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Glycosphingolipids (GSLs), which consist of a hydrophobic ceramide backbone and
a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in
surface membranes of all animal cells. GSLs play essential roles in maintenance of
plasma membrane stability, in regulation of numerous cellular processes (including
adhesion, proliferation, apoptosis, and recognition), and in modulation of signal
transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-
series, or globo-series on the basis of their diverse types of oligosaccharide chains.
Structures and functions of specific GSLs are also determined by their oligosaccharide
chains. Different cells and tissues show differential expression of GSLs, and changes
in structures of GSL glycan moieties occur during development of numerous types
of human cancer. Association of GSLs and/or related enzymes with initiation and
progression of cancer has been documented in 100s of studies, and many such
GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we
summarize (i) recent studies on aberrant expression and distribution of GSLs in common
human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal,
bladder, gastric); (ii) biological functions of specific GSLs in these cancers.
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INTRODUCTION

Glycosphingolipids (GSLs) are a subtype of glycolipids found in all animal cell surface membranes.
GSLs have three basic components: sphingosine, fatty acid, and a carbohydrate residue (Hakomori,
2002). Major structural and functional classifications of GSLs have traditionally been based on
glycans. GSLs can be subclassified as neutral, sialylated, or basic, or as ganglio-series, lacto-series,
or globo-series (Hakomori, 2003). Some common types of GSLs (mainly ganglio-series) and related
enzymes are shown in Figure 1. Two important functions of GSLs are mediation of cell–cell
interactions and modulation of signal transduction pathways. Many studies have focused on
the role of certain GSLs as cancer biomarkers and their application in cancer immunotherapy.
Differential expression profiles of GSLs associated with oncogenic transformation were first
reported almost 50 years ago (Hakomori and Murakami, 1968). A steadily increasing number of
subsequent studies described aberrant expression and function of GSLs and related enzymes in
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FIGURE 1 | Pathway for glycosphingolipids (GSLs) biosynthesis. Glc, glucose; Lac, lactosyl; Gal, galactose; GalNAc, N-acetylgalactosamine; GlcNAc,
N-acetylglucosamine; Sia, sialic acid; b, globo-series; Lc3, lactotriaosylceramide; Lc4, neolactotetraosylceramide. The code names of gangliosides are according to
Svennerholm (1980). G refers to ganglioside, the second letter refers to the number of sialic acids residues (M, mono-; D, di-; T, tri-; Q, quad-; P, pent-), and the
number (1, 2, 3, 4) refers to the order of migration of the ganglioside on thin-layer chromatography (e.g., GM4 > GM3 > GM2 > GM1).

cancer cells and tissues. Here, we review recent studies along this
line; these studies are summarized in Table 1.

BREAST CANCER

Breast cancer is the most common type of cancer in women
(Siegel et al., 2017b). Expression of certain GSLs in breast cancer
tissue are distinct from that in normal breast tissue. Gangliosides
GD3, 9-O-acetyl-GD3, and 9-O-acetyl-GT3 are barely detectable
in normal breast tissues, but were found to be overexpressed
in ∼50% of invasive ductal carcinomas (Marquina et al., 1996).
In breast phyllodes tumors, mammosphere formation capacity
was 3.9-fold greater in GD2+ cells than in GD2− cells, and
the GD2+ subpopulation displayed more mesenchymal stem cell
characteristics (Lin et al., 2014). GD3/GD2 synthase ST8SIA1 was
overexpressed in estrogen receptor (ER)-negative breast cancer
tumors (Ruckhaberle et al., 2009), resulting in accumulation
of GD2 (Cazet et al., 2012). Such accumulation enhanced
proliferation and tumorigenicity of MDA-MB-231 breast cancer
cells through ganglioside-mediated activation of c-Met receptor
(Cazet et al., 2010, 2012; Sarkar et al., 2015). GD2 was identified
as a specific cell surface marker of CD44hi/CD24lo breast cancer
stem cells (CSCs) (Battula et al., 2012). GD2 and GD3 levels
were dramatically higher in breast CSCs than in non-CSCs, and

knockdown of their synthases B4GALNT1 and ST8SIA1 resulted
in phenotypic change from CSC to non-CSC (Liang et al., 2013).
Follow-up studies demonstrated that ST8SIA1 maintains stem
cell phenotype in breast CSCs, and that GD3 synthases may
be involved in gefitinib-resistance of epidermal growth factor
receptor (EGFR)-positive breast cancer cells (Liang et al., 2017).
Stage-specific embryonic antigen (SSEA)-3, also known as Gb5,
is another potential marker of breast CSCs (Cheung et al.,
2016).

GD2 can be further converted to disialoganglioside GD1b.
Exogenous or endogenous expression of GD1b (but not GD2) in
human breast cancer MCF-7 results in apoptosis (Ha et al., 2016).
Overexpression of GD1α or its synthase ST6GALNAC5 in breast
cancer cells promotes their metastasis to brain by enhancing
adhesion to brain endothelial cells and reducing interactions with
the blood–brain barrier (Bos et al., 2009; Vandermeersch et al.,
2015; Drolez et al., 2016).

The epithelial–mesenchymal transition (EMT) phenomenon
plays an important role in cancer metastasis. In normal murine
mammary gland (NMuMG) cells, levels of Gg4 and its synthase
B3GALT4 were significantly reduced during transforming growth
factor-β (TGF-β)-induced EMT, and exogenous addition of Gg4
suppressed TGF-β-induced changes of morphology, motility,
and levels of epithelial and mesenchymal markers (Guan et al.,
2009). Gg4 appears to maintain epithelial cell membrane
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TABLE 1 | Glycosphingolipids and related enzymes aberrantly expressed in various types of cancer.

Cancer Upregulation or promotion Downregulation or inhibition

Breast GD2 and/or GD3 (Cazet et al., 2010, 2012; Battula et al., 2012; Liang
et al., 2013; Lin et al., 2014; Sarkar et al., 2015)
ST8SIA1 (Ruckhaberle et al., 2009; Liang et al., 2017)
Gb5 (Cheung et al., 2016)
GD1α (Bos et al., 2009; Vandermeersch et al., 2015; Drolez et al.,
2016)

GD1b (Ha et al., 2016)
Gg4 and B3GALT4 (Guan et al., 2009, 2010; Guo et al., 2015)

Lung Gb3 (Tyler et al., 2015)
GM2 (Yamada et al., 2011)
NeuGcGM3 (Hayashi et al., 2013; Alfonso et al., 2014; Piperno et al.,
2015; Palomo et al., 2016)

α-GalCer (Hasegawa et al., 2014; Ando et al., 2015; Ito et al., 2015;
Yamashita et al., 2016)
GALC (Peng et al., 2015)

Colorectal Gb3 (Distler et al., 2009)
Gb4 (Park et al., 2012)
GCS (Haynes et al., 2012)
NEU3 (Shiozaki et al., 2009; Yamaguchi et al., 2012; Mozzi et al., 2015;
Takahashi et al., 2015)

GD1a and GM1 (Kwak et al., 2011)
α-GalCer (Yoshioka et al., 2012; Dong et al., 2016)
GM3 (Chung et al., 2014)

Melanoma NeuGcGM3 (Tringali et al., 2014)
d-GM3 (Yan et al., 2013)
GD2 and GD3 (Furukawa et al., 2014; Dobrenkov et al., 2016; Gargett
et al., 2016; Kaneko et al., 2016; Makino et al., 2016)
B4GalT5 (Shirane et al., 2014)

α-GalCer (Neumann et al., 2015; Albertini et al., 2016)

Leukemia NeuGcGM3 (Fernandez-Marrero et al., 2011; Casadesus et al., 2013)
GCS (Watters et al., 2013; Wang et al., 2014)
Lc3, GM3, and nLc4 (Wang et al., 2012)

α-GalCer (Weinkove et al., 2013)
GM3 (Jin et al., 2014; Delannoy et al., 2017)
GlcCer (Schwamb et al., 2012)

Prostate GD1a and SPG (Hatano et al., 2011, 2012)
sialyl-Gb5 (Sivasubramaniyan et al., 2015; Hofner et al., 2016)
LacCer (Skotland et al., 2017)
Gg4 (Van Slambrouck et al., 2009, 2014)

DSGb5 (Shimada et al., 2014)

Ovarian P1 (Jacob et al., 2014)
GD3 (Webb et al., 2012)

GM3 (Prinetti et al., 2011)

Renal GM3 (Lin et al., 2012)
DSGb5 (Kawasaki et al., 2015)
LacCer (Chatterjee et al., 2013)

GlcCer (Chatterjee et al., 2013)

Bladder GCS (Sun et al., 2012) GM3 (Wang et al., 2013)

Gastric Gb3 (Geyer et al., 2016)

organization through its interaction with epithelial molecules
such as E-cadherin and β-catenin (Guan et al., 2010). A TGF-
β signal pathway-related complex formed by transcriptional
factors Smad3 and Smad4 may directly bind to B3GALT4
promoter and reduce Gg4 expression during EMT (Guo et al.,
2015).

LUNG CANCER

Lung cancer is a common cancer in both men and women,
and the leading cause of cancer-related mortality (Jemal
et al., 2011; Siegel et al., 2017b). Recent studies demonstrate
the important roles of GSLs in lung cancer transformation
and progression. α-galactosylceramide (α-GalCer) (including
allogeneic sources), a specific ligand of invariant natural killer
T (iNKT) cells, exerts an anti-tumor effect by increasing
production of the tumor growth suppressor IFN-γ (Hasegawa

et al., 2014). Several groups have attempted to enhance the
therapeutic effects of α-GalCer on lung cancer. Therapeutic
efficiency of α-GalCer was enhanced by inhibition of inducible
nitric oxide synthase (iNOS) expression (Ito et al., 2015).
Combination therapy with α-GalCer and lipopolysaccharide
obviously promoted tumor antigen-specific immune responses
and suppressed tumor growth (Ando et al., 2015). Host
CD40 apparently plays an essential role in the effectiveness
of α-GalCer treatment on lung metastasis (Yamashita et al.,
2016).

Cisplatin is a chemotherapeutic agent widely used in
treatment of many types of cancer. It induces cell apoptosis
by increasing DNA fragmentation, inhibiting cell proliferation
and activating mitochondria-dependent apoptotic pathway.
Increased cell surface Gb3 expression led to acquisition of
cisplatin resistance in non-small cell lung cancer (NSCLC)
cells, and reduced glucosylceramide (GlcCer) synthase
(GCS)-potentiated cisplatin cytotoxicity in NSCLC H1299
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cells. GCS-induced Gb3 expression has a regulatory role in
acquisition of cisplatin resistance in NSCLC cells (Tyler et al.,
2015). Expression of galactocerebrosidase (GALC), an enzyme
that removes galactose from GSLs, is reduced in lung cancer and
other human cancers. Downregulation of GALC gene resulted
from hypermethylation of its promoter, suggesting that lung
cancer tumorigenesis is due in part to epigenetic inactivation of
GALC (Peng et al., 2015).

N-acetylated ganglioside NeuAcGM3 is usually present
in normal human tissues, whereas many human tumors
express N-glycolylated ganglioside NeuGcGM3. NeuGcGM3
was present in 86 of 93 (93.5%) NSCLC samples, as shown
by immunohistochemical staining (Hayashi et al., 2013).
NeuGcGM3, because of its selective expression in tumors,
is a potentially useful target for immunotherapy, e.g.,
using Racotumomab-alum vaccine (Alfonso et al., 2014) or
recombinant monoclonal antibody 14F7 (Piperno et al., 2015).
In cases in which NeuGcGM3 and EGFR are involved jointly in
tumor cell metastasis, therapeutic strategies that simultaneously
target both molecules may be effective (Palomo et al., 2016).

Ganglioside GM2 is involved in cell adhesion and cell
metastasis. GM2-expressing small cell lung cancer (SCLC)
cells underwent multiple organ metastases in a SCID mouse
model, and these metastases were inhibited by treatment
with humanized anti-GM2 antibodies BIW-8962 and KM8927
(Yamada et al., 2011).

COLORECTAL CANCER

Another common cancer worldwide is colorectal cancer (Siegel
et al., 2017a). Certain GSLs and related enzymes are aberrantly
expressed in colorectal cancer. The glycosylation modification
of GSLs during colorectal cancer progression were obtained
in 13 colorectal tumor tissues, and these were found to be
characterized by increased fucosylation, decreased acetylation
and sulfation, reduced expression of globo-type glycans and
disialyl gangliosides (Holst et al., 2013). In a study by Distler
et al. (2009), 13 of 16 (81.3%) colon cancer patients showed
elevated expression of the GSL Gb3 (also known as CD77).
As Gb3 is the receptor of Shiga toxin and binds to the
STx B-subunit or its derivatives, which are therefore potential
targets for colorectal cancer treatment. Gb4, synthesized from
Gb3, has been characterized as an SSEA and is highly
expressed in many types of cancer. In human colorectal
carcinoma HCT116 cells, Gb4 enhanced activation of EGFR-
induced MAPK/ERK signaling through direct interaction with
EGFR (Park et al., 2012). Human colorectal carcinoma-
associated GA733 antigen, also termed epithelial cell adhesion
molecule (EpCAM), is selectively expressed in human colorectal
carcinoma. Expression of gangliosides GD1a and GM1 greatly
enhanced the anticancer effect of anti-EpCAM mAb in
human colon adenocarcinoma SW620 cells (Kwak et al.,
2011).

A therapeutic effect on colorectal cancer has also been
demonstrated for α-GalCer. Treatment with α-GalCer
significantly reduced the number of colorectal tumors

in AOM/DSS mice (Yoshioka et al., 2012). Combined
treatment with α-GalCer-loaded tumor cells and
cytosine-phosphorothioate-guanine (a TLR9 agonist) in a mouse
colorectal cancer model led to tumor growth inhibition and
prolonged survival (Dong et al., 2016). In p53-deficient HCT116
cells, GCS level was reduced by treatment with mitomycin
C, a DNA-damaging agent. Apoptosis was significantly
enhanced by simultaneous GCS inhibition and mitomycin
C treatment in p53-deficient cells, but not in p53-expressing cells
(Haynes et al., 2012). Cisplatin is also used for chemotherapy of
colorectal cancer. GM3-mediated oxidative apoptosis was shown
to be related to cisplatin-induced apoptosis of HCT116 cells
(Chung et al., 2014).

NEU3, a human plasma membrane-associated sialidase
that specifically hydrolyzes sialic acids on gangliosides, is
upregulated in colorectal cancer and plays an important role
in malignancy (Shiozaki et al., 2009). In a mouse model of
colitis-associated colon carcinogenesis induced by azoxymethane
and dextran sodium sulfate, NEU3-deficient mice were less
susceptible than wild-type mice (Yamaguchi et al., 2012). NEU3
therefore seems to be involved in inflammation-dependent
tumor development. NEU3 also enhances EGFR activation
through desialylation without affecting EGFR mRNA or protein
expression (Mozzi et al., 2015). In HT-29 and HCT116 colorectal
cancer cells, NEU3 silencing significantly reduced clonogenicity
and downregulated stemness and Wnt-related genes, suggesting
that Wnt signaling contributes to NEU3-induced tumorigenesis
through maintenance of stem-like characteristics of these cells
(Takahashi et al., 2015).

MELANOMA

Melanoma is the type of skin cancer with highest mortality rate,
resulting annually in ∼60,000 deaths in ∼3 million patients
worldwide (Wang et al., 2016). Certain GSLs were found to be
specifically expressed and serve as distinctive molecular markers
in melanoma cells (Hakomori, 2001). Among patients with
various types of melanoma, survival was lowest for those having
high levels of GM3 (mainly NeuGcGM3) in isolated melanoma
cells (“cluster 1”). Such cluster 1 cells displayed highest malignant
properties in terms of growth in soft agar, in vitro invasiveness,
and expression of anti-apoptotic proteins (Tringali et al., 2014).
The deacetylated GM3 (d-GM3) variant was found in metastatic
melanomas but not in non-invasive melanomas or benign nevi.
d-GM3 apparently promoted metastasis of human melanoma
cells via the uPAR/integrin and p38 MAPK pathways (Yan et al.,
2013).

GD2 and GD3 are highly and specifically expressed in most
human melanoma tissues, and their expression is correlated
with malignant properties such as cell proliferation and
invasiveness (Dobrenkov et al., 2016). Molecules involved in
GD3-mediated signaling pathways, such as p130Cas and paxillin,
are potential targets for melanoma treatment. RNAi blocking
of p130Cas and/or paxillin strongly suppressed melanoma
growth (Makino et al., 2016). Stimulation by hepatocyte growth
factor (HGF) or adhesion to collagen type I enhanced cell
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proliferation and apoptosis resistance via MAPK and Akt
signaling pathways in GD3+, but not GD3−, human melanoma
N1 cells. Increased GD3 expression promoted melanoma cell
adhesion to surrounding tissues and susceptibility to HGF
present in the tumor microenvironment, leading to synergy
of multiple extracellular signals in melanoma tissue (Furukawa
et al., 2014). Kaneko et al. (2016) showed that enhancement of
melanoma malignant properties by GD3 may result in part from
recruitment of γ-secretase to rafts, facilitating efficient cleavage of
neogenin. GD2-specific chimeric antigen receptor (CAR) T-cells
provide another promising new approach for melanoma cancer
immunotherapy. These T-cells had a strong, rapid effect on
metastatic melanoma, and blocking of PD-1 promoted CAR
T-cell survival and killing of PD-L1+ tumor cells (Gargett et al.,
2016).

The lactosylceramide (LacCer) synthase B4GalT5 was
upregulated during malignant transformation of mouse
melanoma B16-F10 cells, and reduced expression of the B4GalT5
gene significantly reduced tumorigenic and metastatic potential
(Shirane et al., 2014). α-GalCer exerted anti-tumor effects
through eff activation of iNKT cells in melanoma as in some
other types of cancer (Neumann et al., 2015; Albertini et al.,
2016).

LEUKEMIA

Leukemia is a group of cancers that usually begin in the
bone marrow and lead to high numbers of abnormal white
blood cells. ∼90% of leukemias occur in adults, in whom
the most common types are acute myeloid leukemia (AML)
and chronic lymphocytic leukemia (CLL). It is also the most
common cancer in children, in whom ∼75% of cases are
acute lymphoblastic leukemia (ALL). Differentiation induction
therapy of leukemia has received considerable research attention.
Human chronic myelogenous leukemia (CML) K562 cells
induced by caffeic acid phenethyl ester (CAPE) to differentiate
toward megakaryocytic lineage showed increased GM3 synthase
transcriptional activity and GM3 levels (Jin et al., 2014).
GM3 expression was upregulated during differentiation of
human acute monocytic leukemia THP-1 cells into macrophages
(Delannoy et al., 2017). However, according to Wang et al.
(2012), the study found that the levels of lactotriaosylceramide
(Lc3), GM3 and neolactotetraosylceramide (nLc4) are higher
in AML patients bone marrow than in healthy controls,
especially the M1 subtype of AML. These results may indicate
that the expression of GM3 is closely related to the various
leukemia subtypes. Human normal tissues lack NeuGcGM3
because of a deletion in the cmah gene that encodes the
enzyme responsible for NeuGc synthesis. Silencing of cmah
in NeuGcGM3-expressing L1210 mouse lymphocytic leukemia
B cells suppressed the cytotoxic effect by antibody 14F7
(Fernandez-Marrero et al., 2011). In a follow-up study, these
cmah-silenced L1210 cells displayed enhanced NeuAcGM3
expression and an inhibitory effect on anchorage-independent
cell growth and tumor development in vivo (Casadesus et al.,
2013).

In patients with early-stage CLL, iNKT cells and the CD1d
axis were fundamentally intact, and treatment with α-GalCer
was feasible and effective (Weinkove et al., 2013). Growth
and survival of CLL cells were promoted by stimulation with
B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-
4 (IL-4), through regulation of apoptosis resistance. Schwamb
et al. (2012) found that anti-apoptotic effect of GlcCer was
significantly enhanced by BCR stimulation in primary CLL
cells.

Combination treatment of leukemic NK cells with
C6-ceramide nanoliposomes and PPMP (a GCS inhibitor)
induced apoptosis through the intrinsic mitochondrial
cell death pathway (Watters et al., 2013). In K562/A02, a
multidrug-resistant variant of CML K562 cells with GCS and
Bcl-2 co-overexpression, apoptosis was enhanced by adriamycin
(a chemotherapeutic agent used for treatment of various cancers)
through downregulation of Bcl-2 via the ERK pathway. GCS
inhibition also suppressed Bcl-2 in these cells. Thus, GCS
may promote apoptosis resistance via upregulation of Bcl-2
expression (Wang et al., 2014).

PROSTATE AND OVARIAN CANCER

Prostate cancer is the second most common type of cancer in men
(Ferlay et al., 2015). GD1a and sialylparagloboside (SPG) showed
higher expression in castration-resistant prostate cancer PC3
and DU145 cells than in hormone-sensitive prostate cancer cells
or normal prostate epithelium. Such expression was indirectly
controlled by NF-κB (mainly RelB) through transcriptional
regulation of GD1a and SPG synthases ST3Gal2 and ST3Gal6
(Hatano et al., 2011). ST3Gal2 expression was regulated by
androgen-dependent demethylation of CpG sites in its promoter
(Hatano et al., 2012).

SSEA-4 (also known as sialyl-Gb5) plays an important
role in prostate cancer development by affecting adhesion of
cells to extracellular matrix (Sivasubramaniyan et al., 2015)
and facilitating precise recognition of basal epithelial stem
cell/progenitor cell lineages (Hofner et al., 2016). Disialosyl
globopentaosylceramide (DSGb5) is expressed in benign prostate
tissue but not in prostate cancer. However, cancer cells of
patients with a worse prognosis show high expression levels
of DSGb5, this alteration may indicate the progression of
malignant potential of prostate cancer. Therefore, DSGb5 has
a potential as a novel prostate cancer marker (Shimada et al.,
2014).

Levels of LacCer (d18:1/16:0) in urinary exosomes were∼95%
higher in prostate cancer patients than in healthy controls
(Skotland et al., 2017). The carbohydrate moiety of Gg4 interacts
with α2,3-linked sialic acid residues of integrin α2β1, and
adhesion, migration, and invasiveness of prostate cancer C4-2B
cells are affected by colocalization of these molecules (Van
Slambrouck et al., 2009, 2014).

Ovarian cancer is the seventh most common cancer and
eighth most common cause of cancer-related death in women.
Rajanayake et al. (2016) compared GSL profiles in epithelial
ovarian cancer SKOV3 cells vs. benign ovarian T29 cells. Five
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neutral GSLs were found only in SKOV3 cells, and several
sialylated GSLs were differentially expressed. Gangliosides are
concentrated primarily in lipid rafts – particularly caveolae,
a type of lipid raft enriched in caveolins and functioning
in signal transduction. Recombinant human ovarian cancer
A2780 cells overexpressing GM3 synthase displayed reduced
motility due to inactivation of c-Src by ganglioside/caveolin-1
complex (Prinetti et al., 2011). The neolacto-series GSL P1
was found to be expressed on both erythrocytes and ovarian
cancer cells, and appears to be a novel tumor-associated
antigen associated with cell migration (Jacob et al., 2014).
Webb et al. (2012) showed that GD3 in ovarian cancer
ascites fluid is involved in a mechanism of early tumor
immune evasion, based on its high affinity for CD1d and
consequent blocking of innate immune activation of NKT
cells.

RENAL, BLADDER, AND GASTRIC
CANCERS

Bladder, renal, and gastric cancers are also fairly common in
humans. These types of cancer also display abnormal expression
of certain GSLs and related enzymes.

Following implantation of renal cancer cells into BALB/c
mice, increased tumor volume was accompanied by upregulation
of LacCer. Tumor volume was strongly reduced by treatment
with D-PDMP, an inhibitor of GCS and LacCer synthase.
D-PDMP treatment led to increased GlcCer level, possibly
because of reduced activity of GlcCer glucosidase (Chatterjee
et al., 2013). Confusingly, in some cases a particular GSL
may display opposite effects in different cancer types (see
Table 1). For example, GM3 acts as negative regulator of
most cancers, the expression of GM3 (d18:1/22:1) in renal
cancer patients were higher than in healthy controls (Lin et al.,
2012). Similarly, high DSGb5 expression levels exhibit greater
migration potential in renal cell carcinoma cells (Kawasaki
et al., 2015), but the expression of DSGb5 is decreased in the
early stage of transformation of prostate cancer from benign
glands. These results may suggest that certain GSLs play a very
complex role during the development and progression of renal
cancer.

GCS is highly expressed in bladder cancer, and correlated
with poor prognosis (Sun et al., 2012). In human bladder
cancer YTS-1, T24, 5637, and KK47 cells, exogenous addition
of GM3 reduced cell proliferation, cell adhesion, and EGFR
phosphorylation (Wang et al., 2013).

Geyer et al. (2016) identified Gb3 in gastric carcinoma
patients and cell lines using recombinant variant STxB-Cy3.
Immunofluorescence analysis revealed expression of Gb3 in the
majority of patients (36/50; 72%) and cell lines (6/10; 60%).

SUMMARY AND PERSPECTIVES

Glycosphingolipids play an essential role in maintaining normal
physiological functions of cells. In many types of human

cancer, aberrant expression of specific GSLs and related enzymes
is strongly associated with tumor initiation and malignant
transformation. Cancer immunotherapy is a highly promising
approach that use of the immune system to treat cancer
(Couzin-Frankel, 2013). In view of the aberrant expression of
specific GSLs in many cancer, certain GSLs are selected as
tumor-associated antigens and their antibodies are currently
under preclinical studies or clinical investigation, also including
molecular vaccines. For example, the antibody hu14.18K322A,
which specifically recognize GD2, is being investigated in a
phase II trial in neuroblastoma patients (Furman et al., 2017).
Another example, the antibody BIW-8962, targets GM2, which is
highly expressed in lung cancer (Lee et al., 2017). Racotumomab
as an anti-idiotypic antibody vaccine that response against
NeuGcGM3 can significantly extend the life of lung cancer
patients by inhibiting the growth of their tumors. After a
successful phase II/III study, Racotumomab adjuvanted with
aluminum hydroxide was conditionally approved in Latin
American countries as maintenance therapy for NSCLC (Gabri
et al., 2016). Research shows NeuGcGM3 was highly expressed
in many different human cancers, heralding a huge potential
of Racotumomab or other NeuGcGM3-based vaccines for
cancer immunotherapy. The Globo-series are another attractive
targets. The antibodies against Gb3, Gb4, and Globo H have
been shown to be effective as anti-tumor agents. In addition,
their relevant vaccines are equally valid approach for cancer
immunotherapy (Danishefsky et al., 2015). Meanwhile, certain
GSLs can be used as tumor inhibitor. One example, α-GalCer
exhibits a strong anti-tumor effect and new therapeutic method
are undergoing clinical trials (Gasser et al., 2018). With the
deepening and development of research, we believe more GSLs
will be found to have tremendous applicable value on cancer
therapy.

The relationships between expression of many GSL species
and development of various types of cancer remain unclear.
The molecular mechanisms underlying the effects of GSLs
on cancer development and progression also need to be
elucidated. There are more than 400 species of GSLs in mammals
(Hakomori, 2003). Determine the expression of these various
GSLs and understanding the functional significance of this
diversity in cancer is thus a challenging task. In recent years,
mass spectrometry and its correlative technology has been
widely explored for the identification and quantification of
GSLs due to its high resolution, sensitivity, and accuracy. But
owing to the complexity of GSLs, acquisition and accurate
analysis of the category of glycosidic bond and the specific
oligosaccharide structures, for instance, isomers with different
glycan chains such as GM1a and GM1b, same glycan chain
but different ceramide portions, is still in a difficult situation
(Sarbu et al., 2016). Speaking of that, the emerging need for
developing the effective technology to analyze the GSL is thus
requested.

Great progress has been made during the past two decades
in use of certain GSLs as targets for cancer immunotherapy and
diagnosis. The foreseeable progress of the glycobiology field, with
the rapid expansion of new ideas and new methods, especially
the improvement of mass spectrometry technology, which are
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providing increasing advances in the understanding of how
GSLs impact cancer progression, will allow the development
of a relatively unexploited field of cancer treatments based on
aberrant expression of GSLs, leading to exciting and novel clinical
applications.
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