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Abstract

Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been
implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk
genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very
strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC)
have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional
celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb
xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was
used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the
association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate
the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was
significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the
first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease
genotypes and the genetic complexity of the region.
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Introduction

Celiac disease (gluten-sensitive enteropathy, celiac sprue) is

a common T cell auto-immune disease caused by sensitivity to the

dietary protein gluten. It is primarily a disease of Caucasians, with

a population prevalence of approximately 1% [1], with evidence

suggesting that it is increasing in incidence [2,3]. Co-occurrence of

celiac disease with other autoimmune diseases has been noted,

including type I diabetes, autoimmune thyroiditis, Sjögren’s

syndrome, Addison’s disease, alopecia areata, inflammatory bowel

disease, and adult rheumatoid arthritis [4,5,6,7].

The role of histocompatibility antigens in the major histocom-

patibility complex (MHC) in celiac disease was first reported 30

years ago [8,9] with the identification of HLA DQ2 almost 20

years ago [10]. Linkage studies to identify highly penetrant genes

were conducted, but other than at HLA, no consistent high-risk

loci were identified [11,12,13,14,15,16,17,18]. More recently,

genome-wide association studies (GWAS) and follow-up studies

have identified 39 non-HLA loci that are associated with celiac

disease, all together explaining approximately 5% of the disease

risk [19,20,21,22,23]. In GWAS, the strongest associations by

a large magnitude were to the MHC region, with the most strongly

associated SNP explaining approximately 35% of the disease risk.

The HLA class II molecules, particularly the DQ2 molecule

because of its unique peptide binding motif, are necessary for

celiac disease and encode for cell surface proteins on CD4+ T

lymphocytes that recognize gliadin [24]. The specific DQ

molecule that is expressed, i.e., the serotype, is determined by

the alleles present in the HLA-DQA1 and HLA-DQB1 HLA class

II genes. Greater than 90% of celiac disease cases express HLA

DQ2 [25,26,27,28]. Approximately 5% of celiac disease cases are

DQ8 [29,30,31], with the remaining 3–5% of celiac disease cases

carrying neither DQ8 nor DQ2, although most carry a DQB1*02

allele. However, the HLA association is necessary but not sufficient

for celiac disease to develop. Approximately 30% of the

population carries the HLA DQ2 genotype, yet only 1% of the

population develop the disease [32,33,34].

An investigation of the extended MHC (xMHC) for additional

disease-associated common variants has not been conducted.

Focused studies of the MHC in systemic lupus erythematosus

(SLE) [35] and type 1 diabetes (IDDM) [36,37,38] have found

evidence for novel, independent genetic associations in the region.
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While the specific statistical approaches utilized by these previous

studies are unique, the studies shared a common approach. The

known HLA disease alleles were characterized in an informative

way then included in the association analysis to account for the

known risk alleles while searching for new disease alleles. In this

study, taking a similar approach, we test the hypothesis that there

are additional disease-associated common variants in the HLA

region other than the known HLA-DQA1 and HLA-DQB1 disease

alleles.

Results

The 1898 SNPs spanning the xMHC were analyzed for

association with celiac disease with a simple logistic regression

model that included only the SNP genotype as the predictor of

disease. The purpose of this analysis was to assess the associations

between the 1898 SNPs and celiac disease without any statistical

adjustment for the known high-risk genotypes at the HLA-DQA1

and HLA-DQB1 genes. The results of the association analysis are

shown in Figure 1. The strongest association was found at

rs2647044 with many other SNPs showing significant association

near the HLA-DQA1 and HLA-DQB1 genes. SNP rs2647044 is

approximately 35 kb centromeric of HLA-DQB1 and 60 kb from

HLA-DQA1. Analysis of pairwise LD, measured by the r2 value,

between rs2647044 and every other SNP showed that there were

no other SNPs among those tested that were strongly correlated

with the most significant SNP (Figure 1). The SNPs were expected

to show low r2 values because they were drawn from an Illumina

GWAS platform and would have been selected for high

informativity and low redundancy. Recombination hotspots are

clearly apparent and delineate changes in the patterns of

association between the SNPs and disease (Figure 1).

With very strong association originating from the known HLA

high-risk genotypes it was impossible to identify independent SNP

associations, hence we first utilized a statistical procedure to

generate an informative categorical variable that marked the

known genotype effects, and then we included this categorical

variable in our logistic regression model. A categorical variable

was constructed by conditional recursive partitioning to account

for the HLA high-risk alleles. The common HLA genotypes

associated with the highest risk of developing celiac disease are

HLA-DQ2.5 and HLA-DQ8. The HLA-DQ2.2/7 genotypes also

result in HLA-DQ2.5 through in trans combination of haplotypes.

The HLA-DQA1 and HLA-DQB1 typing resulted in 16 possible

multi-locus genotype categories. A conditional inference tree

model based on the HLA-DQA1 and HLA-DQB1 genotypes was

computed that resulted in five terminal nodes (Figure 2). As

expected, the terminal nodes that were most informative of the

outcome were the DQ2.5 homozygotes (n = 279 samples) followed

by heterozygotes with one copy of DQ2.5 and one non-DQ8

haplotype (n = 1073), and the DQ2.5/DQ8 heterozygotes (n = 148

samples). Information dropped off significantly for the final two

terminal nodes, with the worst case identification rate for those

samples with non-DQ2.5 and non-DQ8 haplotypes (n = 470). The

recursive partitioning algorithm could not further split the node

representing samples with either 1 or 2 copies of the DQ8

haplotype (n = 215). The tree model showed no evidence that the

effects of either the DQ2.5 or the DQ8 haplotypes were

multiplicative. Table 1 shows the frequency distribution of the

categorical variable created from the five terminal nodes of the

Figure 1. Association results for 1898 SNPs across xMHC, without accounting for the known HLA high-risk genotypes in the
statistical analysis. Vertical bars indicate recombination rates generated from HapMap database. All pairwise linkage disequilibrium coefficients (r2)
included the most significantly associated SNP, rs2647044.
doi:10.1371/journal.pone.0036926.g001

Association Study of Celiac Disease and the MHC
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recursive partitioning analysis. All binary splits resulting in the five

terminal nodes were significant at p-values less than 0.003.

The 1898 SNPs were each tested in a logistic regression model

that included the categorical variable as well as SNP rs1063355.

The SNP rs1063355 occurs in the 39 untranslated region (UTR) of

the HLA-DQB1 gene and it was included in the association model

because it is known to be strongly associated with the HLA-DQB1

high-risk allele and was among the GWAS SNPs. In logistic

regression model with rs1063355 as the only predictor of celiac

disease, the SNP had a p-value of less than 1.0610217; however,

adding the computed categorical variable to the model resulted in

rs1063355 having a p-value of 2.561025, indicating relatively

weaker but significant residual effects on the disease outcome. The

purpose of including rs1063355 in the association model was to

eliminate the possibility of the SNP being identified as an

independent predictor of the disease, since it is already known,

and to account for any residual effects from HLA-DQB1 not

identified by the categorical variable. Figure 3a shows the results of

the association analysis, and demonstrate the impact of the

adjustment for the known HLA high-risk genotypes. While

rs2647044 (P=3.85610220) was still highly significant,

rs9357152 (P=7.28610224) became the most significantly asso-

ciated SNP when the effects from the known HLA high-risk

genotypes were accounted for in the logistic regression model. The

SNP rs2647044 is approximately 3.3 kb from rs935152. In

Figure 3b, focused on the HLA-DQA1 and HLA-DQB2 intergenic

region, several SNPs remained significantly associated within the

region of the known celiac DQA1 and DQB1 disease genes.

A SNP grouping method was carried out to identify a minimal

set of SNPs with independent effects on the disease across the

xMHC. This analysis used results from the association analysis

that accounted for the known HLA-DQA1 and HLA-DQB1 high-

risk genotype effects. Independent sets of SNPs were constructed

according to their correlated effects on the disease outcome, with

each set being identified by a single index SNP that was most

informative of the group and most strongly associated with disease.

Grouping was based on the following parameters: the significance

threshold for index SNPs of a p-value less than 561027;

a secondary significance for grouped SNPs of a p-value less than

Figure 2. Binary tree computed by conditional recursive partitioning on HLA-DQA1 and HLA-DQB1 genotypes.
doi:10.1371/journal.pone.0036926.g002

Table 1. Characteristics of Five-Level Variable for Known HLA
High-Risk Alleles Computed by Conditional Recursive
Partitioning.

Genotype Cases Controls Total

DQ2.5/DQ8 heterozygote 117 (0.07) 31 (0.06) 148 (0.07)

DQ2.5 homozygote 266 (0.16) 13 (0.03) 279 (0.13)

DQ2.5/non-DQ8 heterozygote 949 (0.57) 124 (0.24) 1073 (0.49)

1 or 2 copies of DQ8 124 (0.07) 91 (0.18) 215 (0.10)

non-DQ2.5/non-DQ8 212 (0.13) 258 (0.50) 470 (0.22)

Total 1668 (1.00) 517 (1.00) 2185 (1.00)

doi:10.1371/journal.pone.0036926.t001

Association Study of Celiac Disease and the MHC
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0.01; a maximum physical distance of 250 kb over which the SNPs

in the group can span; and an LD threshold, measured by r2, of 0.1

or greater with the index SNP. The parameters were chosen to be

conservative such that the validity of the results was maximized.

An analysis was carried out to determine the relationships

between the parameter values used in the SNP grouping

procedure and the number of SNPs identified. As described in

the Methods section, the grouping procedure depends on several

user-defined input parameters. The purpose of this analysis was to

determine the sensitivity of the method to the input parameter

values so the values used in the subsequent grouping analysis were

not arbitrarily set. The analysis showed that the number of index

SNPs identified largely depended on the significance threshold for

the index SNP and the LD between the index SNP and the

secondary SNPs within each group. In Figure 4a, the linear

relationship between the numbers of index SNPs identified and the

r2 parameter, with r2 values ranging from 0.05 to 1.0 are shown. As

secondary SNPs are required to show greater r2 values with the

index SNP, more groups containing fewer SNPs are formed,

resulting in more index SNPs. The relationship between the

number of index SNPs and the r2 values between 0.01 and 0.15 is

shown in Figure 4b, where the number of index SNPs reaches

a minimum of six at an r2 value of 0.07. The r2 value was set at

0.10 as a tradeoff between the ability to distinguish independent

associations, while accepting that long-range LD is predominant

across the MHC and weak correlations between independently

acting loci are likely. The relationship between the significance

threshold for the index SNP [measured as 216log10 (p-value for

association)] and the number of index SNPs identified is shown in

Figure 4c. The number of index SNPs showed an exponential

decline as the index SNP statistical significance threshold increased

[i.e., the p-value decreases and 216log10 (p-value) increased],

with the parameter showing a declining impact on the number of

index SNPs at a p-value of 1.061026 [216log10 (p-value) = 6].

The number of index SNPs will minimize at zero when the

threshold exceeds the statistical significance of all SNPs in the

experiment. The p-value threshold of 5.061027 [216log10 (p-

value) = 7] was selected to be below the point at which the

parameter has a large effect on the number of index SNPs

identified but large enough that the procedure could select from

many putative independent loci. The analysis determined that the

secondary significance level and the physical distance parameters

had weak effects on the number of index SNPs identified (results

not shown).

The grouping procedure resulted in the identification of seven

index SNPs that showed independent effects on the celiac disease

outcome, in addition to the known HLA high-risk types that were

accounted for in the analysis. The positions of the seven loci across

the xMHC as well as the estimated rates of recombination are

shown in Figure 5. The seven loci all map within the classical

MHC region and are separated by hotspots of recombination. In

table 2, the seven index SNPs are ranked by their statistical

significance, with all seven showing p-values less than the defined

index SNP significance threshold of 5.061027. Four of the SNPs

had odds ratios greater than 1.0 indicating that the minor allele

was at increased frequency among cases, while the remaining three

SNPs showed the opposite effect and the more frequent allele was

predominant among cases. The top four most statistically

significant index SNPs (rs937152, rs204991, rs2523674 and

rs2517485) each tagged over 30 secondary SNPs with a combined

total of 135, while the remaining three index SNPs (rs2260000,

rs9276435 and rs2844776) tagged a combined total of 34

secondary SNPs (Table 2).

To further verify the independence of the seven index SNPs,

they were analyzed simultaneously for association in two multiple

logistic regression models. In the first model, the seven SNPs were

the only predictors of celiac disease. Table 2 shows that five of the

seven index SNPs remain statistically significant with p-

values,0.01 when they are modeled together. SNPs rs2260000

(p-value = 0.23) and rs2844776 (p-value = 0.052) were not signif-

icant predictors of the disease when analyzed simultaneously with

the other five SNPs. The second multiple logistic regression model

Figure 3. Association results for 1898 SNPs across (a) full xMHC, and (b) focused on the region around the known HLA class 2 celiac
disease genes, accounting for known HLA high-risk genotypes in the statistical analysis. Vertical bars indicate recombination rates
generated from HapMap database. All pairwise linkage disequilibrium coefficients (r2) included the most significantly associated SNP, rs9357152.
doi:10.1371/journal.pone.0036926.g003

Association Study of Celiac Disease and the MHC
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included the seven index SNPs and the five-level categorical

variable for the known common HLA high-risk genotypes that was

computed by recursive partitioning. This analysis identified four of

the seven SNPs as being significant predictors of celiac disease

including, rs9357152 (p-value = 0.00012), rs204991 (p-val-

ue = 0.0024), rs2523674 (p-value = 0.00693) and rs2517485 (p-

value = 0.0022). Each of the four SNPs tagged more than thirty

other SNPs across the MHC region. The multiple logistic

regression analysis results showed that rs9357152, rs204991,

rs2523674 and rs2517485 were statistically significant independent

markers of new celiac disease loci within the MCH.

Figure 4. Results of sensitivity analysis for SNP grouping analysis showing the relationship between the group linkage
disequilibrium parameter (r2) and the number of index SNPs identified, with r2 ranging from (a) 0.05 to 0.95, and focused on the
range from (b) 0.01 to 0.15. Results (c) show the relationship between the minimum statistical significance parameter for the association between
the disease and the index SNP and the number of index SNPs identified.
doi:10.1371/journal.pone.0036926.g004

Figure 5. Association analysis results and locations of seven index SNPs identified by grouping analysis of the xMHC. Recombination
rates were estimated from HapMap data and are indicated by vertical bars.
doi:10.1371/journal.pone.0036926.g005

Association Study of Celiac Disease and the MHC
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Discussion

GWAS have successfully identified 39 non-HLA loci showing

signficant association with celiac disease, with modest predictive

information [19,23]. Alleles of the HLA-DQA1 and HLA-DQB1

genes are necessary for celiac disease but are not sufficient for

disease development. The xMHC contains more than 250

expressed genes of which many are involved in immune-regulation

[39]. However, it had not been thoroughly interrogated for

additional celiac disease loci due to the complicated nature of the

analysis, including the very strong effects of the known disease

alleles, the extraordinary genetic variation within the region, and

the complex patterns of linkage disequilbrium. A simple associa-

tion analysis of the region that does not take these complications

into account would generate misleading results (as seen in our

comparison of simple and multiple logistic regression models).

Statistical evidence was presented for four new and independent

celiac disease susceptibility loci within the classical MHC. An

informative measure of the known high-risk HLA genotypes was

computed by recursive partitioning and coded as a categorical

variable. The variable was included in an association analysis of

the 7.6 Mb xMHC region using a set of 1898 SNPs that passed

rigorous quality control assessments. The conditional recursive

partitioning approach is superior to a sample stratification to

account for the known HLA high-risk types; there is not a loss of

power from sub-sampling, and it generates the most informative

measure of the known effect. The independent associations were

identified using a conservative grouping procedure that was

designed to minimize the probability of false positive results.

The recursive partitioning analysis generated a variable that

captured the effects of the known common HLA-DQA1 and HLA-

DQB1 high-risk genotypes on the disease outcome. Including the

variable in the association analysis had a pronounced effect on the

association results. Of the 671 SNPs that had p-values of less than

5.061027 without including the high-risk genotype effects, 48 had

p-values less than the threshold when the known HLA effects were

accounted for in the analysis model. While the adjustment for the

effects was effective, it is unlikely that it was complete. There are

low frequency risk alleles and genotypes at HLA-DQA1 and HLA-

DQB1 that were not specifically identified by the categorical

variable because they were not common enough to be strong

predictors of disease in the full sample. Furthermore, the complex

genetic structure of the MHC is not completely amenable to

straightforward statistical adjustment. Although residual influence

from HLA-DQA1 and HLA-DQB1 high-risk genotypes is likely to

exist, it is unlikely that the four independent disease loci identified

in the analysis are due to unaccounted for correlations with the

known HLA risk genotypes given the conservative approach that

was taken in the study. The results strongly suggest additional

celiac disease alleles are present in the MHC.

None of the SNPs reported in Table 2 occur in the coding

sequence of genes or have known or reported functional effects. In

Table 2, we list the functional genes that the SNPs occur within or

the closest gene that is within the same LD haplotype block. SNP

rs9357152, previously reported in a GWAS to be associated with

celiac disease [22], is on the same haplotype block as rs9469220,

which is associated with Crohn’s disease [40], and rs6457617,

which is associated with rheumatoid arthritis [41]. HLA-DQB1 is

the closest gene to rs9357152 at approximately 45 kb centromeric,

however moderate recombination separates the index SNP from

the gene. SNP rs204991 is in the third intron of the G-Protein

Signaling Modulator 3 gene (GPSM3), within a haplotype block

that encompasses the entire gene. HLA Complex P5 (HCP5) is the

nearest gene to rs2523674 at about 4 kb, no other genes are within

20 kb of the SNP. Another SNP in HCP5 was found to be

significantly associated with severe cutaneous adverse drug

reactions in a Japanese GWAS [42]. SNP rs2517485 is about

10 kb from the putative psoriasis and systemic sclerosis disease

susceptibility gene (SEEK1 or PSORS1C1) and the Corneodesmosin

Precursor gene (CDSN).

The goal of this analysis was to test the hypothesis that the

known HLA-DQA1 and HLA-DQB1 celiac disease high-risk alleles

were not the only celiac disease alleles within the xMHC. The

results show evidence for additional celiac disease loci within the

3.7 Mb classic MHC region, however no evidence was found for

additional disease loci within the additional 4.1 Mb of the

extended region. The index SNPs, rs9357152, rs204991,

rs2523674 and rs2517485, were the strongest markers for the

four new loci among the 1898 SNPs included in the analysis.

Additional investigation is required to validate the reported

findings and to locate the new disease alleles, including de-

termining if these SNPs are causal, possibly playing roles in

regulation of these genes, or if they are only tagging causal

variants.

Materials and Methods

Study subjects
As part of our GWAS study, we formed a North American

Celiac Disease Genetic consortium comprised of Dr. S. Neuhau-

Table 2. Association Results for Seven Index SNPs Representing Independent Loci.

SNP Position
Minor
allele

Minor
allele
freq. P-value

Odds ratio
(95% C.I.)

No.
Secondary
SNPs

Multiple LR
P-value
No HRA Adj.#

Multiple LR
P-value
HRA Adj

Functional
Genes*

rs9357152 32664960 G 0.12 7.28610224 0.24 (0.21–0.28) 34 0.0004 0.00012 HLA-DQB1

rs204991 32161366 G 0.46 1.13610212 2.24 (2.00–2.51) 33 3.3161029 0.0024 GPSM3

rs2523674 31436789 A 0.35 6.55610210 0.57 (0.52–0.62) 33 0.0014 0.00693 HCP5

rs2517485 31074101 A 0.49 2.0361029 1.77 (1.61–1.95) 35 6.5361025 0.0022 SEEK1/PSORS1C1

rs2260000 31593476 G 0.22 5.9061028 0.60 (0.54–0.66) 15 0.23 0.39 BAT2

rs9276435 32713867 A 0.40 3.2861027 1.82 (1.62–2.05) 5 0.00014 0.10 HLA-DQA2

rs2844776 30171827 G 0.37 4.1761027 1.65 (1.50–1.83) 4 0.052 0.096 TRIM26

*Either the gene that the SNP occurs in, or the nearest gene within the same LD haplotype block as the index SNP.
#Indicates adjustment for known common high-risk alleles by inclusion of the five-level variable computed by recursive partitioning.
doi:10.1371/journal.pone.0036926.t002

Association Study of Celiac Disease and the MHC
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sen at COH and Dr. C. Garner at UC Irvine, Dr. J. Murray at the

Mayo Clinic, Dr. A. Fasano at the University of Maryland, and

Dr. P. Green at Columbia University to study subjects enrolled in

previous studies at each center. The already collected, coded, non-

identifiable samples were contributed from City of Hope, Mayo

Clinic, University of Maryland and Columbia University. The

City of Hope Institutional Review Board approval was granted in

January 2010, and the approved protocol is 09169. The Mayo

Clinic participants were previously enrolled under the direction of

Dr. Joseph Murray under an approved IRB protocol 1173-99.

Similarly, the samples from the University of Maryland were

collected under the direction of Dr. Alessio Fasano under three

approved IRB protocols (H- 27784, H29090, and H-29938).

Similarly, the samples from Columbia University were collected

under the direction of Dr. Peter Green under approved IRB

protocol AAAE8893 (and previous protocol #8562). All partici-

pants provided written informed consent as described in each of

the protocols.

Reflecting the population of celiac disease, all 2300 participants

were Caucasian. Of the celiac disease cases, 532 were from COH,

743 from the Mayo Clinic, 423 from the University of Maryland,

and 66 from Columbia University. Of the controls, 177 were from

COH and 359 from the Mayo Clinic, for a total of 1764 cases and

536 controls. Blood samples were collected for serology testing for

celiac disease and DNA was extracted for genetic studies. The four

sites used the same serological tests, collected similar questionnaire

data, and used the same criteria for diagnosis of celiac disease. To

be defined as celiac disease, each case was required to have: 1)

positive celiac-specific autoantibody (IgA EMA and IgA tTG

antibodies); 2) or a proximal small intestinal biopsy compatible

with celiac disease; and 3) either clinical and/or histological

improvement with a gluten-free diet. The majority of cases fulfilled

all three criteria. A small proportion of subjects, predominantly

those diagnosed before modern serology came into use, did not

have celiac-specific serology, and another small minority of

subjects did not have a biopsy. Those who tested positive for

both IgA tTG and IgA EMA were considered positive for celiac

disease. Using this sequential testing technique, sensitivity and

specificity rates of virtually 100% were reported, making it

practical to accurately identify those with celiac disease on the

basis of serology alone [43,44]. A small biopsy was performed on

approximately 90% of those who tested positive serologically, and

all had a positive biopsy for the disease. For all sites, individuals

who were self-declared celiacs because of a self administered

gluten-free diet and without a biopsy, or individuals whose biopsy

demonstrated only minor changes such as increased intraepithelial

lymphocytes and/or crypt hyperplasia, were not included as cases.

The unaffected controls tested serologically negative for celiac

disease.

HLA typing
The process for determining the HLA-DQA1 and DQB1 alleles

in the cases and controls first involved determining the genotypes

of 95 of the individuals by Sanger sequencing. This set of 95

individuals acted as positive controls for the HLA genotyping of

the remaining case and control individuals. To identify controls for

genotyping for each of the HLA-DQA1 and DQB1 alleles, we

directly sequenced the second exons of DQA1 and DQB1 for 95

samples by Sanger sequencing using the ABI Prism BigDye

Terminator cycle sequencing kit 3.1 (PE Applied Biosystems).

Sequences were aligned using Sequencher software (GeneCode

Corporation, MI), as well as manually inspected if needed. DQ

allele assignments were done manually by comparing variants

from each sample to variants of each DQ allele downloaded from

dbMHC sequence alignment viewer (http://www.ncbi.nlm.nih.

gov/gv/mhc). Using those samples with DQ alleles determined by

direct sequencing, HLA-DQA1 and DQB1 genotypes were de-

termined by one of two high-throughput DQ typing methods.

Three hundred and eighty nine samples (from COH) were

genotyped by an allele-specific PCR method developed in our

laboratory by Feolo et al. [45]. Genotyping accuracy for this

method is greater than 98%. The remaining 1816 samples were

genotyped by a tagging SNPs approach in which six tagging SNPs

were used to predict four different HLA DQ types (DQ2.5,

DQ2.2, DQ7 and DQ8) associated with celiac disease [46].

Genotyping call rates ranged from 95% to 99% and duplicate

concordance rates were higher than 99%. There was 100%

concordance between the 95 HLA genotypes determined by

Sanger sequencing and the same individuals’ HLA genotypes

imputed from the six tagging SNPs.

Genotype data
A sample of 2300 individuals plus duplicates were genotyped at

the Center for Inherited Disease Research (CIDR) using the

Illumina 660 W Quad GWAS platform. Individuals and SNPs

with less than 98% complete GWAS genotype data were excluded

from the sample. SNPs with a minor allele frequency less than 0.03

or failing a test of Hardy-Weinberg equilibrium with a p-value less

than 1.061025 were excluded. GWAS genotype data were used to

test if data were consistent with second degree or higher familial

relationships and the reported sex, and inconsistencies that could

not be resolved resulted in sample exclusion. Analysis for

population stratification and admixture using multidemensional

scaling and cluster analysis revealed a predominant single cluster

and resulted in the exclusion of several apparent ancestral outliers.

A sample of 2185 individuals, including 1668 confirmed celiac

disease cases and 517 unaffected controls, passed all QC criteria,

had complete HLA typing information, and were used for

association analysis in the current study. There were 1898 SNPs

between positions 26,000,508 and 33,544,122 on chromsome 6p,

encompassing the xMHC that were part of the Illumina GWAS

panel, that passed all QC assessments and were used for the

current association analysis.

Conditional inference based recursive partitioning
A conditional inference-based recursive partitioning method

was used to partition the sample of individuals into strata based on

their HLA-DQA1 and HLA-DQB1 genotypes in such a way as to

minimize the within-group heterogeneity. The recursive partition-

ing method is a two-stage process in which predictor variables are

selected and then the sample is subjected to a binary split [47]. A

global test of independence between all the input variables and the

outcome was carried out to select independent predictor variables.

If the null hypothesis of independence could be rejected at a pre-

determined p-value threshold of 0.05, the input variable with the

strongest association to the response was selected. The extent of

association was measured by the p-value corresponding to a test of

the partial null hypothesis of a single input variable and the

response variable. A binary split was then imposed on the selected

input variable. These steps were repeated until the global null

hypothesis of independence could be rejected. A factor variable

was created from the terminal nodes of the tree resulting from the

binary splitting process. The terminal nodes define the set of strata

that each individual is assigned to based on their HLA-DQA1 and

HLA-DQB1 genotypes. The conditional inference based recursive

partitioning was computed using the PARTY package in R [48].
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Association analysis
Association analysis was performed by fitting logistic regression

models to the observed disease status and genotype data, with the

celiac disease outcome predicted by the SNP genotype. The

unphased genotypes 1/1, 1/2 and 2/2 were coded as 0, 1 or 2 to

denote the number of minor alleles present. HLA-DQA1 and HLA-

DQB1 effects on disease risk were accounted for by incorporating

the multi-level factor variable computed by recursive partitioning

into a multiple regression model with the SNP genotype. The

simple and multivariate regression models were computed using

PLINK and the GenABEL package in R [49,50].

Linkage disequilibrium (LD)-based SNP grouping
A data reduction procedure was used to group sets of SNPs that

had highly correlated associations with the celiac disease outcome

and to determine how many SNPs showing significant association

in the adjusted logistic regression were likely to be independent.

SNPs were grouped together into LD groups (or ‘clumps’) by rank

orders of p-values and decreasing LD, measured by r2, from the

top or ‘index’ SNP in each group. In addition to an LD threshold

within each group, non-index SNPs also had to meet a specified

secondary p-value threshold and be within a physical distance

threshold (kb) from the index SNP. The LD-based SNP grouping

analysis was computed using the ‘clump’ procedure in PLINK

[50].
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