utilized
for the detection process. The sensor showed a stable current response towards LipL32 for over
14 days [80].
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(b) Schematic representation of the sandwich type electrochemical immunosensor fabrication process
for the sensitive detection of LipL32 which is responsible for leptospirosis [80]. Reprinted with
permission from [73,80], Copyright© 2020 Published by Elsevier B.V. MPA: 3-mercaptopropionic acid,
EDC: N-(3, Dimethylaminopropyl)-N-ethyl-carbodiimidehydrochloride, NHS: N-hydroxysuccinimide
ester, Ab: Antibody, GO: Graphene oxide.

Aptasensors were developed to overcome the limitations posed by the immunosensors [81,82].
POCT devices need to be cheap, robust, and easily scalable [65,83]. Using immunosensors it is often
difficult to fulfill these criteria. Aptasensors use aptamers (ssRNA, ssDNA, and peptides containing
15–40 bases) with unique binding sites that utilize their nucleic acid arrangements for interacting
selectively with target biomolecules [1,84]. Aptamer spatial configurations are changed to enable
the best interaction with the target biomolecules [84]. Additionally, aptamers are more stable than
antigens, and can easily recover their active spatial configuration after usage thereby allowing for
the reuse of the same electrode multiple times [85]. Based on how the immobilized aptamers interact
with the target analyte, Han and coworkers proposed the following categories: (a) spatial configuration
rearrangement of aptamers based on target interaction [86–88]; (b) sandwich type interactions [89–91];
(c) dissociation or displacement of aptamers through target interaction [92,93]; and (d) competitive
replacement of aptamers [14,94–96].
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In the case of type-a biosensors, the immobilized aptamers change their configuration with respect
to interactions with the target biomolecules [87]. Mazaafrianto and co-workers developed an aptasensor
for detecting ochratoxin A (OHA) based on structure switching [88]. The proposed sensor was able to
obtain an LOD of 113 pm through the “signal on” method. Figure 6a shows the OHA sensor setup and
its interaction process for electrochemical signaling. OHA interaction induced the structure change
in the aptamer that then allowed interaction with methylene blue (MB) that resulted in the increased
signal [88].
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Figure 6. Electrochemical aptasensors for the detection of biomolecules. (a) Aptamer anchored on gold
electrode surface for Ochratoxin A (OHA) detection through structure switching of the aptamer [88].
(b) ECB for the sensitive detection of carcinoembryonic antigen (CEA) through label-free sandwich
method [89]. (c) Aptamer displacement strategy-based sensor for the detection of PTK-7 [93].
(d) Schematics of a label-free competitive aptamer cytosensor design and detection process of
hepatocellular carcinoma (HepG2) cells [96]. Reprinted with permission from [88], Copyright ©
2020 Published by J-STAGE, [89], Copyright© 2020 Published by Elsevier B.V., [93], Copyright© 2020
Published by Springer Nature, [96], Copyright© 2020 Published by ECS. MCH: 6-mercapto-1-hexanol,
PTK-7: protein tyrosine kinase-7, HP: hairpin probe.

Similar to immunosensor, sandwich type aptasensors (type b) also utilize signal amplification
through a double interaction system [69]. Research strategies have been focused on developing
label-free sandwich aptasensors for cost-effective and rapid biomolecule detection. Wang et al.
proposed an antibody and label-free sandwich sensor for the detection of carcinoembryonic antigen
(CEA) cancer biomarker [89]. In this setup, the aptamer was deposited on the Au electrode surface and
allowed to interact with CEA. The sensor showed an increased DPV response when Concanavalin A
(conA) was allowed to interact with the Au/aptamer–CEA conjugate. However, in the absence of
CEA, conA did not show any interaction with the Au/aptamer electrode system shown in Figure 6b.
The sensor showed very good selectivity along with a low LOD of 3.4 ng/mL [89].

For type-c ECB systems, the aptamer probe is modified through displacement/dissociation at
certain sequences in the presence of the target biomolecules [96]. This allows for high selectivity towards
the analyte and amplification of the electrochemical signal. In a work by Li et al. the sgc8 aptamer was
used for modifying a hairpin probe (HP2) and detecting protein tyrosine kinase-7 (PTK-7) [93]. HP2 was
immobilized on the GCE surface along with HP1. In the presence of PTK-7, the HP2 may undergo
structural change exposing the aptamer that hybridized with the HP1. Finally, a redox probe carrying
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HP3 is introduced that upon interaction produced suitable voltammetric signals. Besides the very low
LOD of 1.8 fM, the sensor surface is regenerated through the removal of PTK-7 at the end of each
cycle [93]. The ECB fabrication process and PTK-7 detection mechanism are shown in Figure 6c.

For type-d ECBs, the target analyte replaces the aptamer to produce the desired electrical
signal [94]. Figure 6d shows the mechanism for such a sensor that was used for detecting hepatocellular
carcinoma (HepG2) tumor cells through the “signal off” process [96]. An LBL assembly system
was used where AuNPs were initially deposited on ITO (indium tin oxide) electrodes along with
a TLS11a aptamer. This was then allowed to interact with the LBL assembly of PtNP-Fc-labeled cDNA
(complementary DNA). When no tumor cells were present, the PtNP assembly gave a high current
response. However, in the presence of tumor cells the cDNA could no longer effectively bind with
the aptamer due to denaturation of the double strand DNA. This resulted in a decreased current signal
that was linearly proportional to the logarithm of the HepG2 cell concentration. [96].

Affibody-based sensors are a result of using antibody mimicking bioengineered small protein
(6 to 7 kDa) molecules to overcome the limitations of immunosensors [97]. These affibodies are
engineered according to the need and have high binding affinity, selectivity, and survivability in high
temperature conditions [98]. Antibodies typically contain disulfide bonds that lead to poor heat
stability [1]. However, only a small portion of the multidomain protein structure of antibodies is
used in antigen detection [1,98]. This is where affibody technology comes into use. The parts of
antibodies that are responsible for their affinity and selectivity towards antigens are engineered in vitro.
These affibodies are often paired with various metal nanoparticles to further enhance their efficacy [99].
An impedimetric strip ECB for human epidermal growth factor receptor 2 (HER2) biomarker that
utilized affibody as the biorecognition element is shown in Figure 7 [100]. AuNPs were used for
immobilizing the anti-HER2 affibodies. This resulted in selective interaction with the HER2. Because of
that, the impedimetric charge transfer resistance increased linearly with increasing HER2 concentration.
Analysis of the experimental results provided an LOD of 6 µg/L for the proposed sensor. Compared to
conventional immunosensors, the affibody sensor was more sensitive, provided a more rapid response,
and higher specificity [100].Molecules 2020, 25, x 10 of 60 
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Figure 7. Affibody-sensor for the detection of human epidermal growth factor receptor 2 (HER2)
biomarker. (a) Preparation of AuNP–graphite strip through electrodeposition. (b) Anti-HER2
immobilization over the AuNP–graphite strip. (c) Formation of MCH self-assembled monolayer
with the anti-HER2 AuNP–graphite strip. (d) Addition of blocking agent to the electrode strip.
(e) Interaction with HER2 and (f) the corresponding impedance signal [100]. Reprinted with permission
from [100], Copyright© 2020 Published by Elsevier B.V. GSPEs: Graphite screen-printed electrodes,
EIS: Electrochemical impedance spectroscopy.
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2.2. Classification of ECBs Based on EATs

A wide variety of EATs are currently employed in ECBs [53]. These techniques are sometimes
combined to work synergistically to further amplify the electronic signals [53,54]. Therefore, based on
the different EATs utilized, ECBs can be categorized as follows:

• Amperometric technique
• Voltammetric technique
• Potentiometric technique
• Conductometric technique
• Impedimetric technique

Figure 4b shows a schematic representation of ECB sensing process and the different EATs used
in them. Below, these techniques are discussed in detail.

2.2.1. Amperometric Technique

This is a sensitive EAT that utilizes an applied potential for inducing oxidation or reduction of
the target analyte and the response is observed as a change of current signal with respect to time
and the analyte concentration [101]. It is one of the most popular EATs because it offers sensitive
detection and is very simple to use [101,102]. The LOD of the amperometric technique is in the range of
10−5 M [103]. The use of specific analyte is advantageous because it allows for limiting interference [104].
At the same time, the charging current is also minimized within a few hundred seconds allowing for
a very low limit of detection (LOD) [1,102]. Because of these advantageous properties, ECBs have often
utilized amperometric techniques. For instance, a portable ECB was proposed by Dong and coworkers
for the sensitive and selective detection of histamine (HA) through an AuNP–chitosan–Prussian
blue-modified electrode system [105]. The electrode used an HA antigen that competitively interacted
with an HRP-labelled HA antibody for HA detection using an amperometry technique within the 0.01
to 100 µg/L linear range [105]. Figure 8 shows a schematic presentation of the portable sensor
fabrication process and its application for HA detection. Combined hydrodynamic and amperometry
techniques can further enhance the sensitivity and lower the LOD [106]. A hydrodynamic amperometry
technique-based aqueous uranyl ion ECB was reported, which showed a higher sensitivity and lower
detection limit compared to steady state amperometric systems that were previously reported [106].

2.2.2. Voltammetric Technique

These are EATs where a certain potential region is scanned, and the signal is displayed in the form
of a peak or a plateau [107]. The current response is proportional to the concentration of the analyte
present in the system [13,107]. The most commonly used voltammetric techniques include linear sweep
voltammetry (LSV), cyclic voltammetry (CV), DPV, and square wave voltammetry (SWV) [108–110].
Although the principle is same for all the techniques, they differ in the way that the potential region is
scanned. Based on the scanning method, the most sensitive are DPV and SWV [111]. The detection
limits for LSV, CV, DPV, and SWV are 10−5, 10−5, 10−7, and 10−8 M, respectively [103]. DPV-based
highly sensitive ECB was reported for the detection of Tau-441 protein, which is correlated to cognitive
disorder [112]. The proposed ECB utilized an Au electrode that was modified with multi-walled carbon
nanotubes-reduced graphene oxide (MWCNT–rGO) and Tau-441 specific antibody. The sensor showed
a linear range from 0.5–80 fM with an LOD of 0.46 fM [112]. The voltammetric electrode preparation
process is shown in Figure 9. Such low-level detection of bioanalytes with voltametric-based ECBs
shows their potential for application in POCT.
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Figure 9. A “signal off” ECB for the voltammetric detection of Tau-441 protein. Assembly of
multi-walled carbon nanotubes-reduced graphene oxide-chitosan-antibody (MWCNT–rGO–CS) over
the gold electrode for the voltammetric detection of AuNP–Tau-441 conjugate [112]. Reprinted with
permission from [112], Copyright© 2020, Springer Nature.
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2.2.3. Potentiometric Technique

For the potentiometric technique, the change of potential in the electrochemical cell is measured,
while the current change is minimal [113]. The potentiometric sensors are also known as ion selective
electrodes (ISEs) because they are often designed to generate responses with respect to the change
in concentration of a specific ion [113,114]. Their setups are different from the traditional amperometric
and voltammetric cells, because they often utilize two reference electrodes that measure the potential
change with respect to the target analyte concentration in the cell [113,115]. These ISEs can be converted
to ECBs by modifying the electrode with biocatalysts that interact with biomolecules to produce ions
that the ISEs can detect [1,113]. Like other ECBs, they can also operate independent of sample volume,
have a low LOD, small size, and produce a rapid response. On top of these, potentiometric ISEs are
able to provide information regarding the concentration of free ions or ion activity in the cell [114,116].
Manjakkal et al. reported the fabrication of a potentiometric pH sensor that can be used as a wearable
device [117]. The sensor showed excellent stability to washing and a good sensitivity of 4 mV/pH
in the pH range of 6–9 [117], making it an excellent candidate for POCT for various bioanalytes through
the incorporation of proper biorecognition component. The fabricated wearable device is shown
in Figure 10.
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Figure 10. Schematic representation and photograph of the wearable ion selective electrodes (ISE) pH
sensor. (a) Schematic of the pH sensor where Ag was deposited on the cloth. The sensing electrode (SE)
and reference electrodes (RE) are screen printed over the Ag substrate. (b) Picture of the flexible cloth
sensor. Inset shows the SE and RE electrodes [117]. Reprinted with permission from [117], Copyright©
2020, MDPI.

2.2.4. Conductometric Technique

The change of conductance in the electrochemical setup is measured as a response of interactions
between the BRC and analyte [118]. These types of ECBs usually use catalytic biorecognition
modifications that result in the change of ionic strength in the cell [118,119]. This change is then
measured to determine the biomolecules qualitatively and quantitatively [73,120]. Kolahchi et al.
have developed a miniaturized conductometric electrodes for phenol detection [121]. The optical
microscopic image and electrochemical setup of the device is shown in Figure 11. In this setup, they
used AuNP-immobilized bacteria (Pseudomonas sp. (GSN23)) as the biorecognition component for
the detection process. This setup enabled bypassing of the micro-extraction process required for phenol
detection with a simple dilution procedure [121]. Conductometric sensors have also been used for
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the detection of biomolecules from human serum and urine samples, and pathogens from foods for
biosecurity purposes [118,122,123].Molecules 2020, 25, x 14 of 60 
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Figure 11. Conductometric ECB for the detection of phenol. (a) The strip gold electrode with 20 nm
thick intermediate titanium (IDT) for phenol detection. (b) SEM image of bacteria over the glassy
carbon electrode (GCE) (grey) and gold (dark) conductometric sensor. (c) The change in conductance
with respect to the addition of phenol [121]. Reprinted with permission from [121], Copyright© 2020
Elsevier Ltd.

2.2.5. Impedimetric Technique

In the impedimetric technique, the changes in resistance and capacitance at the interfacial region
of the working electrode are measured with respect to analyte concentration [68]. This is also known
as electrochemical impedance spectroscopy (EIS) technique. The measurements are carried out
through the application of an alternating current as the exciting factor that perturbs the voltage
as a function of frequency (1 × 10−5 to 0.7 V) [1,124]. This is one of the most popular techniques
used in bioaffinity sensors (immunosensor and aptasensors), because of its high sensitivity to slight
changes in impedance [125]. A paper-based impedimetric ECB was developed for the rapid and
on-site detection of bacterial contaminations in drinking water [126]. The paper strip was initially
carboxylated, and was then used for immobilizing Concanavalin A (conA) lectin. The paper sensor
setup process is shown in Figure 12. The impedimetric sensor showed variation of resistance over
a wide concentration window with a low LOD of 1.9 × 103 CFU/mL [126]. Impedimetric ECBs are
frequently employed for detecting small biomolecules and various biomarkers [127].
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Figure 12. Paper-based impedimetric ECB for the detection of bacterial colonies in the water.
(a) Schematic representation of the fabrication of paper-based ECB. (b) Change of impedance signal
with the bacterial colony concentration variation and the corresponding charge transfer resistance
(RCT) vs concentration calibration plot [126]. Reprinted with permission from [126], Copyright© 2020
Published by Elsevier B.V.

3. MNPs and their Composites in ECBs

3.1. Influence of MNP Morphology in Biosensing

The size and shape of metal nanoparticles plays a crucial role in improving the electrocatalytic
activity, selectivity in biomolecular binding, metal–electrode/metal–support interactions for
electrochemical biosensing applications [63,82,128–131]. As a result, research into MNP-based ECBs
has received considerable attention. Figure 13 shows the rise in research interest in the field of ECBs
from 2010–2020. In this section, the extensively studied MNPs are discussed (Au, Ag, Cu, Pt NPs etc.)
based on their size, shape, and structure dependent electronic properties that significantly influence
their sensing ability [130–133]. The synthetic procedures that are regularly utilized to create these
MNPs and the technological advancement for characterizing these MNPs are also explored in sequence.
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3.1.1. AuNPs: Effect of Size and Shape in Biosensing

AuNPs are the most commonly employed MNPs in ECBs due to their outstanding chemical and
electrical properties, excellent biocompatibility, and catalytic ability [54,130,131]. These properties
resolutely depend on the size and shape of the AuNPs [133,134]. It is well known that the high index
facets and edges of the Au surface are more likely to enhance catalytic activity in contrast to flat
or spherical surfaces [135]. Depending upon the synthesis protocols, the properties of the AuNPs,
particularly the size and shape, can be precisely controlled. Tremendous efforts have been put
forward over the decade to synthesize AuNPs with precise control over size (varying from 1–100 nm)
and shape [136]. In a typical wet chemical synthesis process (Turkevich and Lee Miesel process),
the metal salt is reduced in the presence of a stabilizing agent or an adsorbate or a capping agent
which selectively binds to the surface of AuNPs in order to protect them from aggregation and,
therefore, imparting greater stability [137,138]. Furthermore, the controlled nucleation and crystal
growth mechanism influence the morphology of the prepared AuNPs and thus allow the formation of
different shapes, such as Au nanorods, nanocubes, nanowires, nanopyramids/bipyramids nanocages,
nanoflowers, etc. [131,133,139].

In one study, 3D-printed tubes were designed for the simultaneous detection of glucose and
H2O2 [140]. The 3D-printed tube utilized two working electrodes (WEs). One WE was modified
with colloidal PtNPs, and the other one with spherical AuNPs and HRP. The colloidal PtNP was
utilized for glucose sensing, while the AuNP–HRP system was used for H2O2 sensing. The sensor
showed a broad linear range and low LOD for both analytes, showing the effectiveness of MNP
shape control in biosensing ability [140]. The effect of AuNP size on the effectiveness of ECB was
investigated by Quintero-Jaime and coworkers [141]. AuNPs were impregnated on functionalized
MWCNTs (fMWCNTs) in a ratio of 0.5 and 50. The AuNP–fMWCNT-0.5 ratio system showed
AuNPs of 9.5 nm, and the AuNP–fMWCNT-50 ratio system showed AuNPs of 6.6 nm. Based on
the size of AuNPs, the prepared ECB showed different linear range and sensitivity for PSA detection.
The AuNP–fMWCNT-0.5 ratio and AuNP–fMWCNT-50 ratio systems showed linear ranges from
0–4 ng/mL and 0–6 ng/mL, respectively [141]. The sensor fabrication process is shown in Figure 14.
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3.1.2. AgNPs: Effect of Size and Shape in Biosensing

Besides being highly conducting and biocompatible, AgNPs are also one of the most commonly
manufactured MNPs [54,142]. They are more easily oxidized compared to AuNPs in an electrochemical
setup [19,26,54,143]. This makes them an excellent candidate for ECBs. Despite these advantages, the use
of AgNPs is limited by the fact that they are less stable and cannot easily be functionalized [54,144].
Contemporary research in AgNP synthesis for biosensing processes is aimed towards eliminating these
limitations. As a result, various methods have been developed for size- and shape-controlled stable
AgNPs synthesis [145].

AgNPs of definite size can be produced through the chemical reduction process. The same
method that Turkevich and coworkers developed for spherical AuNPs synthesis can also be used for
AgNPs [54,137]. AgNO3 is the most commonly used metal salt due to its good solubility in polar
solvents. The size of synthesized AgNPs can be controlled through the use of an appropriate reducing
agent. Citrate usually produces AgNPs between 50–100 nm diameter, while 5–20 nm AgNPs are
obtained when NaBH4 is used [146,147].

Morphological properties of AgNPs can strongly influence its applicability in electrochemical
sensing applications. For instance, an MWCNT–AgNPs modifier was shown to be able to detect
glucose from 0.025 to 1.0 mM when incorporated on a GCE with GOx [148]. The ECB followed
the first-generation mechanism of dissolved oxygen reduction for glucose [9,53]. The average size of
AgNPs was determined to be around 5 nm for this system [148]. It has been previously reported that
the oxidation potential of AgNPs shifts towards a more negative potential with decreasing size [128].
The thermal scattering is also accelerated in AgNPs smaller than 5 nm [129], suggesting that the small
size of the AgNPs played a crucial role in dissolved O2 reduction process.

3.1.3. PtNPs: Effect of Size and Shape in Biosensing

Besides gold and silver NPs, platinum NPs (PtNPs) are also frequently employed in ECB
fabrication [149,150]. PtNPs are highly conductive, relatively stable, and have good catalytic
activity [150]. Aside from these benefits, PtNPs can catalyze hydrogen peroxide (H2O2) decomposition
during an electrochemical process [151,152]. This is an important property because it can work
in synergy with enzymatic processes to significantly amplify the electrochemical current response
while lowering the overpotential requirement [152]. The electrocatalytic activity of PtNPs is also
dependent on structural properties.
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As is the case with other MNPs, it is possible to prepare PtNPs that have a definite size and shape.
The most commonly employed synthesis strategies include chemical reduction, electrochemical
reduction, electrodeposition, and the photochemical reduction of platinum salts (PtCl62− and
PtCl42−) [152].

PtNPs with cubic, polygonal, or rod shapes offer better anchoring sites for biorecognition
components compared to spherical NPs [151]. Huang et al. reported the development of a highly
effective glucose and H2O2 ECB [153]. For this, flower-like AgNPs were decorated with dewdrop-like
PtNPs for enhancing the electrocatalytic surface area, selectivity, and stability. Figure 15 shows
the synthesis and morphological structures of the ECB. The sensor showed linear range from 1 µM to
2 mM for H2O2 and 1 to 14 mM glucose [152].
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3.2. Properties of MNPs Composites

MNPs have excellent electrocatalytic activity. However, when used in biosensing application
these properties need to be fine-tuned [153,154]. The most convenient way of tuning the properties of
MNPs is through combining MNPs with other conducting nanomaterials (CNMs). Tran and coworkers
reported a graphene quantum dot (GQD) and AgNP nanocomposite for detection of glucose [155].
The composite showed a wide linear range of 1–10 mM, although the composite had larger size
(~40 nm) compared to previously reported NPs [155]. Because of their ability to work synergistically,
CNMs such as fullerenes, GR, rGO, quantum dots (QDs), calixarenes, and carbon nanotubes (CNTs) are
frequently employed for preparing MNP composites (MNPCs) [156,157]. The electrocatalytic activity
of these MNPCs is largely dependent on the choice of MNPs and CNMs [154]. Hence, it is crucial to
have a sound understanding of the physical, chemical, and electrical properties of these CNMs before
using them as electrocatalysts in preparing ECBs.

3.2.1. Fullerene-Based MNPCs

Since their discovery in 1985, these sp2 carbon-containing truncated icosahedron-shaped fullerenes
have found practical use in a wide range of applications [158]. The C60 and C70 fullerenes can be
reduced in a reversible manner for up to six electrons (1e− each step) transfer process in nonaqueous
solvents [159]. The electrooxidation of fullerenes is often irreversible in nature [159]. The ease of
electrooxidation or reduction is dependent on the size and symmetry of the fullerenes [158,159].
Usually, larger fullerenes are more electroactive [160]. Fullerenes can be easily functionalized through
such redox processes. Furthermore, fullerenes can be synthesized in a way that they interact with
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cations, metal atoms, or small molecules via coordination or adduct formation to form endohedral and
exohedral systems [159]. Electron spin resonance (ESR) analysis showed that the metals in endohedral
systems are typically in the oxidized form, making the fullerene skeleton negative charge bearers.
These endohedral fullerenes act like organic salts, meaning these are capable of interacting with both
positively and negatively charged systems. As a result, biorecognition systems carrying opposite
charges can be utilized with ease for preparing biosensors [159,161]. Compton et al. first reported
fullerene-modified electrodes for sensor application. MNPs can be incorporated with fullerenes
through both endohedral and exohedral means for preparing ECBSs [159].

3.2.2. CNT-Based MNPCs

CNTs are a class of nanostructured CNMs that are of tubular shape with few nanometers
in diameter, and lengths in the micrometer range [161]. These are either single wall CNTs (SWCNTs)
or MWCNTs, based on the number of rolled-up layers [158]. Some of the unique properties of CNTs
are excellent electrical and thermal conductivity, good elasticity (~18%), high tensile strength and
flexibility, and good biocompatibility [118,152]. It has been shown that synthetic cardiac cells can be
grown on CNTs without any significant toxic effects [162]. Besides, both SWCNTs and MWCNTs can
be functionalized to facilitate binding with biorecognition entities through electrostatic interactions or
covalent linkages for fabricating effective ECBs [141,163].

3.2.3. GR-Based MNPCs

Single sheet GR (graphene) was first prepared through mechanical exfoliation by Geim and
coworkers in 2004 [9]. Of all the allotropes of carbon, the electronic properties of GR are the most
fascinating. GR can be considered in biosensing applications as single layer GR (SLGR), few layer
GR (FLGR), and multilayer GR (MLGR) [164]. SLGR is crystalline in nature, FLGR is crystalline up
to 10 layers, and beyond that 3D graphite-like properties are observed [9,156]. SLGR sheets have
very high conductivity (~1.6 × 105 S/cm) and low resistance (30 Ω/sq) [9]. The anharmonic stretching
and bending vibrational modes of sp2 hybridized GR sheets are responsible for forming the finite
“rippled” structures that stabilize the 2D sheets while promoting unique electronic properties that are
not observable in other allotropes of carbon [165]. These properties include the absence of a weak
localization force, ambipolarity of charge carrier concentration, and ballistic electron transport [166,167].
GR can be derivatized for producing graphene nanoribbons (GRNs), GO, rGO, GR nanowalls (GRWs),
and GQDs [9]. Each of these derivatives have their own electronic properties that enables them to
be used in diverse biosensing platforms [155]. GR sheets can be considered as the building block for
the other allotropes of carbon. Figure 16 shows a schematic representation of how CNTs, fullerenes,
and graphite are related to GR.

Table 1 discusses MNPC-based ECBs that have been reported for the detection of various
biomolecules based on the size and shape of MNPs. It can be seen from the table that MNPs
with sizes between 5 and 20 nm are the most-used individual component in the ECB fabrication
process [4,23,26,27,29,41,44]. Although size variation is well studied, the shape of the MNPs used
is almost always spherical [4,26,41,44,48,85]. The area of MNP shape control deserves significant
attention, because NPs with unique shapes (hollow spheres, cubic, porous, pyramidal, etc.) are likely
to offer better catalytic activity, increased surface area, and enhanced stability for the ECBs [23,28,39].
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Table 1. The table describes ECBs that utilized MNPs with various sizes and shapes along with
various conducting nanomaterials (CNMs) for biomolecule sensing. The biorecognition components,
biointeraction process, and EATs used in these ECBs are also mentioned.

Transducer Biorecognition
Component MNP MNP Size MNP

Shape
Biointeraction

and EAT Analyte References

Ab-N,S-GQDs@AuNP–PANI anti-HEV
antibody AuNP 6–14 nm spherical

Bioaffinity
immunosensor,

pulse impedance
HEV [4]

AuNP/SWCNTs/PDA/gold
electrode probe DNA AuNP 15 nm oval Bioaffinity

aptasensor, LSV target DNA [23]

HRP@PGA-C/AgNP HRP AgNP 5–8 nm spherical
Enzyme-based

Biocatalytic,
amperometry

H2O2 [26]

PtNPs/MWCNT/PEDOT glutamate
oxidase PtNP ~12–20 nm spherical

Enzyme-based
Biocatalytic,

amperometry
Glutamate [27]

PtNP/GR/SPCE ortho-
phenylenediamine PtNP 400 nm urchin Non-enzymatic

Biocatalytic, CV Cotinine [28]

AuNPs–CS/GR/CPE single-stranded
DNA Aptamer AuNP 10–20 nm spherical Bioaffinity

aptasensor, DPV
Activated
protein C [29]

Au/AuNP–avidin-HRP avidin-HRP AuNP 40 nm nanowall
Enzyme-based

Biocatalytic,
amperometry

DNA
Methylation [39]

MWCNT–AuNPs/GCE E-cadherin
antibody–QD AuNP 5 nm spherical

Bioaffinity
immunosensor,

DPV

Epithelial-
mesenchymal

transition
[41]
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Table 1. Cont.

Transducer Biorecognition
Component MNP MNP Size MNP

Shape
Biointeraction

and EAT Analyte References

Cu–nanoflower@AuNPs–GO
NFs coated Au chip

GOx–HRP–Cu
nanoflower AuNP 20 nm spherical

Enzyme-based
Biocatalytic,

amperometry
Glucose [44]

PB–CS–AuNPs/SPCE
HRP-labeled

histamine
antibody

AuNP ~50 nm spherical
Bioaffinity

immunosensor,
amperometry

HA [105]

DMF–EC/AuNPs/HRP HRP AuNP ~20–30 nm spherical
Enzyme-based

Biocatalytic,
amperometry

H2O2 [62]

BSA/anti-A(1–42)/AuNPs/
MPA/Au

monoclonal
antibody mAb

DE2B4
AuNP ~30 nm spherical

Bioaffinity
immunosensor,

SWV

amyloid beta
1–42 [70]

ds-ATPA/TBA on
AuNPs–MoS2/GCE

ds-ATPA and
TBA AuNP 10 nm spherical Bioaffinity

aptasensor, SWV
ATP and

Thrombin [85]

AgNPs@GQDs/CS/GCE GOx AgNP 40 nm spherical
Enzyme-based

Biocatalytic, CV
and amperometry

Glucose [155]

GOx/PtNP@SnS2/Nafion/GCE GOx PtNP ~20–40 nm spherical
Enzyme-based

Biocatalytic,
amperometry

Glucose [168]

XO/AuNP/PtNP/MWCNT/
GCPE

Xanthine
oxidase

AuNP
PtNP

50 nm
5 nm

Spherical
spherical

Enzyme-based
Biocatalytic, CV xanthine [169]

AgNPs–Aβ/PrP95–110/GE peptide AgNP ~15 nm spherical Bioaffinity
aptasensor, LSV beta-amyloid [170]

HEV: Hepatitis E virus; GQD: graphene quantum dot; PANI: polyaniline; PDA: poly dopamine; PEDOT:
Poly(3,4-ethylenedioxythiophene); SPCE: screen-printed carbon electrode; CS: chitosan; DMF: dimethylformamide;
PB: prussian blue; BSA: bovine serum; MPA: 3-mercaptopropionic acid; ATPA: ATP aptamer; XO: Xanthine oxidase.

4. MNP-Based ECBs for Biomolecule Detection

The previous section discussed the properties of MNPs and MNPCs that influence their
effectiveness in ECBs. This section will discuss about the advances in ECB design strategies for the rapid
and effective detection of small biomolecules (SBMs), cancer biomarkers, and the COVID-19 virus.

4.1. MNPs in Small Biomolecule Sensing

SBMs are organic compounds that do not have extended polymerization and are responsible for
maintaining chemical balance throughout the body [171,172]. In the case of diabetes, the world’s ninth
deadliest disease, the blood glucose level can change drastically (up to 30 mM) from the normal level of
4 to 8 mM [173,174]. Dopamine (DA) is a neurotransmitter that is responsible for controlling the motor
and sensory nerves, feelings, and various other body functions [22,175]. Abnormality (normal level
0.01–1 µM) in DA level is responsible for attention deficit hyperactivity disorder, Alzheimer’s disease,
and schizophrenia [175]. Furthermore, the irregularity in DA level can be used for determining
Parkinson’s disease and HIV [175,176]. Uric acid (UA) is the end product of purine metabolism that is
normally present in the body within 100 µM concentration range [176]. It helps to relieve stress caused
by oxidative processes. However, in excessive content it can cause gout and hyperuricemia [176].
During the production of antioxidant UA through the xanthine oxidation process, H2O2 is formed
as a short-lived oxidizing agent that can show acute toxicity [177]. Usually, only a trace amount of
H2O2 (10–100 nM) is found in the circulated blood, which makes detection an arduous task [177].
While glucose detection requires a wide linear range, other SBMs necessitate a highly sensitive approach.
ECBs that are used in the detection of SBMs are often biocatalytic in nature and utilize impedimetric,
amperometric, and voltammetric EATs [129,154].

GOx is one of the most frequently used enzymes for the glucose detection ECBs, because it is
capable of inducing a direct electron transfer through its two flavin adenosine dinucleotide (FAD)
coenzymes [9]. The enzyme-based glucose sensors are categorized as: (i) first generation ECBs that
utilize O2 molecules as mediators to oxidize FAD to FADH2; (ii) second generation ECBs that use
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artificial mediators for glucose sensing; (iii) third generation ECBs that induce direct electron transfer
between glucose and the immobilized enzymes [9]. The mechanisms of these three types of glucose
sensors are shown in Figure 17. MNPs can significantly enhance the performance of enzymatic glucose
sensors through providing a high surface area, alternative low energy catalytic pathway, and stability
for immobilized enzymes [9]. A PtNP-coated SnS2 enzymatic (GOx) glucose sensor was reported with
linear range from 0.1–12 mM [168]. Authors concluded from morphological analysis of the prepared
electrochemical glucose biosensor that the use of hydrophilic PtNPs significantly enhanced GOx
immobilization. This in turn resulted in the sensitive detection of glucose over the wide linear
range [168,178]. Magnetic NiNPs have been used for directly immobilizing GOx [179]. The glucose
sensor showed linearity up to 12 mM with an LOD of 0.42 mM. The proposed sensing mechanism for
the sensor is shown in Figure 18a. The magnetic NiNP sensor did not need to incorporate any other
binding material for GOx immobilization [179].Molecules 2020, 25, x 23 of 60 
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Although HRP is most commonly employed for H2O2 detection, other redox-inducing
biorecognition components such as ferredoxin, cytochrome C, and hemoglobin are also
utilized [180]. A myoglobin-based H2O2 sensor was reported which used MoS2 NPs and GO [176].
The myoglobin/MoS2 NP/GO system showed the best current response along with better stability
compared to only myoglobin/MoS2 NPs or myoglobin/GO systems [181]. In another study, cytochrome
C enzyme was used for fabricating the H2O2 sensor—Au nanocubes were utilized for immobilization
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of cytochrome C [182]. Figure 18b shows the fabrication process of the reported H2O2 ECB. The sensor
showed a linear range from 100–1000 µM for H2O2 detection [182]. The use of cubic NPs enhanced
the electroactive surface and incorporated a better electron transfer mechanism for biocatalytic H2O2

reduction. This work shows the importance of shape- and size-controlled MNP fabrication for use
in the ECBs.Molecules 2020, 25, x 24 of 60 
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Figure 18. Electrode fabrication process and detection of glucose and H2O2. (a) the possible mechanism
for the simultaneous oxidation of H2O2 and glucose molecules by NiNP/Ni substrate-based enzymatic
ECB [179]. (b) The synthesis process for cyt c conjugated AuNCs imbedded hydrogel ECB for
the sensitive detection of H2O2 [182]. Reprinted with permission from [179], Copyright © 2020
Published by the American Chemical Society [182], Copyright© 2020 Published by Elsevier B.V.

Unlike H2O2 and glucose, there is no specific biocatalyst that is employed for the detection of
DA. Paulraj and coworkers showed that polyaniline (PANI)-coated AgNP-modified electrodes can be
used for simultaneously detecting DA and H2O2 [178,183]. The sensor was utilized for oxidizing DA
and reducing H2O2. The proposed sensor showed a low LOD of 0.03 and 0.12 µM for H2O2 and DA,
respectively [178,183]. However, UA is often detected with the help of uricase (UOx) enzyme [182,184].
A Cu2ZnSnS4 NP-modified ECB was reported for the detection of UA [182,184]. The sensor utilized
UOx in combination with the Cu2ZnSnS4 NPs for the detection of UA. The low LOD of 0.066 µM and
wide linear range of 50 to 700 µM shows the effectiveness of using UOx enzyme in the modification
process [182,184]. In another work, an AuNP and rGO complex was utilized for the immobilization
of UOx [183,185]. This biosensor was utilized for the rapid detection of UA from human serum
samples. The sensor required lower positive potential (low overpotential) compared to traditional
electrochemical sensors. The linear range was from 50 to 800 µM with good selectivity and real
sample analysis results [183,185]. These works show the advantage of using ECBs compared to
traditional methods in the detection of small biomolecules. The high sensitivity, good selectivity,
ease of preparation, rapid detection, and cost-effectiveness are the most attractive aspects of these ECBs.
Table 2 discusses the fabrication process and EATs utilized for the detection of small biomolecules.
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Table 2. A brief description of various ECBs that have been reported from detection of glucose,
dopamine (DA), H2O2, and uric acid (UA).

Transducer MNP Biorecognition
Component Analyte Linear Range LOD References

HRP@PGA-C/AgNP AgNPs HRP H2O2 1–3000 µM 0.35 µM [26]

Cu–nanoflower@AuNPs–GO
NFs coated Au chip AuNPs GOx–HRP–Cu

nanoflower Glucose 0.001–0.1 mM 0.018 µM [44]

DMF-EC/AuNPs/HRP AuNPs HRP H2O2 25–100 µM 9.1 µM [62]

AgNPs@GQDs/CS/GCE AgNPs GOx Glucose 0.1–10 mM 0.01 mM [155]

GOx/PtNP@SnS2/Nafion/GCE PtNPs GOx Glucose 0.1–1 mM
1–12 mM 2.5 µM [168]

GOx–NiNP/Ni/Au NiNPs GOx Glucose 1–12 nM 0.42 mM [179]

Ag-doped
PANInanocomposites/GCE AgNPs AgNP DA

H2O2

10–90 µM
10–90 µM

0.12 µM
0.03 µM [183]

Ag/MoS2/ITO AgNPs Ag/MoS2 DA 0.2–50 µM 0.2 µM [186]

GOx/PtNP/acetic acid-treated
LIG PtNPs GOx glucose 0.3 µM–2.1 mM 0.3 µM [187]

GOx/PVA-Fe3O4/Sn Fe3O4 GOx glucose 1–30 mM 0.5 mM [188]

UOx/EDC:NHS/CZTS/ITO Cu2ZnSnS4 UOx UA 50–700 µM 1.3 µM [184]

UOx/Au-rGO/ITO AuNPs UOx UA 50–800 µM 7.32 µM [185]

AuNFs/Fe3O4@ZIF-8-MoS2 AuNPs Fe3O4@ZIF-8 H2O2 5 µM–120 mM 0.9 µM [45]

GCE/HUA/HNT/FAD HNT HUA and FAD H2O2 1–250 µM 0.49 µM [189]

PGA: poly(glutamic acid); NF: nanoflower; GOx: glucose oxidase; UOx: uricase; HUA: humic acid; HNT: Halloysite
nanotube; FAD: flavin adenosine dinucleotide; LIG: laser-induced graphene; ITO: indium tin oxide.

4.2. MNPs in Cancer Biomarker Detection

Carcinogenesis happens at a genetic level in the cell, and follows a complex pathway that
ultimately disturbs the homeostatic equilibrium by altering the cell death and cell proliferation
rate [185]. Despite tremendous efforts and development, treatment of cancer is still challenging
because of the following reasons: (i) proliferation of cancer cells and cell proteins through mutation
of the proto-oncogenes; (ii) rejection of growth inhibition signals; (iii) evasion of apoptosis or
activating anti-apoptotic genes in cells [69,190,191]. For early-stage diagnoses of cancers, tracking of
the disease-specific biomarkers is essential. Biomarkers are characteristics biomolecules overexpressed
in the beginning of carcinogenesis, either by the body immune system in response to the disease or by
the tumor cell itself [11,71,97,100]. Biomarkers could be utilized to assess the responses from the body
towards a specific treatment process for controlling disease [191]. A wide range of biomarkers based
on genetic, proteomic, glycomic, etc., are well established for detecting cancers and the prognosis
processes [192–194]. Evaluation of these different biomarkers in bodily fluids such as serum, blood,
urine, saliva, tears, and sputum would require noninvasive and cost-effective methods for cancer
screening [191–194]. As a result, biomarker detection based on electrochemical methods has been
perceived as an effective early-stage diagnosis of cancer, even though clinical sampling and analysis
is still in its infancy. The type of materials utilized for electrode modification are mostly MNPs and
MNPCs. This has been discussed in detail in Section 3. MNPs provide improved biocompatibility,
better surficial stability, and binding affinity for biomolecule conjugation [82,105,130]. Such surface
immobilization of BRCs (antibody, peptide, or aptamer) for preparing immune/aptasensors depends
on the functionality of the biomolecule and the type of nanostructured electrode modifiers used.
Both of these need to be compatible with each other [62,155,179,183]. For example, AuNPs allow
thiol-functionalized antibody/aptamers to be anchored over the electrode surface via activation
of the thiol group (SH)–Au bond, which is one of the fundamental pathways followed in most
electrochemical bioaffinity sensor preparations [97,152]. In short, bioaffinity ECB functions are based
on such binding capacities of the BRCs via interactions with the nanostructured electrode materials.
The BRCs are mainly antibodies (mono/polyclonal), aptamers (single stranded ssDNA sequence/RNA),
peptides, etc., which can effectively capture target antigens or biomarkers while constructing bioaffinity
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ECBs [44,85,98,155]. Table 3 shows the mostly studied bioaffinity ECBs for different biomarkers based
on MNPs and nanocomposites assays.

Table 3. MNP-based ECBs for the detection of cancer biomarkers. The table discusses the transducer
design and biomarker detection processes, (*) is used to tag base electrode (transducer).

Nanostructure Biorecognition Molecules
Modified Transducer

(Base Electrode *)
Type of ECBs EAT

Linear
Range

(ng/mL)

LOD
(ng/mL) Reference

Carcinoembryonic antigen (CEA): Colorectal, pancreatic, breast, and liver cancers

Au*/COOH–rGO/ PdAuPt/antiCEA Immunosensor DPV 0.012–85 0.008 [195]

AuNPs/TiO2–GR/HRP–Ab2 and GCE*/AuNPs/Ab1/CEA
HRP-labeled

Sandwich
immunosensor

DPV 0.005–200 3.33 × 10−6 [196]

Fc–AuNPs–Ab2 and Au*/LPA–NHS/Ab1/CEA
Fc-labeled
Sandwich

immunosensor
SWV 0.05–20 0.01 [197]

Ag@CeO2–Au–Ab2 and GCE*/AuNPs/Ab1/CEA Sandwich
immunosensor CV, EIS 0.0001–5 32 × 10−6 [198]

MoS2/g-C3N4/PtCu/Ab2 and GCE*/AuNPs/Ab1/CEA Sandwich
immunosensor i-t 0.0001–80 3 × 10−5 [199]

Fe3O4@AuNPs–DNA(S1)–S2–S3–CEA-Exoll/Hemin Magnetic
aptasensor DPV 0.1–200 0.0004 [200]

Ag–PANI@MnO2/Ab2 and GCE*/AuNPs/Ab1/BSA/CEA Sandwich
immunosensor DPV 0.0005–80 0.00017 [201]

Cu–MOFs–TB/PDA/Ab2 and GCE*/MWCNT/CS/Ab1/CEA
TB-labeled
sandwich

immunosensor
DPV 2 ×

10−5–200 3 × 10−6 [202]

Mag–SPCE*/AuNP–MnO2/
Fe3O4@Au/antiCEA Immunosensor LSV

EIS 0.001–100
0.0001
(LSV)

0.0003 (EIS)
[203]

GCE*/PDA–rGO/Ag–Au/antiCEA Immunosensor CV 0.001–80 2.86 × 10−4 [204]

GCE*/HNF/AuNP/cMWCNT/antiCEA immunosensor EIS 0.4–125 0.09 [205]

CSH/Ab2/BSA and GCE*/MoS2–Au/Ab1/CEA Sandwich
immunosensor DPV 0.0001–80 3 × 10−5 [206]

GCE*/Au@PDA@Fe–MOF/NH2–aptamer/BSA/CEA Aptasensor DPV 1 ×
10−6–1000 3.3 × 10−7 [207]

GCE*/CNT@PAMAM/CdSe NP/Ab2/CEA/Ab1/Fe3O4

Cation-labeled
sandwich

immunosensor
SWV 0.005–50 0.0017 [208]

MWCNTs/CoS2@PANI/HRP and GCE*/Au/Ab1/BSA/CEA
HRP-labeled

sandwich
immunosensor

i-t 0.001–40 0.0003 [209]

GCE*/NCMT@Fe3O4@CuSiO3/ConA/CEA/AuNC-aptamer Cation-labeled
aptasensor DPV 0.03–6 5.38 × 10−3 [210]

CeO2-MoS2/Pb2+/Ab2 and GCE*/Au/Ab1/BSA/CEA
Cation-labeled

sandwich
immunosensor

SWV 0.001–80 0.0003 [211]

MoS2@Cu2O/Fc/Ab2 and GCE*/Au/Ab1/BSA/CEA
Fc-labeled
sandwich

immunosensor
SWV 0.001–80 3 × 10−5 [212]

Au*/Ni-Co-PBA/aptamer/CEA Aptasensor EIS 0.001–5 7.4 × 10−7 [213]

GCE*/MWCNT-SO3H/Rh@Pd ND/Ab1/BSA/CEA Immunosensor DPV 2.5 ×
10−5–100 8.3 × 10−6 [214]

GCE*/rGO-PtAu NP/antiCEA Immunosensor SWV 1 ×
10−5–100 7 × 10−6 [215]

Ag-MOF/AuNP/Ab2 and GCE*/MWCNT/Ab1/BSA/CEA
Ag(I)-labeled

sandwich
immunosensor

DPV 0.05–120 8 × 10−6 [216]

GCE*/GO-AuNP/antiCEA Immunosensor SWV 1–40 0.0158 [217]

AgNP@Strp-HRP/Ab2 and
GCE*/T–GO/AuNP@Strp/Ab1/CEA

HRP-labeled
sandwich

immnusensor
DPV 0.0001–0.005 7.5 × 10−5 [218]
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Table 3. Cont.

Nanostructure Biorecognition Molecules
Modified Transducer

(Base Electrode *)
Type of ECBs EAT

Linear
Range

(ng/mL)

LOD
(ng/mL) Reference

Fc: ferrocene; LPA-NHS: Lipoic acid N-hydroxysuccinimide ester; rGO: reduced GO; HNF: honey nanofibers; BSA: bovine serum;
PAMAM: poly(amidoamine); Strp: streptavidin;

Prostate specific antigen (PSA): Prostate cancer

Ab2–HRP and GCE*/C60/PANI@PdNP/Ab1/BSA/PSA
HRP-labeled

sandwich
immnusensor

CV 0.00016–38 1.95 × 10−5 [219]

GCE*/MoS2–GA@AuNP/antiPSA/BSA Immunosensor DPV 1 × 10−5–50 3 × 10−6 [220]

Cu3(BTC)2/Ab2 and Au*/PG@PDA/Ab1/CAS/PSA Sandwich
immunosensor i-t 0.1–10 0.025 [221]

d-Ti3C2Tx@AuNP/Ab2 and
GCE*/ATP–GO@AuNP/Ab1/BSA/PSA

Sandwich
immunosensor DPV 0.00001–0.001 3 × 10−6 [222]

SPCE*/AuNP@aptamer/MCH/PSA Aptasensor DPV 0.001–200 7.7 × 10−5 [223]

GCE*/CeO2–MnO2/antiPSA Immunosensor SWV 0.005–50 0.005 [224]

SPCE*/GO/antiPSA Immunosensor DPV 0.75–100 0.27 [225]

Au*/MPA/f-PSA/BSA andAu*/MPA/t-PSA/BSA Immunosensor EIS 0.00002–200

3 × 10−6

(f-PSA)
4 × 10−6

(t-PSA)

[226]

Ab2-CdNi QDs and
GCE*/Fe3O4@TMU-10(MOF)-CS/Ab1/BSA

QD-labeled
sandwich

immunosensor
DPV 0.001–100 0.00045 [227]

Ab2-HRP and GCE*/RC60/CuNP@HQ/Ab1/BSA
HRP-labeled

Sandwich
immunosensor

DPV 0.005–20 0.002 [228]

GCE*/GQDs–CS–Naf-IL/MWCNT–GR–IL/PPY-MoS2–il–AuPt
NP/aptamer/PSA

Aptasensor SWV 0.0005–0.35 0.00014 [229]

GCE*/MWCNT@AuNP-GQD/Ab1/BSA/PSA Immunosensor EIS 0.001–10 0.00048 [230]

CPE*/Gr-Fe3O4 NP/antiPSA Immunosensor DPV 1–150 0.38 [231]

Au IDE*/16-MUA+EDC/NHS/antiPSA Immunosensor
f-EIS
and

nf-EIS

0.01–100
and

0.5–1000
0.01 and 0.5 [232]

Au*/Peptide/GO@AgNP ECB LSV 0.005–20 0.00033 [233]

GCE*/rGO-NH2/AgPtPd-COOH/antiPSA Immunosensor DPV 4 ×
10−6–300 4 × 10−6 [234]

GCE*/AuNP/rGO@AuNP/antiPSA Immunosensor SWV
EIS

5.5 ×
10−8–0.25;

1–36 (SWV)
and

0.0018–41.15

0.06;
0.002 (SWV)

and 0.006
(EIS)

[235]

GCE*/PANI@AuNP/Pep/aptamerPSA/BSA Aptasensor DPV 0.0001–100 8.5 × 10−5 [236]

Ab2-HRP and CASPAuE-MFD*/Magb-Ab1/BSA/PSA
HRP-labeled

Sandwich
immunosensor

i-t
SWV 0.001–10

0.00084 (i-t)
25.4 fM
(SWV)

[237]

Ab2/AuNP@cys-AgNP@Cu2+ and
GCE*/GS@SnO2/Au@Pt/Ab1/BSA/PSA

Cu2+-labeled
sandwich

immunosensor
SWV 0.01–100 0.00384 [238]

GCE*/fMWCNT@AuNP-0.5/antiPSA and
GCE*/fMWCNT@AuNP-50/antiPSA Immunosensor CV 0–4 and 0–6 85 and 56 [141]

GCE*/AuNP/Ab1/BSA/PSA/Ab2-S0/DNA
concatemer(S1-S2)-AgNP

Signal probe–DNA concatemer (S1-S2)–AgNP

Ag-labeled
sandwich

immunosensor
DPV 0.0001–75 3.3 × 10−5 [239]

Ab2–HRP and SPE*/CS/AuNP/Ab1/BSA/PSA
HRP-labeled

Sandwich
immunosensor

SWV 1–18 0.001 [240]

SPCE*/rGO@ thionine–AuNP/DNA aptamer/ Aptasensor DPV 0.05–200 0.01 [241]

PtNP-Ab2/BSA–CuNP and GCE*/AuNP/Ab1/BSA/PSA
CuNP-labeled

sandwich
immunosensor

SWV 0.0005–100 14.57 × 10−5 [242]
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Table 3. Cont.

Nanostructure Biorecognition Molecules
Modified Transducer

(Base Electrode *)
Type of ECBs EAT

Linear
Range

(ng/mL)

LOD
(ng/mL) Reference

Au@Ag-Cu2O/Ab2 and GCE*/Au@N–GQDs/Ab1/BSA/PSA Sandwich
immunosensor i-t 1 ×

10−5–100 3 × 10−6 [243]

CAS: casein; MCH: 6-mercapto-1-hexanol; QD: quantum dot; MPA: 3-mercaptopropionic acid; 16-MUA: 16-[Mercaptoundecanoic acid;
EDC: N-(3, Dimethylaminopropyl)-N-ethyl-carbodiimidehydrochloride; NHS: Lipoic acid N-hydroxysuccinimide ester; CASPE-MFD:

commercially available screen-printed electrode-based microfluidic devices; AE: gold electrode;

Cancer Antigen 125 (CA125): Ovarian cancer, breast cancer, lymphoma

Ab2–Suc–Chi@MNPs–TB and
GCE*/PAMAM/AuNP–3DrGO–MWCNT/Ab1/Glu/CA125

TB-labeled
sandwich

immunosensor
SWV

0.0005–10
and 10–75

U/mL

0.006
mU/mL [244]

MB–mAb–HRP–CA125 and Au*/Aptamer
HRP-labeled

sandwich
aptasensor

CV 2–100
U/mL. 0.08 U/mL [245]

Ag–PPy–pAb2 and ITO*/MB–mAb1
Sandwich

immunosensor LSV 0.001–
300 U/mL 7.6 mU/mL [246]

Ab2–GPTMS–SiNPs and Au*/f-GNS/Ab1/CA125 Sandwich
immunosensor DPV 1 × 10−9–1

× 10−15 1 × 10−15 [247]

TB or Fc–Probe@Au–TiO2@Ab2 and
Ta*/BDD/VBG–Au/Ab1–CA125 or CEA

TB/Fc-labeled
sandwich

immunosensor
DPV

CA125:
0.5–100
mU/mL

CEA:
0.0005-0.1

CA125: 0.09
mU/mL

CEA:
0.00015

[248]

SPCE*/rGO/thionine /AuNPs/antiCA125/BSA POCT
immunosensor DPV 0.1–200

U/mL 0.01 U/mL [249]

ITO*/AgNPs–PAN–oxime NFs/aptamer/cDNA–MB/CA125
MB-labeled
aptasensor DPV 0.01–350

U/mL
0.0042
U/mL [92]

GCE*/AgNPs–GQD/antiCA125/BSA Immunosensor DPV
SWV

0.01–400
U/mL 0.01 U/mL [250]

Hollow MB–PDA–Ab2 and GCE*/Au–rGO/Ab1/BSA/CA125
MB-labeled
sandwich

immunosensor
DPV 0.0001–100

U/mL 336 nU/mL [251]

GCE*/ATA–CNT–MSA;
CdS–Ab2/AFP/Ab1;
ZnS–Ab2/CEA/Ab1;

HgS–Ab2/CA19-9/Ab1;
PbS–Ab2/CA125/Ab1

CdS, ZnS, HgS
and

PbS-labeled
ratiometric
multiplex
sandwich

immunosensor

DPASV

AFP and
CEA:

0.0004–10;
CA19-9 and

CA125:
0.004–100

U/mL

AFP:
0.00011;

CEA:
0.0023;

CA19-9:
0.68

mU/mL;
CA125: 1.4

mU/mL

[252]

SPCE*–AuNP/antiCA125/BSA and
SPCE*–PtNP/antiCA125/BSA Immunosensor EIS 450–2916 AuNP: 419;

PtNP: 386 [253]

GCE*/Ag–DPA–GQDs/CysA–AuNP/antiCA125/BSA/CA125 Immunosensor DPV 0.001–400
U/mL 0.001 U/mL [254]

SPE*/Au–AgNPs/antiCA125/BSA (ISA) and
SPE*/Au–AgNPs/CysA/antiCA125/BSA (ISB) Immunosensor EIS

ISA: 1–500
IU/mL; ISB:

1–1000
IU/mL

1.03 IU/mL [255]

GCE/FA@H–PANI@CS–HCl/Ab–Ag@Co3O4/BSA/CA125 FA-labeled
immunosensor DPV 0.001–25 0.00025 [256]

Ab2–AuNPs–LOx and
GCE*/GO/MWCNT/AuNPs–CS/Ab1/BSA

Enzymatic
immunosensor i-t

0.01–0.5
and 0.5–100

U/mL
0.002 U/mL [257]

AuNP–Ab2–Cd2+ and ITO*/GNR/Ab1/CA125
Cd2+-labeled

sandwich
immunosensor

DPV 20–100
U/mL 3.4 U/ mL [258]

GCE*/p(CTAB-CS)-AuNP/antiCA125/BSA Immunosensor DPV 0.001–400
U/mL 0.001 U/mL [259]

GCE*/PDA/ERGO/CysA–AuNPs/antiCA125–HRP/BSA HRP-labeled
immunosensor SWV 0.1–400

U/mL 0.1 U/mL [260]
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Table 3. Cont.

Nanostructure Biorecognition Molecules
Modified Transducer

(Base Electrode *)
Type of ECBs EAT

Linear
Range

(ng/mL)

LOD
(ng/mL) Reference

TB: toluidine blue; MB: methylene blue; GNS: gold Nanostructures; GPTMS: glycidyloxypropyl trimethoxysilane; BDD: boron-doped
diamond; VBG: vertical boron doped graphene; FA: ferro-cenecarboxylic acid; pCTAB: poly cetyl trimethylammoniumbromide; AE:

gold electrode; GNR: gold nanorods;

Human epidermal growth factor receptor 2 (HER2): Breast cancer

SPCE*/AuNPs–MPA/NSCeO2/NHS–PEG–
Maleimide/antiCA125/BSA Immunosensor DPV 0.001–0.5

and 0.5–20 0.0349 [261]

CdSe@ZnS QDs–Ab2 and SPCE*/c-MagBs/Ab1/EA/HER2
Cd2+-labeled

sandwich
immunosensor

DPASV 0.50–50 0.29 [262]

AE*/MnFePBA@AuNP/Aptamer/HER2 and
AE*/MnFePBA@AuNP/Aptamer/MCF7 Aptasensor EIS

HER2:
0.001–1;
MCF7:

500-5 × 104

cell/mL

0.000247; 36
cell/mL [263]

SPCE*/Ab1/HER2–ECD/Ab2/CdSe@ZnS QDs
Cd2+-labeled

sandwich
immunosensor

DPASV 10–150 2.1 [264]

AE*/CDs@ZrHf–MOF/Aptamer/HER2 Aptasensor EIS
0.001–10;
1000–1 ×

105 cell/mL

HER2: 19 ×
10−6; MCF7:
23 cell/mL

[265]

Ab2–CDI–PbS QDs and SPCE*–COOH/EDC–NHS/Ab1

Pb2+-labeled
sandwich

immunosensor
SWV 1–100 0.28 [266]

GCE*/ErGO–SWCNT/AuNP/Aptamer/HER2 Aptasensor EIS 0.0001–1 5 × 10−5 [267]

GNR–Pd SS–Aptamer–HRP and AE*/DNA
tetrahedron/BSA/HER2

HRP-labeled
sandwich

aptasensor
DPV 10–200 0.15 [268]

ITO*/MoO3@rGO/APTES/antiHER2/BSA Immunosensor DPV 0.001–500 0.001 [269]

GSPE*/AuNPs/antiHER2 affibody/MCH/HER2 Affisensor EIS 0–4 × 104 6000 [100]

Ab2–AuNPs–dC20 AE*/peptide/MCH/HER2
DNA-labeled

sandwich
immunosensor

SWV 0.0001–1 0.0005 [270]

Ab2/Hyd@AuNPs–APTMS–Fe3O4 and
GCE*/Fe3O4–APTMS/Ab1/BSA/HER2

Sandwich
immunosensor DPV 0.0005–50 2 × 10−5 [271]

PEG: polyethylene glycol; MagB: magnetic bead; CDI: carbonyldi-imidazole; MCH: 6-mercapto-1-hexanol; APTES:
3-aminopropyltriethoxysilane; APTMS: 3-aminopropyltrimethoxysilane; AE: gold electrode;

α-fetoprotein (AFP): Gastrointestinal tumor and liver cancer

GCE*/PGNR/AuNPs/antiAFP/BSA/AFP Immunosensor DPV 5–60 1.0 [272]

Thiolated LAPS*/MPTES–AuNPs/Aptamer/AFP Aptasensor potentiometric100–1 × 105 92 [273]

AuNP–DNA2–MB and AE*/DNA1/MCH/Fc–CP/AFP/RecJf
Ratiometric
aptasensor ACV 1 ×

10−5–100 269.4 ag/mL [274]

AE*/AlCu MOF2.5,2.5/Aptamer/AFP Aptasensor EIS 0.001–0.5 0.00012 [275]

Pd@PtNPs–Ab2– thionine and AE*/AuNPs/Ab1/BSA/AFP
Thionine-labeled

sandwich
immunosensor

DPV 0.0001–100 0.000035 [276]

Ab2–AgNP–HRP and GCE*/PANI–AgNP/Ab1/BSA/AFP
HRP-labeled

sandwich
immunosensor

i-t 0.01–1 and
1–10 0.0047 [277]

GCE*/ZnFe2O4–AgNP@rGO/antiAFP/BSA/AFP Label-free
immunosensor CV 0.001–200 0.00098 [278]

GCE*/Cu3Pt NPs/antiAFP/BSA/AFP Immunosensor DPV 0.0001–10 0.000033 [279]

MO/CNT–AuNP–Ab2 and GCE*/VG–AuPt/Ab1/BSA/AFP
MO-labeled

sandwich
immunosensor

DPV 1 ×
10−6–100 7 × 10−7 [280]

MoSe2 NSs–NH2/Au@Pt DNRs–Ab2 and
GCE*/GS–NH2/AuNPs/Ab1/BSA/AFP

Sandwich
immunosensor i-t 1 ×

10−5–200 3.3 × 10−6 [281]
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Table 3. Cont.

Nanostructure Biorecognition Molecules
Modified Transducer

(Base Electrode *)
Type of ECBs EAT

Linear
Range

(ng/mL)

LOD
(ng/mL) Reference

PGNR: porous graphene nanoribbon; MPTES: 3-mercaptopropyltriethoxysilane; AE: gold electrode; BSA: bovine serum; MO: methyl
orange; DNR: dendritic nanorods;

Interleukin-6 (IL-6): Colorectal cancer

MCH/Apt/AuNPs/pATP/pABA/GCE Sandwich
aptasensor EIS 0.005–100 0.0016 [282]

MCHApt/AuNPs/PPyNPs/SPGE
Structure
switching
aptasensor

EIS 0.001–15000 0.00033 [283]

MCH: 6-mercapto-1-hexanol; Apt: aptamer; pATP: p-aminothiophenol; pABA: p-aminobenzoic acid; PPY: polypyrrole;

Interleukin-8 (IL-8): Oral cancer

BSA/Anti-IL 8/β–Ag2MoO4/ITO Label-free
immunosensor DPV 1 × 10−6–40 0.09 [284]

DNA-templated CdTe/CdS QDs/MB Aptasensor ASV 1 ×
10−6–0.005 3.36 × 10−6 [285]

Anti-IL8/AuNPs–rGO/ITO Label-free
immunosensor DPV 0.5–4 0.072 [286]

BSA: bovine serum; MB: methylene blue; ITO: indium tin oxide;

4.2.1. MNPs in Carcinoma Embryonic Antigen Sensing

Carcinoma embryonic antigen (CEA) is a cell adhesive acidic glycoprotein with properties
similar to the human embryonic cell. Normally, the level of CEA is around 5 µg/mL in serum,
but in the blood the level is very low (<5 ng/mL) [195–198]. Meanwhile, serum CEA has been
found to elevate up to 20 µg/mL in people with lung cancer [197]. Blood CEA levels above
10 ng/mL are indicative of cancer in the patient [201]. In several other types of carcinomas,
such as breast cancer, ovarian cancer, pancreatic cancer, and gastrointestinal cancer, CEA often
shows elevation in serum level, which indicates its potentiality as being a tumor marker for clinical
cancer diagnosis [195–197]. Therefore, quantitative measurements of CEA in biological fluids such as
blood and serum are critical for locating, and understanding the prognosis, staging, and recurrence
of multiple cancers [197–201]. For electrochemical immunosensor/aptasensor assays, MNP-based
probes which have strong biocompatibility and electrical conductivity are of great interest [201–205].
MNPs have superior efficiency as tags or labels for amplifying biomolecular interactions and as
the enhancers of electrochemical signals [198–203]. Depending upon the complexity and necessities,
mono/bi/tri-metallic composites are utilized for constructing different types of ECBs with label-free or
labeled, sandwich or non-sandwich strategies for CEA immunosensor/aptasensor [195,196,199,207,210].
In mono-metallic-based ECBs, the primary concern is to enhance electrocatalytic surface area for
anchoring biomolecules such as the antibody, and labeling enzymes or conductive dyes or biomolecules
for developing labeled immunosensors [197,201]. Normally, direct immobilization of electrical signaling
molecules such as HRP, MB, Fc to MNPs is not beneficial because it causes the loss of signaling molecules
during electrochemical experiments and hence poor stability and reproducibility of the sensor [197].
To overcome this problem, Gu et al. constructed an Fc-labeled AuNP-based sandwich immunosensor
assay for the highly sensitive electrochemical detection of CEA [197]. In this work, they introduced
a thiol group (-SH) into an Fc molecule which assisted the stable chemisorption of Fc over AuNPs
via initiating an S-Au covalent bond. After immobilization of Fc–SH, the colloidal Au nanoprobes
were stabilized with PEG800. Figure 19a shows the transmission electron microscope (TEM) image
of the nanostructured Fc–SH/AuNP–Ab2 composite along with the schematics of the fabrication
process. Through this Fc-labeled immunosensing assay, they achieved a detection limit for CEA
as low as 0.01 ng/mL [197]. Apart from AuNPs as the effective sensing platform and capture
antibody, AgNPs also showed great promise in enhancing conductivity for electrocatalytic sensing and
constructing immunosensors. Zhao et al. utilized a dual reduction signal amplification strategy based
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on AgNPs and MnO2 for constructing a sandwich immunosensing assay for CEA [201]. AgNPs and
MnO2 together displayed catalytic activity for the reducing of H2O2 into H2O and molecular O2.
At the same time, they utilized PANI, which acted as the sacrificial reducing agent for AgNP and as
the base material for providing active sites for AgNP and MnO2 immobilization. Figure 19b shows
the SEM images of the composites at different fabrication stages. This ultrasensitive dual amplifying
sandwich immunosensor showed an LOD for CEA of about 0.17 pg/mL with a broad sensing range of
0.0005–80 ng/mL [201].
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Figure 19. ECBs for the detection of CEA. (a) Schematic illustration of two step synthesis process
involved in the fabrication of sandwich immunosensor. The TEM image shows Anb2- and Fc-labeled
AuNPs [197]. (b) The synthesis step for Ag–PANI@MnO2. The SEM images show PANI, Ag–PANI,
and Ag–PANI@MnO2 [201]. (c) Fabrication of MoS2/g–C3N4–PtCu bimetallic sandwich immunosensor
system for light-enhanced CEA detection [199]. (d) Development of a trimetallic (Pd@Au@Pt) ECB and
picture of the final strip sensor with a coin for comparison of the size [195]. Reprinted with permission
from [195,197], Copyright © 2020 published by Elsevier B.V. [199], Copyright © 2020 published by
Springer Nature [201], Copyright© 2020 Hydrogen Energy Publications LLC. Published by Elsevier.

In bimetallic-based ECBs, synergistic interactions between multiple MNP components might be
able to induce significant signal amplification, when compared with mono metal components [199,215].
In addition, the bimetallic counterpart shows enhanced photo-induced charge transfer properties and
biocompatibility [199]. For instance, Song et al. constructed an MoS2/C3N4 (graphitic) composite
supported with bimetallic Pt–Cu nano-dendrimers for visible light-induced amperometric sandwich
immunosensing assay for CEA detection [199]. Graphitized carbon nitride usually has low conductivity
due to its compact conduction band. However, by compositing with 2D MoS2, interactions between
the conduction band of C3N4 and valence band of MoS2 enhanced the catalytic and charge transfer
capacity of the support for bimetallic Pt–Cu NPs. The synergistic charge transfer/flow efficiency
of the bimetallic counterparts along with the conductive support allowed for visible light-induced
increment of the amperometric current signal for H2O2 reduction after the formation of the sandwich
immunosensing array [199]. Figure 19c shows the synthesis process of the bimetallic ECB. In another
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work, monodisperse flower morphology-based Pt–Au NPs-supported rGO composite was prepared
through gamma irradiation followed by microemulsion strategies for constructing a pulse voltammetric
ultrasensitive CEA immunosensor [215]. Gamma irradiation ensured the simultaneous reduction of
both GO and Pt–Au NPs, while water droplet-based microemulsion controlled the unique flower-like
morphology and the size of the bimetallic Pt–Au NPs (<15 nm). The low LOD for CEA obtained using
this immunosensor was only 7 fg/mL [215].

Trimetallic nanoparticles as the electrode probe are even more attractive in a sense of fast electron
transfer affinity and great electrode stability when compared to the mono/bi-metallic counterparts [195].

Their finite geometrical orientation of the metallic components and HOMO (Highest occupied molecular
orbital) -LUMO (Lowest unoccupied molecular orbital) distribution due to the formation of mixed
bonds with the help of ligands enables formidable synergistic electrocatalytic activity. Barman et
al. constructed a trimetallic Pd–Au–Pt NP-supported COOH functionalized rGO composite for
developing an immunosensor for both CEA and PSA detection [195]. Figure 19d shows a schematic
representation of the trimetallic sensor fabrication process. In this report, CV-assisted electrochemical
deposition of trimetallic composites over COOH–rGO-modified gold electrode was implemented
because the composition and morphology of the MNPs can be tailored by precisely controlling
the concentration of the precursor metal salt solution, pH, scan rate, CV cycle, and deposition potential.
The composite was successfully utilized to anchor the capture antibody and subsequently the antigen.
The sensor delivered an ultrasensitive response toward CEA with an LOD of 8 pg/mL [195]. The authors
emphasized that the sensor could be used for the POCT of CEA from human serum. Aside from
MNP–carbon material-based composites, metal oxide NPs, core shell MNPs, quantum dot NPs,
graphene, MOF, etc., have extensively been studied as the electrode probes for fabricating both labeled
or label-free sandwich immunosensing arrays for the ultrasensitive detection of CEA for early-stage
cancer diagnoses [196,202,209,211–216].

4.2.2. MNPs in Prostate-Specific Antigen Sensing

Prostate cancer (PSC) is one of the most common cancers for males with high mortality [219].
At present, prostate cancer can be treated by removal of the cancerous cells, but only if diagnosed
in the early stages [219–223]. However, in the advanced stages, PSC cancer is lethal. Research into
prostate cancer has shown that the early stage of the cancer is asymptomatic [223–225]. Hence, sensitive
and selective detection of PSC biomarkers is most desired for early-stage detection. Prostate-specific
antigens (PSAs) are one of the most reliable biomarkers for the early-stage detection of PSC [220,221].
Previous research has shown that a presence of PSA between 4–10 ng/mL is indicative of the possible
PSC (>27%) risk [225]. If the PSA level is 10 ng/mL or above, then the risk is increased to greater
than 67% [222,225]. As a result, the PSA biomarker is used for monitoring both the progression of
the prostate cancer and mediating therapeutics [220]. Hence, significant research effort has been put
into the development of ECBs for the detection of PSA.

PSA is a glycoprotein of around 34 kDa in molecular weight (MW) [223]. The low level of PSA
makes it very hard to detect. As a result, researchers have explored different strategies for designing
effective BRCs for PSA sensing. A highly sensitive biosensor was reported to utilize PdNPs along
with conducting PANI and fullerene-C60 for PSA sensing [219]. The PANI–C60 combination worked
towards activating the PdNPs through electrostatic interactions. This in turn allowed for the successful
immobilization of the PSA on the sandwich type immunosensor. The sensor reported a promising
linear range from 0.00016–38 ng/mL with a level of detection of 1.95 × 10−5 ng/mL. The sensor was also
tested for the low detection of prostate cancer from serum and urine samples, with a recovery between
95–97% [219]. Another work utilized a screen-printing process to make prostate cancer sensors that
could be used for practical applications [225]. The sensor utilized a GO and AgNP composite over
screen-printed carbon electrodes (SPCEs) for the immobilization of PSAs. The label-free immunosensor
offered a simple preparation electrode process compared to the complicated sandwich sensors.
The biosensor utilized a “signal off” methodology for the PSA interaction with the antibody through
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the DPV technique. Despite the simple preparation process, the sensor showed a wide linear range
from 0.75–100 ng/mL [225]. This indicated the feasibility of the screen-printed label-free sensor in POCT.
A number of works have reported that bimetallic, MOF, QD, and core@shell structure further enhance
the sensitivity and stability of ECBs [220–222,224,227,235]. However, as discussed in the previous
sections, it is important to be able to prepare ECBs on strips so that they can be used for the on-the-spot
testing of biomolecules. To this end, Chen and coworkers reported the fabrication of a PSA biosensor
based on the microfluidic principles through screen printing [237]. The ultra-sensitive PSA sensor was
prepared through screen printing, making it readily scalable and cost-effective. The sensor fabrication
process is shown in Figure 20a. The proposed sensor used printed gold electrodes as the WE and CE,
while an Ag electrode was used as the control. MagBs were utilized for anchoring the PSA antibody
on the printed gold electrode. The sensor utilized an amperometric technique for the PSA detection
from 0.001–10 ng/mL, with a low LOD of 0.00084 ng/mL. Authors claimed that the reported sensor was
cheap, easy to fabricate and operate, highly reproducible, and extremely sensitive [237]. Such sensors
could be the key to solving the problems associated with utilization of ECBs for the POCT.
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(a) schematics for the fabrication of a microfluidic PSA sensor through screen printing, and size
comparison image [237]. (b) fabrication of paper-based ECB for CA125 detection [249]. Reprinted
with permission from [237], Copyright© 2020 published by Springer Nature [249], Copyright© 2020
published by Elsevier B.V.

4.2.3. MNPs in Cancer Antigen 125 Sensing

Ovarian cancer is one of the most commonly occurring cancers for woman and has high mortality
rate [194,247]. The main reason behind the high mortality rate is the fact that early stages of ovarian
cancer are usually asymptotic (stage I), and for later stages the symptoms are unspecified (stage II and
III) [245]. A promising biomarker for the early-stage detection of ovarian cancer is cancer antigen 125
(CA125) [244,246]. CA125 is the recommended biomarker for ovarian cancer diagnosis by the FDA [194].
CA125 is a mucin-like transmembrane glycoprotein (200 kDa) that is overexpressed even during
the early stages of ovarian cancer [245]. For a healthy person, the CA125 level is below 35 U/mL in blood
and serum [245]. However, the level of CA125 in the blood and serum increases significantly for
patients with ovarian cancer. That is why CA125 is known as a “Gold Standard” biomarker for ovarian
cancer diagnoses [287]. CA125 overexpression is observed in about 50% of stage I patients, and about
90% overexpression is observed for stages II, III, and IV patients [244,245]. Therefore, a sensitive,
selective, and accurate POCT system for CA125 is essential for the early-stage diagnosis and treatment
of ovarian cancer.

The demand for early-stage detection of ovarian cancer has led to the development of a large
number of ECBs for CA125. AuNP-modified biosensors have been the most reported for CA125
detection [244,246,248,249,251]. These works have utilized various CNMs for increasing the selectivity
and sensitivity. For instance, AuNP, PAMAM, MWCNT, and rGO composites were utilized for
immobilizing the antibody (Anb1) [244]. Here, MB was used to label the Anb2. This sandwich
(Anb1–Ang–Anb2) system utilized the SWV technique for CA125 detection. The sensor showed
a moderate linear range from 10–75 U/mL with a low LOD of 0.006 U/mL [244]. In another
study, Huang et al. utilized an AgNP-MagBs-based sandwich immunosensor system for CA125
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detection over a wide linear range of 0.001–76 U/mL [246]. The electrochemical cell setup utilized
a magnet-controlled microfluidic flow system and the LSV technique for the detection process.
The proposed sandwich system showed significant signal enhancement and selectivity towards CA125
detection [246]. Although these sensors have potential, it is often difficult to transition from laboratory to
clinical applications. A paper-based strip ECB design was used to address this issue [251]. The proposed
sensor utilized AuNP, rGO, and thionine composite as the substrate for immobilization of the CA125
antibody to fabricate the “signal off” ECB. The immunosensor utilized the affinity-based binding
between the CA125 Anb–Ang to decrease the current signal produced by the thionine. The fabrication
and detection of CA125 is shown in Figure 20b. As a result, the current signal decreased with increasing
concentration of the CA125. The sensor showed a linear range from 0.01 to 200 U/mL for CA125 [251].
Development of these strip sensors might solve the problems associated with the clinical transition
of ECBs.

4.2.4. MNPs in HER2 Sensing

One of the most prominent candidates for early-stage breast cancer detection is the HER2 [262,263].
This protein expression status is either positive or negative for the cancer [257]. It is often overexpressed
in the early stages of breast cancer [262]. Breast cancer is one of the most frequently observed (~34%)
cancers in all woman [263]. HER2 concentration in the blood of a healthy human body is about
2–15 ng/mL [288]. However, in a cancer patient the HER2 protein increases to 15–75 ng/mL [263].
The increase in HER2 concentration is significant, which makes it a prominent candidate for
the early-stage cancer detection. However, the very low concentration of the biomarker makes
it difficult for effective detection using conventional ECBs. This is why researchers have focused on
using MNP-incorporated immunosensors, aptasensors, and affisensors for the sensitive and selective
detection of HER2 [100,262–265].

Two ECBs that utilized AuNPs and CdSe@ZnS QDs were reported for the selective detection
of HER2 [261,262]. The AuNP-modified electrode used a label-free immunosensor and the DPV
technique [261]. The sensor showed a low LOD of 0.035 ng/mL, but the linear range was also very short,
0.001–20 ng/mL [261]. The CdSe@ZnS QD sensor had a longer linear range of 0.5–50 ng/mL, with an LOD
of 0.29 ng/mL [262]. This ECB utilized functionalized MagBs for anchoring the BRC. The sensor could
detect HER2 from the SK-BR-3 (an HER2-positive cell line) for only 2 cells/mL [262]. The detection
process is shown in Figure 21a. Gold nanorods (GNRs) and Pd composite electrodes were proposed by
Chen and coworkers for fabricating an HER2 biosensor with wide linear range [268]. The ECB used
super structure aptamers for the detection of HER2. The sandwich type sensor mechanism pathway
was followed, utilizing the DPV technique. A wide linear range from 10–200 ng/mL was obtained
with an LOD of just 0.15 ng/mL [268]. Such an HER2 sensor could be used for POCT and diagnosis of
breast cancer.

4.2.5. MNPs in Alpha Fetoprotein Sensing

Alpha fetoprotein is a glycoprotein that can be utilized for the early-stage diagnosis of
hepatocellular carcinoma (HCC) [272,273]. HCC is one of the most common types of liver cancer
that often leads to the death of the patient [273]. Alpha fetoprotein is about 70 kDa in MW, and is
produced in the yolk sack, liver, and gastrointestinal tract [272,277]. During cancerous conditions,
the alpha fetoprotein concentration is above 500 ng/mL in the human body, while in a healthy body it
is only around 20 ng/mL [273,274]. This large abnormality in concentration makes alpha fetoprotein
a significant marker for HCC detection. However, it is a challenging task to prepare biosensors for
the detection of a low concentration analyte with a wide linear range.

An ECB was proposed that utilized an AuNP–GRN composite and a DPV technique for alpha
fetoprotein detection [272]. The label-free immunosensor used Anb–alpha fetoprotein modification for
the detection of alpha fetoprotein. It had a low LOD of 1 ng/mL and a linear range of 5–60 ng/mL.
Though the LOD is low, the linear range was very small for the proposed senor for POCT of alpha
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fetoprotein in cancer patients [272]. To address the challenge of wide linear range, Li et al. developed
an ECB utilizing AuNPs that had a wide linear range from 0.1 to 100 µg/mL [273]. However, the LOD
was 92 ng/mL, which indicates that this sensor could not be used for the low-level detection of alpha
fetoprotein. A label-free immunosensor was developed using AgNPs and an rGO composite along with
ZnFe2O4 for the sensitive detection of alpha fetoprotein [278]. The signal amplification of the sensor
enabled the CV technique to be used for detecting the pg/mL analyte. The alpha fetoprotein sensor
development process and consequent detection mechanism is shown in Figure 21b. The sensor showed
a very low LOD of 0.98 pg/mL, with a linear range in the region of 0.001–200 ng/mL [278]. A possible
way to improve alpha fetoprotein sensors can be considering the size- and shape-dependent properties
of MNPs. At the same time, utilizing different CNMs for preparing MNPCs is a promising way for
further improving the biosensing capability.Molecules 2020, 25, x 35 of 60 

 

 
Figure 21. Fabrication and detection mechanism of ECBs for HER2, α-fetoprotein (AFP), and IL-8. (a) 
schematics for the detection of HER2-labeled with CdSe@ZnS QDs through a MagB system [262]. (b) 
synthesis and mechanism of label immunosensor for the sensitive detection of AFP [278]. (c) step-by-
step synthesis procedure and the selective detection of IL-8 at an AuNPs–rGO composite system [286]. 
Reprinted with permission from [262], Copyright © 2020 published by Springer Nature, [278], 
Copyright © 2020 published by Elsevier B.V. [286], Copyright © 2020 published by the American 
Chemical Society. 

4.2.5. MNPs in Alpha Fetoprotein Sensing 

Alpha fetoprotein is a glycoprotein that can be utilized for the early-stage diagnosis of 
hepatocellular carcinoma (HCC) [272,273]. HCC is one of the most common types of liver cancer that 
often leads to the death of the patient [273]. Alpha fetoprotein is about 70 kDa in MW, and is produced 
in the yolk sack, liver, and gastrointestinal tract [272,277]. During cancerous conditions, the alpha 
fetoprotein concentration is above 500 ng/mL in the human body, while in a healthy body it is only 
around 20 ng/mL [273,274]. This large abnormality in concentration makes alpha fetoprotein a 
significant marker for HCC detection. However, it is a challenging task to prepare biosensors for the 
detection of a low concentration analyte with a wide linear range. 

An ECB was proposed that utilized an AuNP–GRN composite and a DPV technique for alpha 
fetoprotein detection [272]. The label-free immunosensor used Anb–alpha fetoprotein modification 
for the detection of alpha fetoprotein. It had a low LOD of 1 ng/mL and a linear range of 5–60 ng/mL. 
Though the LOD is low, the linear range was very small for the proposed senor for POCT of alpha 
fetoprotein in cancer patients [272]. To address the challenge of wide linear range, Li et al. developed 
an ECB utilizing AuNPs that had a wide linear range from 0.1 to 100 µg/mL [273]. However, the LOD 
was 92 ng/mL, which indicates that this sensor could not be used for the low-level detection of alpha 
fetoprotein. A label-free immunosensor was developed using AgNPs and an rGO composite along 
with ZnFe2O4 for the sensitive detection of alpha fetoprotein [278]. The signal amplification of the 
sensor enabled the CV technique to be used for detecting the pg/mL analyte. The alpha fetoprotein 
sensor development process and consequent detection mechanism is shown in Figure 21b. The sensor 
showed a very low LOD of 0.98 pg/mL, with a linear range in the region of 0.001–200 ng/mL [278]. A 
possible way to improve alpha fetoprotein sensors can be considering the size- and shape-dependent 

Figure 21. Fabrication and detection mechanism of ECBs for HER2, α-fetoprotein (AFP), and IL-8.
(a) schematics for the detection of HER2-labeled with CdSe@ZnS QDs through a MagB system [262].
(b) synthesis and mechanism of label immunosensor for the sensitive detection of AFP [278].
(c) step-by-step synthesis procedure and the selective detection of IL-8 at an AuNPs–rGO composite
system [286]. Reprinted with permission from [262], Copyright © 2020 published by Springer
Nature, [278], Copyright © 2020 published by Elsevier B.V. [286], Copyright © 2020 published by
the American Chemical Society.

4.2.6. MNPs in Interleukin Sensing

The human genome has about 50 different small proteins or cytokines that are responsible for
maintaining important immunomodulatory responses [289]. Hence, interleukin (IL) is a term that
describes this group of cytokines that are capable of being signaling cells. Of the various IL species,
in this section the focus will be on IL-6 and IL-8, which are important biomarkers for colorectal and
oral cancers, respectively [282,284]. IL-6 contains 184 amino acids that iss about 26 kDa in MW [284].
This glycoprotein is responsible for signaling cancer cells, and overexpression is related to colorectal
cancer [282]. On the other hand, the MW of IL-8 is about 8.5 kDa, with its 70 amino acids [284].
Enzyme-linked immunosorbent assay (ELISA) and a few other methods are commercially available
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for the detection of these biomarkers [285,290]. However, one ELSIA kit costs about USD 320 [291],
whereas ECBs can be prepared for much less. Sandwich and structure switching type aptasensors were
used for the sensitive and selective detection of IL-6 [282,283], utilizing AuNPs and the impedimetric
technique for the detection process. These sensors had an impressive LOD of 0.0016 and 0.00033 ng/mL
for IL-6 [282,283]. These reports demonstrate the significance of using MNPs in ECBs. There are various
ECB designs for the detection of IL-8. Normally, only 250 pg/mL of IL-8 is present in a healthy person’s
saliva [285,286]. IL-8 expression higher than 750 pg/mL is indicative of oral cancer [285,286]. ECBs for
IL-8 detection have used Ag2MoO4 and CdTe/CdS QDs, besides AuNPs [285,286]. These multimetallic
NPs with a controlled size and unique shapes often perform better than spherical monometallic
systems. The multimetallic ECB fabrication is shown in Figure 21c. However, the use of EATs and
other supporting ingredients of the biosensors also play an important role in the overall performance
of the sensor. The DNA templated CdTe/CdS QD sensor had a very low LOD of 3.36 × 10−6 ng/mL for
IL-8 detection [285]. The AuNP sensor with the setup of anti-IL8/AuNPs–rGO/ITO showed an LOD of
0.072 ng/mL [286]. Both of these sensors are well within the range necessary for oral cancer patient
identification through IL-8 biomarkers [285,286].

4.3. MNPs in Novel Coronavirus Sensing

The 2019 novel coronavirus (2019-nCoV) is responsible for the COVID-19 pandemic of the year
2020 [292]. It is also known as severe acute respiratory syndrome coronavirus 2 [8]. It is a ribonucleic
virus, i.e., an RNA virus that is known to infect and attack various parts of the body, but causes most
damage to the respiratory and cardiovascular system [292,293]. Besides economic impact, the long-term
lockdown due to COVID-19 will have a severe mental health impact on both individuals and society
as a whole [294]. One of the proven and most effective way to control the spread and minimize
the 2019-nCoV impact is through testing. Asymptomatic and pre-asymptomatic individuals infected
with 2019-nCoV are also highly contagious [292]. As a result, researchers around the globe have
invested their time and knowledge in developing POCT systems that can be used for rapid, accurate,
and early detection of the virus [8,292].

ECBs can be used to reach all these goals in a cost-effective manner [293]. There are
various proposals for the synthesis of ECB strips that can effectively detect 2019-nCoV [294,295].
Smartphone-based ECBs for ultrasensitive detection of 2019-nCoV were reported by Zhao et al [296].
The reported aptasensor utilized a super-sandwich setup for the detection of 2019-nCoV through
a “signal on” process with the DPV technique. The sensor fabrication process and its 2019-nCoV
detection process is shown in Figure 22a. For the sandwich setup, initially, thiolated capture probes
(CPs) were immobilized on the surface of the Au@Fe3O4 NPs (Premix A). Calixarene8 (CX8) was
used for enhancing the electrochemical activity of TB through a supramolecular interaction process.
Essentially, the host–guest complex utilized AuNPs, CX8, TB, LP (label probe) and an rGO system.
Finally, the immobilized host–guest system was combined with the AP (auxiliary probe) to make
the final modifications (Premix B). After extraction, 2019-nCoV RNA was first incubated with Premix
A for 1 h, followed by 2 h incubation with Premix B. The sensor showed a significant increase in DPV
current signal for the 2019-nCoV RNA combined Premix A and B setup compared to just the Premix B
setup. The reported sensor was also tested on 2019-nCoV active and recovering patients. The proposed
sensor showed higher effectiveness compared to the reverse transcription real-time polymerase chain
reaction (RT-qPCR) for 2019-nCoV detection from both active and recovering patients. The sensor
can be used with a smartphone, in a plug-and-play system for the effective POCT diagnosis of
2019-nCoV [296]. Once commercialized, these portable ECBs could be highly effective in contact
tracing and controlling the spread of 2019-nCoV.
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Figure 22. Schematics for the fabrication of a plug-and-play super-sandwich electrochemical
immunosensor for 2019-nCoV. (a) shows the synthesis of Premix A and B. (b) combining Premix
A with 2019-nCoV RNA and preparation of the super-sandwich for the detection 2019-nCoV through
a smartphone [296]. Reprinted with permission from [296], Copyright© 2020 published by Elsevier B.V.

5. Advances in POCT Devices: Prospects and Challenges in the Clinical Transition of ECBs

POCT provides health experts and patients with the opportunity to monitor health conditions
and diagnose a disease quickly and accurately. Furthermore, the introduction of personalized
heath care would be possible with the large-scale implementation of POCT [6,8,12]. This would
allow for early-stage detection of cancer biomarkers, senescent β-cells in type-I diabetes patients,
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or beta-amyloids in Alzheimer’s disease patients [65,297,298]. Because of this, research in ECBs has
focused on developing prototype biosensor devices that can be used with mobile or other convenient
electronic systems for the rapid analysis of biomolecules [6,65]. Wearable paper ECBs were reported
for the detection of sulfur mustard that used EmStat3, a portable potentiostat [12]. A glucose sensor
was developed that could be used with a smartphone for blood glucose level detection [298]. Castro et
al. reported the fabrication of label-free immunosensor strips for the sensitive detection of CA125
cancer biomarkers from human serum sample [71]. An ECB device has been reported for the rapid
detection of the COVID-19 virus, that could be used as an alternative to the RT-qPCR-based 2019-nCoV
test [296]. Figure 23 shows the fabrication and detection mechanism of these sensors.

ECBs fall within of one of the five EATs that have been discussed in the Section 2.1. These techniques
utilize Ohm’s law, the Nernst equation, and other well-established theories of electrochemistry [82].
For instance, the commercial glucose sensors utilize a biocatalytic process for blood glucose detection
through voltammetry or amperometry techniques. There are ECBs that have been developed to
communicate with smartphones through micro-USB ports, audio channels, or even wirelessly [82].
Despite the increasing research and steady development in POCT electrochemical devices, there are
almost no ECBs in the market for consumer use other than the glucose sensor for diabetes patients [48].
These devices are often used only in laboratory testing and do not progress towards clinical trials. Long
trial times for evaluation and lack of funding are some of the reasons for such shortcomings. ECBs
utilize enzymes, antibodies, proteins, peptides, and many other biomolecules as BRCs. All of these
have their advantages and limitations. The storage stability, data reproducibility, and complicated
sensor fabrication process are some of the key issues that has hindered the clinical transition of
ECBs [49–51]. Discussion of Table 1 on the MNP-based ECBs shows that despite the use of diverse
biomolecules, there still lacks the development of size- and shape-controlled MNPs; there is very little
use of affibody molecules. There are more than 353,000 research studies listed on the clinicaltrials.gov
website. However, when we searched for the term “electrochemical biosensor”, only three studies were
found. Of these, two were ongoing and one study had been completed. The clinical trial identification
number for the completed study is NCT00591240, and they published two reports based on their
findings [299,300]. The completed study was conducted with the help of 116 patients that utilized
ECBs for the detection of pathogens that cause urinary infections [300]. The sandwich mechanism was
employed by the sensor for simultaneous detection of multiple bacterial species (E. coli, Enterococcus,
etc.). Figure 23c shows the fabrication process and depth effect in the ECB. The researchers compared
their ECB with other urine cultures and concluded that the ECB design needed further modification to
improve the LOD and specificity [300].

clinicaltrials.gov
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Figure 23. Schematics of hand-held ECBs with potential for POCT. (a) a smartphone-based ECB for
the sensitive detection of glucose from blood samples. The figure shows the circuit setup that was used
for connecting the ECB with the smartphone and detecting glucose through the CV technique [298].
(b) fabrication of a label-free immunosensor on a screen-printed carbon electrode (SPCE) strip for
the detection of CA125 biomarkers from serum samples through the DPV technique [71]. (c) mechanism
proposed for a clinically tested ECB for the simultaneous detection of multiplex pathogens for
the diagnosis of urinary tract infection; (i) lysis of different bacteria through identification of 16S
rRNA; (ii) hybridization with detector probes; (iii) combining with the capture probe immobilized
on the electrode surface; (iv) binding of anti-fluorescein HRP tag to form sandwich system; and
(v) generation of i-t current signal for a fixed potential that corresponded to the concentration of
different bacteria present in the system [300]. Reprinted with permission from [71,298], Copyright©
2020 and 2020 published by Elsevier B.V. [300], Copyright© 2020 and 2020 published by the American
Urological Association. DAC: Digital-to-analog converter.

There are reports of ECBs for detecting bacterial systems that showed better performance due
to the incorporation of MNPCs for anchoring the biorecognition component [31,301]. In one of
the ongoing studies (NCT04053140), researchers were using microneedle array-ECBs for administrating
Benzylpenicillin IV 1200 mg. The work was in Phase 1 trial, and had not published any results at
time of writing. The other clinical trial was studying the ECB system towards detection of leukocyte
esterase biomarkers for periprosthetic joint infection (PJI) (NCT04390607). The studies were aiming
to test the ECB on subjects that underwent revision joint surgery. The study was set to begin from
November 2020. From Tables 2 and 3, it becomes clear that using MNPs can significantly enhance
the performance, stability, and reproducibility of ECBs, and lower the production cost at the same time.
Hence, thorough investigation of the impact of MNP properties on the design and effectiveness of
ECBs might help to realize the POCT in the near future [297,302]. The following key points might be
inferred based on our analysis of more than 250 articles on ECBs that utilized MNPs for improving
their practical applicability:

• ECBs that utilize MNPs or MNPCs usually show higher sensitivity, stability, and wider linear range
compared to those that do not utilize MNPs. However, it is important to choose which MNPs are
most compatible with a specific BRC. Therefore, research into MNP and BRC compatibility might
greatly enhance the stability of the fabricated ECBs.
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• Using bi- or tri-metallic NPs significantly enhances the performance of ECBs. The possible reason
for this is that the metal–metal interaction helps in lowering the HOMO-LUMO energy gap.
This in turn allows for more active sites on the MNPs. Hence, using multimetallic NPs that interact
synergistically with each other will allow for stronger interactions with the BRCs.

• MNPs with cubic, pyramidal, oval, and other unique shapes show higher catalytic activity and
have an increased surface area compared to the commonly employed spherical MNPs. This would
allow for immobilization of a greater amount of BRCs. At the same time, the edge sites of these
MNPs show higher activity compared to the basal sites.

• MNPs that have QD or core shell-like structure show some unique physical, chemical, and electronic
properties. These unique properties usually make them highly desirable for fabrication of ECBs.

• Green synthesis of MNPs is becoming ever popular. This not only allows for the preparation
of MNPs in an environmentally friendly way, but also introduces various functional groups on
the MNP surface. These functional groups, when properly utilized, might help in the robust
anchoring of BRCs and enhance the stability and overall activity of the ECBs.

• MNPs interact differently with various CNMs. Hence, it is essential to properly choose the MNPs
and CNMs before composites can be prepared for fabricating effective ECBs. Future research
should focus on understanding the fundamental properties of various MNPCs. This would allow
for the intelligent designing of MNPCs for fabricating ECBs.

• The screen-printing technique is most commonly used in the fabrication of ECB strips.
However, methods such as inkjet printing, doctor blading, and aerosol-assisted chemical vapor
deposition should be explored for determining the best approach for the fabrication of ECB strips.

• Aside from the above-mentioned topics, ECB researchers should work towards
the commercialization of their laboratory models. This would then reveal the limitations
of their proposed systems, and make way for future research that would help to overcome
these shortcomings.

The authors hope that this review will help researchers to see the importance of the proper
utilization of the various properties of MNPs in developing effective ECBs. Furthermore, this would
allow the fabrication of cost-effective ECBs with high stability and accuracy for the POCT of small
biomolecules, cancer biomarkers, and other pathogenic diseases.
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Abbreviations

ADHD Attention deficit hyperactivity disorder
AFP Alpha-fetoprotein
Anb Antibody
AgNPs Silver NPs
Anb Antibody
Ang Antigen
AP Auxiliary probe
APTES 3-aminopropyltriethoxysilane
APTMS 3-aminopropyltrimethoxysilane
ATPA ATP aptamer
ASV anodic stripping voltammetry
AuNPs Gold NPs
BDD Boron-doped diamond
BRC biorecognition component
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BSA bovine serum albumin
CAS Casein
CASPE-MFD Commercially available screen-printed electrode-Based microfluidic devices
CDI Carbonyldi-imidazole
cDNA Complimentary DNA
CE Counter electrode
CEA Carcinoembryonic antigen
CNMs Conducting nanomaterials
CNT Carbon nanotube
conA Concanavalin A
CP Capture probe
CPE Carbon paste electrode
CS Chitosan
CSH Copper silicate hollow spheres
CV cyclic voltammetry
CysA Cysteamine
DA Dopamine
DMF Dimethylformamide
DNR Dendritic nanorods
DPV differential pulse voltammetry
DPASV differential pulse anodic stripping voltammetry
3D-SP 3D screen printed
EATs electroanalytical techniques
ECBs Electrochemical biosensors
ECD Extracellular domain
EDC N-(3,Dimethylaminopropyl)-N-ethyl-Carbodiimidehydrochloride
EIS electrochemical impedance spectroscopy
ELISA Enzyme-linked immunosorbent assay
ESR Electron spin resonance
FA Ferro-cenecarboxylic acid
FAD Flavin adenosine dinucleotide
FC Ferrocene
FLGR few layer GR
fMWCNT Functionalized MWCNTs
Glu Glutaraldehyde
GNR Gold nanorods
GNS Gold Nanostructures
GO GR oxide
GOx glucose oxidase
GPTMS Glycidyloxypropyl trimethoxysilane
GQD Graphene quantum dot
GR Graphene
GRNs graphene nanoribbons
GRWs GR nanowalls
HA Histamine
HCC Hepatocellular carcinoma
HepG2 Hepatocellular carcinoma
HER2 Human epidermal growth factor receptor 2
HEV Hepatitis E virus
HNF Honey nanofibers
HNT Halloysite nanotube
HP Hairpin probe
HRP horseradish peroxidase
HUA Humic acid
IL Interleukin
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ISE ion selective electrode
ITO Indium tin oxide
LBL Layer-by-layer
LIG laser-induced graphene
LOD limit of detection
LOx Lactate oxidase
LP Label probe
LPA-NHS Lipoic acid N-hydroxysuccinimide ester
LSV linear sweep voltammetry
16-MUA 16-Mercaptoundecanoic acid
MagB Magnetic bead
MB Methylene blue
MCH 6-mercapto-1-hexanol
MLGR multilayer GR
MNPs Metal nanoparticles
MNPCs MNP composites
MO Methyl orange
MOF Metal organic framework
MPA 3-mercaptopropionic acid
MPTES 3-mercaptopropyltriethoxysilane
MSA Mercaptosuccinic acid
MWCNT Multiwall CNT
2019-nCoV Novel coronavirus
NCMTs Nitrogen-doped magnetic carbon microtubes
NF Nanoflower
OC Ovarian cancer
OHA Ochratoxin A
pABA p-aminobenzoic acid
PAMAM Poly(amidoamine)
PAN-oxime Amidoxime-modified polyacrylonitrile
PANI Polyaniline
pATP p-aminothiophenol
PB Prussian blue
pCTAB Poly cetyl trimethylammoniumbromide
PDA Poly DA
PEDOT Poly(3,4-ethylenedioxythiophene)
PEG Polyethylene glycol
PGNR porous graphene nanoribbon
PJI Periprosthetic joint infection
PLA Polylactic
POCT Point-of-care testing
PGA Poly(glutamic acid)
PPY Polypyrrole
PS Prostate cancer
PSA Prostate specific antigen
PTK-7 Protein tyrosine kinase-7
PtNPs Platinum NPs
PVA Polyvinyl alcohol
RE Reference electrode
rGO Reduced GO
SBMs Small biomolecules
SLGR single layer GR
SPCE Screen-printed carbon electrode
ssDNA Single stranded DNA
ssRNA Single stranded RNA
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Strp Streptavidin
SWCNT Single wall CNT
SWV square wave voltammetry
TB Toluidine blue
TBA Thrombin binding aptamer
TMV tobacco mosaic virus
UA Uric acid
UOx Uricase
VBG Vertical boron doped graphene
WE Working electrode
XO Xanthine oxidase
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