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Mycobacterium chimaera, a member of the Mycobacterium avium complex, can cause infections in individuals after open heart
surgery due to contaminated heater-cooler units. The diagnosis can be challenging, as the incubation period can be quite
variable, and symptoms are nonspecific. In addition to aggressive surgical management, combination pharmacologic therapy is
the cornerstone of therapy, which should consist of a macrolide, a rifamycin, ethambutol, and amikacin. Multiple second-line
agents may be utilized in the setting of intolerances or toxicities. In vitro susceptibility of these agents is similar to activity
against other species in the Mycobacterium avium complex. Drug–drug interactions are frequently encountered, as many
individuals have chronic medical comorbidities and are prescribed medications that interact with the first-line agents used to
treat M. chimaera. Recognition of these drug–drug interactions and appropriate management are essential for optimizing
treatment outcomes.
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Background of Organism Identification and Infection

Mycobacterium chimaera is a slow-growing mycobacterium that
belongs to the Mycobacterium avium complex (MAC). M. chi-
maerawas initiallymisidentified asMycobacterium intracellulare,
a closely related species; however, in 2004, Tortoli et al. identified
M. chimaera as a separate species within the MAC complex. The
correct identification of M. chimaera requires sequencing of the
16-23S rRNA internal transcriber spacer (ITS) region.
Identification based solely on sequencing of the 16S rRNA leads
to misidentification as M. intracellulare, as they only have 1 nu-
cleotide mismatch [1].M. chimaera has since been implicated in
pulmonary infections, soft tissue and bone infections, and dis-
seminated infections. The first report of M. chimaera infection
in patients who had undergone open heart surgery was published
in 2013 by Achermann et al. [2], but a nosocomial link was not
identified at the time. In July 2014, the Federal Office of Public
Health in Switzerland reported M. chimaera infection in pa-
tients after exposure to contaminated heater-cooler units
(HCUs) during open-chest cardiac surgery [3]. HCUs are

used during cardiopulmonary bypass operations and extracor-
poreal membrane oxygenation (ECMO). Mycobacteria become
aerosolized when the cooling fan blows the mist escaping the
water tanks of the HCU into the operating room, allowing bac-
teria to contaminate the surgical field [4]. Since the initial pub-
lication in 2014, several reports from around the world have
been published suggesting that HCUs produced by 1 manufac-
turer in Germany were contaminated at the production site,
which served as the source of the outbreak. Investigations using
molecular methods such as whole-genome sequencing of
M. chimaera isolates from individuals and the HCUs demon-
strated that most cases of these infections were related to cardio-
thoracic surgeries in Switzerland, Germany, United Kingdom,
Netherlands, United States, Denmark, Italy, Canada, and
Australia and were caused by a common source [5–7].

Clinical Manifestations

Before 2004, pulmonary infections—and possibly disseminated
infections in immunocompromised patients—caused by
M. chimaera were likely diagnosed and managed similarly
to other MAC infections. Since the species was recognized,
M. chimaera has been found to cause pulmonary infections in
cystic fibrosis patients and immunocompetent patients [8–10].
Some reports have highlighted the low virulence of this
species comparedwithM. intracellulare [11, 12]. Individuals typ-
ically present with signs and symptoms of infection over a year
after the inoculation (ie, surgery). In some instances, the latency
period can be as long as 6 years [7]. However, a prolonged laten-
cy period has been noted in other nosocomial infections caused
by nontuberculous mycobacteria (NTM) as well [13, 14]. After
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the onset of symptoms, diagnosis ofM. chimaera infection fol-
lowing cardiothoracic surgery is also delayed and could occur
as much as 1 year later.

The most common clinical manifestations are fever (80%),
malaise (80%), and weight loss (60%). Less frequent symptoms
include cough, dyspnea, chest pain, arthralgia, abdominal pain,
and back pain. Distinctive physical findings are new cardiac
murmur, hepatomegaly, splenomegaly, sternal wound dehis-
cence, skin lesions, and choroiditis. Common laboratory find-
ings are lymphopenia (63%), thrombocytopenia (47%),
elevated liver enzymes with a cholestatic pattern (70%), and el-
evated inflammatory markers [2, 15, 16]. Histopathology shows
granulomatous infection of various organs such as myositis, os-
teomyelitis, hepatitis, nephritis, myocarditis, pneumonitis, and
involvement of the spleen and bonemarrow [5, 16]. Individuals
may present with intrathoracic infection, including sternal
wound infection, retrosternal abscess, empyema, and extra-
thoracic infections such as vertebral osteomyelitis, granuloma-
tous hepatitis, prosthetic valve endocarditis (PVE), aortic graft
or other vascular hardware infection including left ventricular
assist device (LVAD), ocular infections, and disseminated in-
fections [2, 5, 16–20]. Choroiditis is commonly encountered
with disseminated infections [19–23]. The mortality rate with
M. chimaera infections following cardiothoracic surgery ranges
from 20% to 67% [7].

Diagnosis

Establishing the diagnosis of M. chimaera infection following
cardiothoracic surgery requires a high level of suspicion, espe-
cially if there are no prior reported cases at the institution. A
number of factors specific to the pathogenesis of M. chimaera
infections can lower suspicion for such an infection, increasing
the likelihood for misdiagnosis. These include a long latency
period, slowly progressive symptoms that are usually nonspe-
cific, especially during the beginning of infection, and the ab-
sence of obvious physical signs and radiological findings. In
scenarios where sternal wounds are debrided due to dehiscence
and drainage, or when a mediastinal abscess is drained, fluid
and tissue should be sent for mycobacterial cultures, especially
if previous cultures do not identify an organism. If MAC is
identified in mycobacterial cultures using a commercial probe,
the isolate should be sent to a reference laboratory for species
identification and susceptibility testing. Rapid quantitative po-
lymerase chain reaction (PCR) assay to detect M. chimaera in
the blood and fluid has been developed and has demonstrated
high sensitivity and specificity [24]. There are a number of
commercially available diagnostic molecular biology kits that
can be utilized [24, 25]. In suspicious cases wherein tissue
from the infection site was not submitted formycobacterial cul-
ture and only formalin-fixed tissue is available, molecular anal-
ysis of the fixed tissue can be pursued to look for evidence ofM.
chimaera DNA in order to establish the diagnosis.

When a case is suspected or confirmed based on culture or
histopathology results, a comprehensive workup should be per-
formed to determine if the infection is localized or disseminat-
ed. All patients should have at least 3 sets of mycobacterial
blood cultures collected. A total of 8–10 mL of whole blood
should be collected in a green top tube (sodium or lithium hep-
arin) or a yellow top tube (Sodium polyanethole sulfonate/iso-
lator tube). The specimen should be processed by the lab within
72 hours. Data regarding the sensitivity of mycobacterial blood
cultures for M. chimaera are not available. Mycobacterial cul-
tures of sputum, urine, or fluid/tissue from any organ that
might be involved should be considered. Bone marrow biopsy
should be performed to investigate cytopenias, and the aspirate
should be submitted formycobacterial culture andM. chimaera
molecular testing. Transesophageal echocardiogram should be
performed to evaluate for the diagnosis of endocarditis or aor-
tic graft infection, as transthoracic echocardiogram has been
found to have low sensitivity (33%) in patients withM. chimae-
ra infections [15]. Fundoscopic examination by an ophthalmol-
ogist should be performed to evaluate for evidence of
chorioretinitis. Imaging studies such as a computed tomogra-
phy (CT) scan of the chest, abdomen, and pelvis are needed
to determine the extent of the infection. Furthermore, a posi-
tron emission tomography/CT scan can be very helpful in cases
where hardware is present [7].

PHARMACOLOGIC MANAGEMENT

Combination therapy with multiple antimycobacterial classes
of medications is essential for the treatment ofM. chimaera in-
fections. Macrolides are considered the backbone of therapy,
similar to other NTM infections. Additional first-line agents in-
clude rifamycins (ie, rifampin or rifabutin), ethambutol, and
amikacin [26]. There are multiple second-line agents, including
clofazimine, bedaquiline, linezolid, and moxifloxacin, which
can be considered in patients who are not candidates for first-
line agents. This is generally due to toxicities or intolerances
and is less commonly due to drug resistance. Consultation
with an infectious disease expert is highly recommended for
optimal pharmacologic management.
Unfortunately, clinical outcomes with M. chimaera infec-

tions remain poor, despite aggressive surgical and pharmaco-
logic therapy. The optimal duration is not known; however,
most individuals receive therapy for at least 12 months.
Longer durations may be considered in patients with subopti-
mal source control, slow tissue or blood culture sterilization,
or failure of clinical improvement. Retention of infected
hardware, such as a left ventricular assist device, likely requires
long-term therapy well beyond 12 months to prevent recurrent
or relapsed infections, typically with a simplified drug regimen
to helpminimize toxicities. Below, eachmedication class will be
discussed, with a focus on in vitro activity againstM. chimaera
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isolates, clinical utility in treatment of M. chimaera infections
(if present), and common drug toxicities. Drug–drug interac-
tions (DDIs) will be discussed in a separate section. A summary
of pharmacologic therapy recommendations and dosing is pro-
vided in Table 1.

Macrolides

Inclusion of a macrolide, clarithromycin or azithromycin, for
the treatment of NTM infections is considered the mainstay
of therapy [26]. This drug class harbors activity against myco-
bacterial organisms by inhibiting natural messenger
RNA-directed cell-free polypeptide synthesis, achieved by
binding to the 23S rRNA of the 50S subunit within the 70S ri-
bosomes [27, 28].

Clarithromycin has a 14-member ring that is adjusted for the
acid instability of erythromycin by replacing the hydroxyl
group at C-6 with a methoxy group [27–30]. Azithromycin
has a 15-member ring structure, which places it within the aza-
lide subclass and gives it an expanded spectrum of activity [27,
28, 31]. The structural alteration includes a methyl-substituted
nitrogen instead of a carbonyl group within the aglycone ring.
As a result, azithromycin does not undergo metabolism into a
hemiketal, minimizing acid instability concerns [28, 31].
Additional pharmacokinetic (PK) benefits of azithromycin

compared with erythromycin and clarithromycin include the
lack of cytochrome (CYP) 3A4 inhibition and longer half-life
[27, 28, 32].
It is also important to mention that the Clinical and

Laboratory Standards Institute (CLSI) recommends that clini-
cal isolates be tested against clarithromycin rather than azithro-
mycin for MAC. This is due to increased clarithromycin
solubility at higher concentrations. Azithromycin susceptibility
can be inferred from clarithromycin susceptibility interpreta-
tion [33]. Clarithromycin has demonstrated potent in vitro ac-
tivity against M. chimaera isolates. Using a CLSI minimum
inhibitory concentration (MIC) breakpoint of ≤8 mcg/mL, a
study of clinical isolates demonstrated that 100% of isolates
were susceptible with clarithromycin, with an MIC90 of
4 mcg/mL [34]. In a 2021 study of clinical isolates, 47 of 48 iso-
lates exhibited an MIC ≤4 mcg/mL. One isolate had an MIC of
32 mcg/mL; however, no mutations were observed [35].
There are multiple macrolide resistance mechanisms, but

point mutations at the 23S rRNA gene are the most common.
These are often associated with macrolide monotherapy or
combination with a fluoroquinolone [36–38]. In a retrospective
review of 34 patients withmacrolide-resistantMAC pulmonary
disease, 27 of the 28 isolates available for testing were found to
have point mutations of the 23S rRNA gene. Most of the 34

Table 1. Summary of M. chimaera Pharmacotherapy Recommendations

Drug Dosing Strategy Adverse Effects Additional Comments

Azithromycin 250–500 mg PO daily Nausea, vomiting, abdominal pain, hepatotoxicity, QTc
prolongation, ototoxicity

Caution in individuals with myasthenia gravis
Long-term use may be associated with hearing loss

Clarithromycin 500 mg PO twice daily Nausea, vomiting, abdominal pain, hepatotoxicity, QTc
prolongation, ototoxicity, eosinophilic pneumonia

Reduce dose by 50% if CrCl <30 mL/min
Caution in myasthenia gravis

Rifampin 600 mg PO daily Hepatotoxicity, bone marrow suppression, red-orange
bodily fluid discoloration, nausea

Avoid in patients on calcineurin inhibitors and/or
mycophenolate

Rifabutin 300 mg PO daily Hepatotoxicity, bone marrow suppression, red-orange
bodily fluid discoloration, nausea, uveitis

Reduce dose by 50% if CrCl <30 mL/min

Amikacin 10–15 mg/kg IV daily
or
15–25 mg/kg IV thrice
weekly

Nephrotoxicity, ototoxicity Baseline and periodic audiograms are recommendedwhile
on therapy
Recommended duration of 6–12 wk of therapy to
increase likelihood of blood and/or tissue culture
sterilization

Ethambutol 15 mg/kg PO daily
or
15–25 mg/kg PO thrice
weekly

Optic neuropathies, impairment of green-red color
discrimination

Baseline and periodic ocular assessments are
recommended while on therapy

Clofazimine 100–200 mg PO daily GI toxicities, skin discoloration, QTc prolongation Must obtain from pharmaceutical manufacturer and
submit IND application with the FDA

Bedaquiline 400 mg PO daily for 2 wk;
then 200 mg PO thrice
weekly

QTc prolongation Boxed warning for increased mortality observed in
bedaquiline arm of clinical trial

Linezolid 600 mg PO/IV daily or twice
daily
or
300 mg PO/IV twice daily

Thrombocytopenia, neutropenia, anemia, peripheral
and optic neuropathies, lactic acidosis

Lower daily doses associated with less toxicity
Consider therapeutic drug monitoring in patients with
renal dysfunction or hematologic toxicities

Moxifloxacin 400 mg PO/IV daily Tendinitis and tendon rupture, QTc prolongation,
neurotoxicities, dysglycemia

Avoid in individuals with myasthenia gravis
Boxed warning for serious adverse reactions including
tendinopathies, peripheral neuropathy, and CNS effects

Abbreviations: CNS, central nervous system; CrCl, creatinine clearance; FDA, Food and Drug Administration; GI, gastrointestinal; IV, intravenous; IND, Investigational New Drug; PO, per os
(oral).
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patients had been given a standard 3-drug regimen, consisting
of a macrolide, ethambutol, and a rifamycin, and all were re-
ceiving a macrolide-based regimen for a median duration of
30.4 months before the emergence of resistance. However, after
identification of the resistant phenotype, unfavorable outcomes
occurred in 85% of patients, with 5-year mortality of 47% [38].
In a recent retrospective analysis of patients with pulmonary
M. chimaera infections, the authors noted significantly better
radiographic responses in patients with a macrolide-based
regimen compared with non-macrolide-based regimens.
However, there was no difference in culture conversion ormor-
tality rates between the 2 treatment groups [39]. Unfortunately,
these findings are limited to pulmonary disease, as there are no
data evaluating treatment outcomes between macrolide-based
regimens and non-macrolide-based regimens in other infec-
tions, including endovascular and disseminated infections.
Despite the limited evidence, every effort should be taken to
avoid the development of macrolide resistance, as treatment
outcomes are generally worse in most MAC infections with
macrolide-resistant organisms. Outside of managing higher bi-
oburdens, one of the most effective means to achieve this is to
utilize antimycobacterial drug synergy with additional first-line
agents. These agents will be addressed in the following sections.

Adverse Effects

Adverse effects of the macrolide drug class include nausea,
vomiting, diarrhea, abdominal pain, QTc interval prolonga-
tion, and hepatotoxicity [40–43]. Clarithromycin and azithro-
mycin are associated with a lower incidence of abdominal
pain compared with erythromycin, which is thought to be sec-
ondary to metabolism changes and decreased motilin receptor
activation [32, 42].

QTc interval prolongation has been noted as a class effect, but
it is dependent on numerous other variables including genetics,
sex, clinical status, and concomitant medications [44].
Azithromycin has been shown to cause the least amount of pro-
longation in studies [44, 45]. Macrolide-induced hepatotoxicity
typically manifests in the form of cholestatic hepatitis after 1–4
weeks of exposure [43]. Similar to other class effects of themacro-
lides, azithromycin has the lowest association with hepatotoxici-
ty. Sensorineural hearing loss caused by the macrolides has been
reported, but data have not yet proven the association [46–48].
Additional adverse effects can include clarithromycin-induced
eosinophilic pneumonia, myasthenia gravis exacerbation, and
anaphylaxis [49–51].

Azithromycin

Azithromycin is considered first-line therapy bymost clinicians
over clarithromycin due to less concern about DDIs and ad-
verse effects. Current clinical evidence is inconclusive regard-
ing which agent is more effective [52–54]. While randomized
controlled trials (RCTs) evaluating macrolides for the

management of M. chimaera infections are lacking, extrapola-
tions have been made from other MAC infections.
Interestingly, just 2 RCTs comparing macrolide-containing
regimens with macrolide-free regimens are available, and
each study has limitations [55, 56]. Unlike most agents used
for treatment of MAC infections, there is a correlation between
in vitro susceptibility interpretation and clinical response with
macrolides (perhaps the only additional exception is amikacin,
which will be addressed in a separate section) [57–60].
Therefore, macrolide susceptibility is crucial, as treatment suc-
cess, most commonly defined as culture conversion, has been
shown to be significantly increased for macrolide-susceptible
isolates compared with macrolide-resistant isolates. One sys-
tematic review found that up to 65.7% of patients with
macrolide-susceptible MAC pulmonary disease could achieve
treatment success if treated with a macrolide-based 3-drug reg-
imen for at least 1 year [58]. In comparison, another systematic
review and meta-analysis of macrolide-resistant MAC pulmo-
nary infections identified a pooled culture conversion rate after
combined multiple antibiotics or surgical resection of just 21%
[59].

Rifamycins

Rifamycins such as rifampin and rifabutin are considered an es-
sential component of combination therapy as they inhibit the
DNA-dependent RNA-polymerase enzyme at the beta-subunit
of bacteria and mycobacteria, preventing chain initiation [61].
Similar to macrolides, much of the in vitro susceptibility data
for rifamycins has been extrapolated from MAC isolates; how-
ever, rifampin and rifabutin have demonstrated in vitro activity
against M. chimaera in separate analyses [35].
In vitro synergy has been demonstrated with rifamycins and

ethambutol, in which the combinationMICs for both drugs are
significantly lower than when evaluated separately. While the
clinical relevance of this in vitro synergy has come into ques-
tion [62], multiple studies have demonstrated more favorable
clinical outcomes when the 2 drugs are combined for MAC in-
fections [63]. As such, it is recommended to include ethambu-
tol with rifampin or rifabutin for optimal management of M.
chimera infections [26].

Adverse Effects

The most common adverse effects associated with rifamycins
are hepatotoxicity, bone marrow suppression and cytopenias,
hypersensitivity reactions, nausea, and orange-red bodily fluid
discolorations. These are generally considered class effects.
Hepatotoxicity is thought to be more common with rifampin
than with rifabutin. Additionally, multiple studies have demon-
strated favorable outcomes in patients treated forM. tuberculo-
sis infections with rifampin-associated hepatotoxicity who were
rechallenged with rifabutin [63]. Uveitis is a rare adverse effect
that is thought to be more associated with rifabutin than with
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other rifamycins [64]. However, most cases of uveitis have been
described in patients on concurrent clarithromycin therapy,
which is known to significantly increase rifabutin concentra-
tions, while demonstrating minimal effect on rifampin concen-
trations [65, 66]. Although the mechanism for this adverse
effect has not been completely elucidated, clinicians should
be aware of this potential complication in patients with acute
vision changes.

Rifampin

Rifampin is generally considered the rifamycin of choice for the
treatment of both wild-type and drug-resistant infections, as it
has the most evidence to support its clinical efficacy and safety
in the management ofM. chimaera and other MAC infections.
Rifampin has a half-life of ∼2–4 hours, significantly shorter
than rifabutin [67]. Perhaps the biggest drawback to rifampin
is the considerable DDIs. As M. chimaera infections typically
occur in patients with multiple medical comorbidities, signifi-
cant DDIs are common. As previously mentioned, rifamycins
demonstrate synergistic activity when combined with etham-
butol, and combination MICs are often provided for ethambu-
tol and rifampin when performing antimicrobial susceptibility
testing [68]. While an isolate may be nonsusceptible to rifam-
pin and/or ethambutol when tested individually, the combina-
tion of the 2 agents can produce a synergistic effect that yields a
combination MIC that is susceptible [68, 69].

Rifabutin

Despite a similar magnitude of protein-binding, rifabutin has a
much longer half-life than rifampin, with a terminal half-life of
∼45 hours. Unlike rifampin, rifabutin dose adjustments need to
be considered in patients with renal dysfunction, as urinary ex-
cretion of rifabutin is ∼50%, compared with ∼30% with rifam-
pin [70].

In vitro susceptibilities of clinical and environmentalM. chi-
maera isolates have demonstrated more potent in vitro activity
for rifabutin compared with rifampin. In 1 study, the MIC50/
MIC90 for rifabutin was≤0.25/1 mcg/mL vs 4/8 mcg/mL for ri-
fampin. Approximately 2% of isolates were categorized as resis-
tant to rifabutin comparedwith 16% for rifampin.However, it is
important to note that susceptibility to rifabutin was deter-
mined via tentative epidemiological cutoff values (ECOFFs) vs
pharmacokinetic/pharmacodynamic breakpoints for rifampin,
as no CLSI breakpoints exist for either drug orM. chimaera iso-
lates [34]. Tentative ECOFF values for rifampin could not be de-
termined, as previous data have shown MIC distributions for
rifampin that were truncated toward the upper end of the con-
centrations that were tested (>8 mcg/mL). This study conclud-
ed that despite the more potent in vitro activity, additional
clinical evidence is needed to determine optimal rifamycin se-
lection, dosing strategy, and duration of therapy for treatment

of NTM infections, and in particular M. chimaera infections
[71].
Unfortunately, in vitro synergy testing for rifabutin and eth-

ambutol is not currently performed by reference laboratories
for M. chimaera susceptibility testing. In this scenario, the in-
terpretation of rifampin-ethambutol synergy testing is some-
times used as a surrogate for rifabutin-ethambutol synergy;
however, the true magnitude of synergy for this combination
is not well established. Additional studies are warranted to de-
termine the appropriateness of using rifampin and ethambutol
in vitro synergy testing as a surrogate for rifabutin and etham-
butol synergy.

Ethambutol

Ethambutol binds to the arabinosyltransferases EmbA, EmbB,
and EmbC, which are membrane-embedded proteins in myco-
bacteria. Ethambutol appears to bind to active sites within these
proteins and prevent transfer of arabinose, an essential process
for the synthesis of the mycobacterial cell wall [72]. Ethambutol
is a first-line agent in the treatment of slow-growing mycobac-
terial infections, particularly MAC infections. It is also a first-
line agent for the treatment of M. chimaera infections [26,
53]. The activity of ethambutol against clinicalM. chimaera iso-
lates has been assessed in multiple studies. Using a PK/pharma-
codynamic (PD) breakpoint of ≥8 mcg/mL, 89% of isolates
were susceptible to ethambutol, with an MIC50/MIC90 of 4
and 8 mcg/mL, respectively [34].
Ethambutol is primarily excreted in the urine and requires

renal dose adjustment, with glomerular filtration and tubular
secretion accounting for ∼80% of its elimination [53, 73].
Therapeutic drugmonitoring of ethambutol may be considered
in patients with renal dysfunction until the drug reaches steady
state concentrations [26].

Adverse Effects

The most common adverse effects with ethambutol are optic
neuropathies, which appear to be dose related [74]. These typ-
ically manifest as retinal changes, which can result in alter-
ations in color vision, particularly red-green discrimination.
Previously, these toxicities have been described as reversible,
though case reports have described permanent changes in vi-
sion [75, 76]. Ophthalmologic examinations and visual acuity
examinations should be conducted before initiation and peri-
odically while on therapy [26, 53, 77].

Amikacin

Amikacin inhibits mycobacterial protein synthesis via binding
to 30S ribosomal subunits. It exhibits concentration-dependent
activity against mycobacterial organisms [78]. Amikacin is rec-
ommended for the first 6–12 weeks of treatment forM. chimae-
ra infections to increase the rate of blood culture and tissue
sterilization; however, this recommendation is based on expert
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opinion. Currently, there are no studies that have evaluated the
effect of amikacin on microbiologic outcomes. Some clinicians
may continue amikacin in individuals past 12 weeks, especially
in the scenario of drug resistance or infections refractory to
therapy; however, toxicities may prevent extended durations
[26].

Amikacin is typically dosed at 10–15 mg/kg daily or 15–
25 mg/kg 3 times weekly in individuals withM. chimaera infec-
tions [26, 53, 79, 80]. Individuals may be initiated on a daily
dosing regimen and then transitioned to a thrice-weekly regimen
for convenience and/or tomitigate toxicities. In elderly individu-
als and individualswith significant baseline renal dysfunction, the
typical amikacin starting dose is decreased to 8–10 mg/kg either
twice or thrice weekly [80]. Alternatively, 15 mg/kg twice weekly
has also been recommended [26, 53, 79]. A baseline and serial au-
diogram and monitoring of vestibular function are recommend-
ed for all individuals on amikacin [26, 53, 79].

With regards to in vitro susceptibility testing, the breakpoints
are extrapolated from rapidly growing mycobacteria, particu-
larly M. abscessus (susceptible: ≤16 mcg/mL; intermediate:
32 mcg/mL; resistant: ≥64 mcg/mL) [81]. Susceptibility testing
is recommended to optimize dosing to target patient-specific
PK/PD parameters [26, 53, 79, 80]. Additionally, susceptibility
testingmay be useful for determination of alternative drug ther-
apy in the case of an amikacin-resistant isolate, especially in in-
dividuals at higher risk for amikacin-associated toxicities.

Therapeutic Drug Monitoring

Therapeutic drug monitoring should be routinely performed
for all patients on amikacin. With daily dosing regimens, a
peak of 25–40 mcg/mL is the typical initial drug target.
Troughs should be <1 mcg/mL to minimize the likelihood of
drug accumulation, which may progress to nephrotoxicity
[26, 53, 79–83]. A drug-free interval, or a period in which the
drug concentration is undetectable before the next dose is giv-
en, is strongly recommended to minimize the risk of adverse ef-
fects. In most scenarios, a drug-free interval of 4–6 hours is
desirable. This is generally not achievable with daily dosing
in individuals with renal dysfunction, but the likelihood is
much higher in thrice-weekly dosing regimens.

Peak values with thrice-weekly dosing regimens are typically
higher than with daily dosing regimens, as higher weight-based
doses are often prescribed. In these dosing regimens, typical
peak values range from 35 to 50 mcg/mL; however, it is not un-
common to see values of 60 to 70 mcg/mL [82]. The optimal
peak value is not well known based on current evidence, but cli-
nicians may target values 4–5-fold higher than the amikacin
MIC. In vitro susceptibility of amikacin is similar to other my-
cobacteria, with 1 study demonstrating MIC50/MIC90 values of
8/16 mcg/mL based on 87 isolates; isolates with MICs
≥32 mcg/mL may be encountered clinically [34]. The utility
of amikacin in the latter scenario is uncertain, as achieving

optimal PK/PD is highly unlikely using the standard doses of
amikacin for mycobacterial infections. Additional studies are
needed to evaluate the role of amikacin and clinical outcomes
in isolates with elevated MICs (>16 mcg/mL).

Adverse Effects

The most common adverse events are nephrotoxicity and oto-
toxicity. Ototoxicity may manifest as either cochlear or vestib-
ular toxicity. Some individuals may experience both toxicities
simultaneously.
After initial pharmacokinetic calculations, it is recommend-

ed to repeat serum creatinine and amikacin troughs after the
first 1–2 weeks of therapy to ensure appropriate drug clearance.
In patients with stable renal function, it is recommended to re-
peat a serum creatinine and amikacin trough every month.
Although not a component of therapeutic drug monitoring, it
is important to note that vestibular function and baseline au-
diograms are recommended in all individuals at baseline and
monthly thereafter. The benefit of therapeutic drug monitoring
in reducing ototoxicity is more nebulous than nephrotoxicity.
Some studies have demonstrated that cumulative AUC and
dose appear to be better predictors of ototoxicity than peak
and trough values [84]. These toxicities may be only partially
reversible; therefore, clinicians may need to consider early dis-
continuation of amikacin in these scenarios.

Clofazimine

The exact mechanism of clofazimine has not been completely
elucidated, as it appears to exert its antimicrobial activity via
several different mechanisms [85]. It has been postulated that
clofazimine is a prodrug and generation of multiple com-
pounds via different enzymatic pathways may be responsible
for the antimicrobial properties [86–88].
Clofazimine is primarily used in the treatment of M. leprae

infections [85]; however, it has demonstrated potent in vitro ac-
tivity against many mycobacterial species, including slow-
growing mycobacteria. In 1 study evaluating clofazimine activ-
ity against clinical M. chimaera isolates, MIC50/MIC90 values
were 0.5 mcg/mL and 1 mcg/mL, respectively. The authors
postulated an ECOFF value of 2 mcg/mL by visual inspection
of clofazimine MIC distribution [35]. In vitro synergy has
been demonstrated with clofazimine and multiple antimyco-
bacterial agents, including azithromycin, amikacin, and beda-
quiline, though the relevance of this synergy with regards to
clinical outcomes is not well established [89, 90]. Currently,
clofazimine is considered a second-line agent in the treatment
of M. chimaera infections, but it should be considered in the
presence of drug resistance or refractory infections [26].
While clofazimine resistance has not been demonstrated in

M. chimaera clinical isolates, there have been case reports of re-
sistance in M. intracellulare and M. abscessus isolates.
Resistance is thought to be driven primarily by mutations in
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efflux pumps, specifically in the TetR regulators of
MmpS5-MmpL efflux pumps. Interestingly, these isolates
were not associated with an MIC increase [91, 92].

Limited data exist regarding the clinical utility of clofazimine
in the treatment of M. chimaera infections. Clofazimine
has been used successfully in the treatment of NTM infections,
particularly disseminated MAC and pulmonary M. abscessus
infections. While clofazimine is a US Food and Drug
Administration (FDA)–approved medication, it is no longer
commercially available in the United States. For the treatment
of other NTM infections, includingM. chimaera infections, an
investigational new drug application must be submitted to the
US Food and Drug Administration, and the medication must
be obtained from the pharmaceutical manufacturer (Novartis
Pharmaceuticals Corporation).

Clofazimine is metabolized through multiple pathways [93].
The first pathway is hydrolytic dehalogenation, which is then
excreted in the urine. In the second pathway, clofazimine un-
dergoes hydrolytic deamination. In the third pathway, it is hy-
drated. Both metabolites from the second and third pathway
are further conjugated with glucopyranosiduronic acid for uri-
nary excretion [94]. Clofazimine does not undergo renal elim-
ination or require renal dose adjustment.

Adverse Effects

The most common adverse effects associated with clofazimine
are gastrointestinal toxicities, QTc prolongation, and skin dis-
coloration. Gastrointestinal toxicities due to accumulation of
drug crystals can deposit in multiple organ systems, including
the gastrointestinal tract [85]. Individuals may first complain
of nausea and vomiting, but more severemanifestations includ-
ing splenic infarcts and severe gastrointestinal bleeding have
also been reported [95]. In settings of significant gastrointestinal
adverse effects, the dose of clofazimine can be decreased to help
mitigate toxicity. Clofazimine has also been associatedwithQTc
prolongation; however, more recent studies have suggested that
the prolonging effect associated with clofazimine is relatively
low [96, 97]. It is important to note that multiple agents utilized
for the treatment of M. chimaera infections are also associated
with QTc prolongation, including azithromycin and bedaqui-
line. Lastly, long-term clofazimine use has been associated
with dermatologic toxicities, most notably skin discoloration.
This toxicity is thought to be partially reversible; however, it
may take months to years before improving [98].

Linezolid

Oxazolidinones, including linezolid and tedizolid, disrupt the
bacterial translation process by binding to the 23S ribosomal
RNA of the 50S subunit, which hinders the establishment of
a functional 70S initiation complex [99, 100]. Although linezol-
id is primarily known for its gram-positive activity in bacterial
infections, it has demonstrated mycobactericidal activity

against MAC isolates in vitro [101]. However, its activity
against M. chimaera isolates is quite variable. Using a CLSI
breakpoint of 8 mcg/mL, only 22% of 87 clinical isolates were
susceptible, with an MIC90 of 32 mcg/mL [70]. To achieve bac-
tericidal activity against these elevated MICs, the required hu-
manized doses would likely lead to toxicities. Therefore, the
CLSI recommends reporting linezolid MIC and interpretation
only in cases of macrolide-resistant MAC infections [33].
Linezolid is currently recommended as a second-line agent

in the treatment of M. chimaera infections [26]. It may also
be considered as add-on therapy in patients with refractory in-
fections; however, it should be noted that clofazimine is consid-
ered the preferred fifth agent due to its more potent in vitro
activity against M. chimaera as well as its in vitro synergy
with other agents. If linezolid is used for treatment, a dosing
strategy of 600 mg orally or intravenously twice daily is consid-
ered standard [26]; however, doses of 600 mg daily have been
utilized in other NTM infections, which have been associated
with lower rates of adverse effects.

Therapeutic Drug Monitoring

Studies evaluating therapeutic drug monitoring of linezolid
have found an association between thrombocytopenia and
Cmin>2 mg/L [102, 103]. In a systematic review, meta-analysis,
and Monte Carlo simulation (MCS) of linezolid pharmacoki-
netics inmultidrug-resistant tuberculosis, a therapeutic efficacy
target of fAUC0–24:MIC>119 mg/L/h and safety target of fCmin

<1.38 mg/L (equivalent to total drug Cmin of 2 mg/L) were in-
vestigated. Linezolid doses of 300 mg every 24 hours, 300 mg
every 12 hours, 600 mg every 24 hours, and 600 mg every 12
hours were included. The dosing regimens with the greatest
likelihood of reaching the efficacy targets in the MCS were
300 mg every 12 hours and 600 mg every 12 hours. However,
just 1.42% of simulated patients receiving the standard dose
of 600 mg every 12 hours were found to attain the safety target,
compared with 79.3% of patients receiving 300 mg every
12 hours [104]. As a result of PK/PD studies and clinical expe-
rience, linezolid doses may be decreased to 300 mg every
12 hours or 600 mg every 24 hours to minimize the toxicities
seen with standard doses. Until further clinical trials are per-
formed to validate these findings, therapeutic drug monitoring
may be performed when toxicities manifest, particularly hema-
tologic toxicities [105].

Adverse Effects

Linezolid use has been associated with bone marrow suppres-
sion, most notably thrombocytopenia. This typically manifests
after 3–4 weeks of therapy. Long-term use has also been asso-
ciated with neuropathies, including optic neuritis, which may
be only partially reversible. Lactic acidosis is rare but has
been associated with long-term use. Linezolid is also a weak
monoamine oxidase inhibition. As such, there is a theoretical
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risk of serotonin syndrome, particularly in patients on multiple
serotonergic medications [106]. Multiple studies have suggest-
ed that this risk is lower than previously thought; however,
some medications have been associated with higher risk than
others, including specific selective serotonin reuptake inhibi-
tors and methadone [107–109]. Given the theoretical risk, indi-
viduals should be counseled with regards to warning signs of
serotonin syndrome, which include fevers, hyperreflexia, sei-
zures, diarrhea, and diaphoresis.

Vitamin B6 administration has been evaluated to reduce the
incidence of thrombocytopenia; however, its impact on revers-
ing or mitigating hematologic toxicities is variable [110, 111].
Despite the inconclusive evidence, vitamin B6 is frequently co-
administered with long-term linezolid use, particularly in pa-
tients with multidrug-resistant tuberculosis. Unfortunately,
there have not been published studies evaluating the benefit
of therapeutic drug monitoring and association of neuropa-
thies, and there does not appear to be a clear benefit in co-
administration of vitamin B6.

Moxifloxacin

Fluoroquinolones inhibit bacterial DNA topoisomerase IV and
DNA gyrase necessary for bacterial replication [112].
Moxifloxacin is the preferred quinolone for treatment of myco-
bacterial infections given its superior in vitro activity [113].
However, many clinicalM. chimaera isolates have demonstrat-
ed variable susceptibility to moxifloxacin. Using the same CLSI
breakpoints asM. abscessus (susceptible: ≤1 mcg/mL; interme-
diate: 2 mcg/mL; resistant: ≥4 mcg/mL), the authors demon-
strated that 63.1% (128 of 203) of M. chimaera isolates were
resistant to moxifloxacin [35, 71]. Given variable in vitro activ-
ity, the paucity of clinical data specific toM. chimaera, and the
better in vitro and clinical data to support other agents, moxi-
floxacin is considered a second-line agent for the treatment of
M. chimaera infections [26].

Adverse Effects

Long-term use of fluoroquinolones has been associated with
multiple adverse drug reactions, which often limits the use of
this agent, more so than unpredictable in vitro activity. These
adverse effects include gastrointestinal toxicities, central ner-
vous system disturbances, hepatic enzyme elevation, musculo-
skeletal abnormalities including tendinopathies, and QT
prolongation. Common moxifloxacin-related adverse effects
are nausea, diarrhea, headache, and dizziness [114, 115].
Despite the effect that moxifloxacin can have on QTc prolonga-
tion, moxifloxacin-induced cardiac events, including torsade de
pointes, are rare [116]. Regardless, caution should be taken with
co-administration of moxifloxacin with other QTc-prolonging
agents. This is of particular importance given that the other
agents used in the treatment M. chimaera infections, such as
macrolides, clofazimine, and bedaquiline, possess the same

adverse effect. Caution should be taken among patients with
other risk factors for a prolonged interval (eg, electrolyte distur-
bances, preexisting cardiac conditions, critical illness) [44].
Baseline and periodic electrocardiogram monitoring is advised
while on therapy. Some clinicians have adopted a staggered ap-
proach to medication initiation to more closely monitor the in-
dividual effects that these agents can have on the QTc interval.
Elevated QTc findings should prompt discussion on potential
need for discontinuation, especially considering more robust
in vitro and clinical data for previously mentioned antimyco-
bacterial agents, including macrolides and clofazimine.

Bedaquiline

Bedaquiline is a first-in-class diarylquinolone that is FDA ap-
proved for the treatment of adults withmultidrug-resistant pul-
monary tuberculosis as part of a combination regimen [117,
118]. Bedaquiline acts via inhibition of adenosine triphosphate
(ATP) synthase, as it binds to the membrane-bound c subunit
of F1F0-ATP synthase, thereby preventing subunit rotation
and proton transfer, halting energy production, and ultimately
resulting in cellular death [119]. Bedaquiline has potent in vitro
activity against slow-growing mycobacteria; however, it should
be noted that MICs are generally higher for these mycobacteria
than for M. tuberculosis [117–120]. Currently, bedaquiline is
considered a second-line agent for the treatment ofM. chimae-
ra infection primarily given the lack of clinical data to support
its use.
Bedaquiline demonstrates potent in vitro activity againstM.

tuberculosis with an MIC range of 0.002 to 0.13 µg/mL [117,
118, 121, 122]. However, activity against MAC andM. chimae-
ra isolates is less potent, with MICs several-fold dilutions high-
er, at 0.007–0.25 µg/mL and 0.007–0.06 µg/mL, respectively
[34, 35, 122, 123]. In addition, the corresponding MBC/MIC
ratios are >4, resulting in a bacteriostatic rather than bacterici-
dal effect when tested against these slow-growing NTMs [122,
123]. Interestingly, bedaquiline has also demonstrated in vitro
synergy when combined with clofazimine [124]. Bedaquiline
has been proven effective as a salvage regimen for patients
with NTM infections [125, 126]. However, microbiological re-
lapse has also been reported due to acquired mutations result-
ing in increased drug efflux [91]. Resistance may also occur as a
result of mutations in the gene atpE, which encodes for the c
subunit of ATP synthase [127].

Adverse Effects

Commonly reported adverse drug effects associated with beda-
quiline use include nausea, arthralgia, headache, hemoptysis,
and chest pain. There is a boxed warning for QTc prolongation
and increased risk of mortality. Both bedaquiline and its metab-
olite, M2, are associated with QT prolongation [115, 128, 129].
However, published clinical data suggest only a modest impact
on QTc, with most studies demonstrating an average change
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from baseline of <20 milliseconds [91, 126]. Careful consider-
ation should be made with co-administration of bedaquiline
with other QTc-prolonging agents, including moxifloxacin,
macrolides, and/or clofazimine, given the potential for
an additive toxicity. Lastly, bedaquiline was associated with
an increased risk of mortality in a phase 2b clinical trial,
in which individuals with newly diagnosed, smear-positive,
multidrug-resistant tuberculosis had numerically higher rates
of mortality in the bedaquline arm (n= 10, 13%) than in the
placebo arm (n= 2, 2%) [130]. It remains unclear as to the
cause of the difference in mortality observed in this trial.

DRUG–DRUG INTERACTIONS

Multiple agents utilized in the treatment ofM. chimaera infec-
tions are associated with significant DDIs. Virtually all patients
with M. chimaera infections, especially those who develop in-
fections following open heart procedures, have significant med-
ical comorbidities and are prescribed multiple medications that
have the potential for DDIs with first-line agents. Screening and
management of DDIs play a pivotal role in achieving successful
outcomes while limiting drug-related toxicities. Previous re-
views have discussed drug-drug interactions with antimyco-
bacterial agents and commonly prescribed medications,
including antihypertensive, anticoagulant, and antiplatelet
medications. This review will address drug-drug interactions
with antimycobacterials and immunosuppressive agents com-
monly used in solid organ transplantation, as management is
complex and requires aggressive monitoring to optimize
therapy. The medications with the highest potential for DDIs
and those medications that are used for treatment of M. chi-
maera infections will be discussed in the following sections,
which are summarized in Table 2. These medications include
rifamycins, macrolides, and clofazimine. While ethambutol
can inhibit CYP450 enzymes, the potential for clinically rele-
vant DDIs is low, as it only strongly inhibits CYP1A2 and
CYP2E1, which have less proclivity for DDIs compared with
other enzymes like CYP3A4 and P-glycoprotein [131].
Amikacin is almost completely eliminated through glomerular
filtration; therefore, there is no potential for DDIs. While DDIs
may be encountered with moxifloxacin, linezolid, and bedaqui-
line, these medications are not considered first-line therapy for
M. chimaera infections. Therefore, they will not be specifically
addressed in the following sections.

DDIs With Rifamycins

All rifamycins possess the potential to cause significant DDIs,
primarily through induction of multiple enzymatic pathways,
including CYP450 hepatic enzymes and P-glycoprotein.
However, management of these DDIs is generally more favor-
able with rifabutin than with rifampin.

Rifampin potently induces multiple hepatic CYP substrates,
including CYP3A4, 1A2, 2D6, 2C9, and 2C19 [132].
Additionally, rifampin strongly induces non-CYP enzymes in-
volved in drug transport and metabolism including
P-glycoprotein, organic anion transporters, and uridine glucur-
onosyltransferases (UGT) [133, 134]. The concentration of
many drugs that are substrates of these enzymes may be signifi-
cantly reduced, including narrow–therapeutic index agents,
such as warfarin, direct oral anticoagulants (DOACs), tacroli-
mus, sirolimus, everolimus, and mycophenolate.
Unlike rifampin, rifabutin is only a moderate inducer of

CYP3A4 and a weak inhibitor of CYP2C9 and UGT1A4 [133,
134]. Substrates of these enzymes are less affected by rifabutin
than with rifampin, which may result in a lower likelihood of
subtherapeutic concentrations. The exact mechanism for this
is unknown, but one hypothesis is attributed to structural dif-
ferences between rifabutin and rifampin. Unlike rifampin, rifa-
butin does not possess a piperazinyl iminomethyl group, which
may contribute to structural differences that create steric hin-
drance, preventing the ability to bind to cellular receptors
that would lead to cytochrome induction [135].
An additional consideration is the metabolism of rifamycins

themselves, as they are substrates of various enzymes responsible
for drug transport and metabolism. Inhibition or induction of
these enzymatic pathwaysmay affect the concentration of the rifa-
mycins.As rifabutin is amajorCYP3A4 substrate, potentCYP3A4
inhibitors, such as posaconazole and clarithromycin, have been
noted to significantly increase rifabutin Cmax and area under the
curve (AUC) [66, 136]. Thismay result in increased risk of adverse
effects including bone marrow suppression, hepatotoxicity, and
uveitis due to supratherapeutic rifabutin exposure. Rifabutin
dose adjustments may need to be considered empirically or in pa-
tients who experience toxicities. Rifampin, on the other hand, is
not a CYP3A4 substrate. Rather, it is primarily transported and
metabolized via non-CYP pathways, including anion transporter
proteins. Therefore, rifampin concentration is less likely to be af-
fected by clinically relevant DDIs comparedwith rifabutin, as few-
er medications interfere with the rifampin metabolic pathway.
Therapeutic drugmonitoringmay be considered in select circum-
stances; however, the therapeutic range of rifabutin has not been
well established inM. chimaera or other NTM infections.

DDIs With Macrolides

Clarithromycin is a moderate CYP3A4 inhibitor, which can
lead to supratherapeutic concentrations of CYP3A4 substrates.
As rifabutin is a CYP3A4 substrate, clarithromycin can inhibit
metabolism of rifabutin, which may lead to supratherapeutic
exposure. This may expose individuals to a higher risk of uveitis
[66]. Additionally, clarithromycin can increase the serum con-
centrations of multiple narrow–therapeutic index agents in-
cluding warfarin, DOACs, and immunosuppressive agents,
which may increase the risk for toxicities. Empiric dose
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adjustments may be required for major CYP3A4 substrates.
Unlike clarithromycin, azithromycin is not an inhibitor of
CYP3A4. Therefore, it does not have the same potential for
DDIs as clarithromycin.

DDIs With Clofazimine

Dynamic modeling has predicted that clofazimine could be a
moderate to strong inhibitor of CYP3A4/5 and a weak inhib-
itor of CYP2C8 and CYP2D6. In the same analysis, the authors
suggested that clofazimine co-administration with major
CYP3A4/5 substrates could result in a significant increase in
the AUCs of those substrates [94]. However, the effect of
this potential on concentrations of CYP3A4 substrates has
not been further evaluated in human pharmacokinetic studies.
Further studies are necessary to evaluate the true extent of this
DDI, primarily with regards to moderate and major CYP3A4
substrates.

PHARMACOLOGIC CONSIDERATIONS IN PATIENTS
ON IMMUNOSUPPRESSIVE THERAPY

As previously mentioned, significant attention to concomitant
medications is necessary in individuals withM. chimaera infec-
tions on maintenance immunosuppression, particularly heart
transplant recipients. Interactions between antimycobacterial
agents and immunosuppressants are significant, virtually al-
ways requiring pharmacotherapy modifications.

Calcineurin & mTOR Inhibitors

Tacrolimus binds to FK binding protein-12 to inhibit calci-
neurin phosphatase, ultimately preventing the activation of T
cells [137]. Cyclosporine is another calcineurin inhibitor, but
unlike tacrolimus, it binds directly to cyclophilin to inhibit cal-
cineurin activity [138]. Both medications are associated with
significant DDIs, as they are major substrates for CYP3A4
and P-glycoprotein/ABCB1 [137–139]. The most significant
DDI encountered with calcineurin inhibitors is with
rifamycins. As a potent inducer of both CYP3A4 and
P-glycoprotein, rifampin can lead to significant reductions in
both tacrolimus and cyclosporine concentrations, significantly
increasing the risk for organ rejection. In healthy volunteers,
co-administration of rifampin and tacrolimus resulted in a
∼50% reduction in AUC [139]. In multiple case studies of solid
organ transplant recipients, significant tacrolimus dose increas-
es were required to maintain therapeutic concentrations, with
some individuals requiring escalations >100% of the original
dose [140–142]. One case report identified a patient requiring
a dose increase of 10 times the original dose in order to yield
a therapeutic trough concentration [141]. Cyclosporine con-
centrations appear to be affected in a similar manner as tacro-
limus when co-administered with rifampin. Studies have
suggested 2- to 3-fold increases in cyclosporine doses in order
to maintain therapeutic drug concentrations [133]. In a case se-
ries of 3 heart transplant recipients on stable doses of cyclo-
sporine who were co-administered rifampin, tacrolimus

Table 2. Summary of DDIs With Immunosuppressive Medications and Primary Agents for the treatment of M. chimaera infections

Antimycobacterial
Immunosuppressive

Medication
Interaction
Mechanism

Extent of
Interaction Recommendation

Macrolides

Clarithromycin CSA, TAC, SRL, EVR CPY3A4
inhibition

Strong Avoid use if possible; utilize azithromycin as alternative
If cannot utilize azithromycin, empirically reduce immunosuppression
dose by 50% with frequent therapeutic drug monitoring

Prednisone,
methylprednisolone

CYP3A4
inhibition

Moderate Utilize azithromycin as alternative

Rifamycins

Rifampin CSA, TAC, SRL, EVR CYP3A4
induction

Strong Avoid use if possible; utilize rifabutin as alternative
If cannot utilize rifabutin, empirically increase immunosuppression dose
by 100% with frequent therapeutic drug monitoring

MMF, MPA UGT induction
OATP induction

Strong Avoid use if possible; utilize rifabutin as alternative
If cannot utilize rifabutin, consider therapeutic drug monitoring;
however, therapeutic index not well established

Prednisone,
methylprednisolone

CYP3A4
induction

Strong Consider dose increases

Rifabutin CSA, TAC, SRL, EVR CYP3A4
induction

Moderate Consider empiric dose increases with frequent therapeutic drug
monitoring

Miscellaneous Antimycobacterials

Clofazimine CSA, TAC, SRL, EVR CPY3A4
inhibition*

Strong No data to recommend empiric dose adjustments; consider frequent
therapeutic drug monitoring

Prednisone,
methylprednisolone

CYP3A4
inhibition*

Moderate-
Strong

No data to recommend empiric dose adjustments; adjust corticosteroid
dose according to clinical response

*Clofazimine is predicted to be a strong CYP3A4/5 inhibitor from dynamicmodeling studies; however, its effect on drug concentrations of CYP3A4 substrates is unknown. Abbreviations: CSA,
cyclosporine; DDI, drug–drug interaction; EVR, everolimus; MMF, mycophenolate mofetil; MPA, mycophenolic acid; OATP, organic anion transporting polypeptide; SRL, sirolimus; TAC,
tacrolimus; UGT, uridine glucuronosyltransferase.
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concentrations decreased 39%–70% within 48 hours of rifam-
pin administration [143].

Sirolimus and everolimus inhibit mammalian target of ra-
pamycin (mTOR), suppressing T-lymphocyte proliferation.
Like calcineurin inhibitors, mTOR inhibitors are also major
CYP3A4 substrates, whose concentrations can be signifi-
cantly decreased by rifamycins [144, 145]. The impact of ri-
fampin on the metabolism of these agents is substantial, with
studies demonstrating significant increases in drug clearance
and subsequent decreases in AUC. In healthy volunteers, ri-
fampin has been shown to decrease sirolimus and everolimus
AUCs by up to 82% and 63%, respectively [146, 147]. Case
reports describe significant increases in mTOR inhibitor
doses needed to achieve therapeutic concentrations (siroli-
mus: 5–6-fold increase; everolimus: 24-fold increase) [148,
149].

Due to the significant DDIs between rifampin and both cal-
cineurin inhibitors and mTOR inhibitors, many clinicians have
preferentially used rifabutin in place of rifampin to mitigate the
extent of these interactions [146–151]. While rifabutin can in-
duce CYP3A4, the overall magnitude is significantly lower than
that encountered with rifampin. Clinical experience with rifa-
butin in transplant patients is limited but promising. In a
case report of a renal transplant recipient who required tacro-
limus dose escalation while on rifampin, initiation of rifabutin
allowed for therapeutic drug concentrations to be achieved us-
ing tacrolimus doses similar to the prerifampin dose [150]. In
another report of a transplant recipient treated for latent tuber-
culosis, transition from rifampin to rifabutin necessitated a
2.5-fold tacrolimus dose increase from baseline, compared
with a 3.8-fold increase observed with rifampin coadministra-
tion [151]. Similar experiences have been described with the
mTOR inhibitors sirolimus and everolimus, with one author
estimating that the induction potential of rifabutin was ∼4–
5-fold lower than rifampin based on pharmacokinetic analysis
[149].

Other notable drug interactions between M. chimaera treat-
ment options and calcineurin or mTOR inhibitors include the
interactionwithmacrolides [152].As previously described, clar-
ithromycin is a moderate CYP3A4 inhibitor, resulting in in-
creased concentrations of both calcineurin and mTOR
inhibitors. Pharmacokinetic studies have demonstrated up to
10-fold increases in tacrolimus AUC24 with clarithromycin
[152, 153]. Azithromycin is not an inhibitor of CYP3A4; there-
fore, it does not affect the metabolism of either calcineurin or
mTOR inhibitors. Given the effect that clarithromycin can
have on drug metabolism and the lack of effect seen with azi-
thromycin, it is recommended to utilize azithromycin when
possible. In instances where azithromycin is not an option, it
is recommended that doses of tacrolimus, cyclosporine, evero-
limus, or sirolimus be empirically reduced by 50% upon initia-
tion [154, 155].

Mycophenolate

Mycophenolate concentrations can also be significantly affect-
ed by enzyme induction due to rifamycins. Mycophenolate is
metabolized by UGTs to the inactive form, 4-hydroxyphenyl-
B-glucorinde (MPAG). Mycophenolate undergoes enterohe-
patic recirculation, which accounts for 40% of the AUC.
Biliary excretion and reabsorption of mycophenolate involve
organic anion-transporting polypeptides, multidrug resistance-
related proteins, and UGTs [156–158]. UGT induction due to ri-
fampin plays a significant role in mycophenolate metabolism.
This induction is thought to occur secondary to induced gene ex-
pression of nuclear pregnane X, which leads to increased glucur-
onidation of mycophenolate to its inactive form, which can
ultimately result in subtherapeutic mycophenolate exposure
[158].
Despite the concerns regarding co-administration of rifam-

pin and mycophenolate, there are limited clinical data to sup-
port specific dosage recommendations. A 3-fold dose increase
in mycophenolate mofetil was required to achieve therapeutic
mycophenolate concentrations in a case report of a heart trans-
plant recipient also receiving rifampin [157]. Additionally, ri-
fampin co-administration resulted in a ∼20% decrease in
mycophenolic acid (MPA) AUCwhen assessed in 8 renal trans-
plant recipients. This effect was primarily driven by decreased
enterohepatic recirculation, a result of increased induction of
MPA glucuronidation [158].

Corticosteroids

Corticosteroids are one of the mainstays of immunosuppres-
sion in solid organ transplantation, as they are utilized for in-
duction and maintenance regimens, as well as for both
cellular- and antibody-mediated immunity. Multiple cortico-
steroids, including prednisone and (methyl)prednisolone, are
CYP3A4 substrates. Rifampin has been shown to increase
clearance of prednisolone and decrease AUC by up to 66%
[159]. As prednisone is converted to prednisolone by
11-beta-hydroxy steroid dehydrogenase, the effect on predni-
sone is expected to be similar. One case study reports on 2 pa-
tients prescribed oral prednisone who were co-administered
rifampin. Prednisolone clearance increased by ∼2-fold, with a
corresponding decrease in half-life of 40%–60%. The authors
proposed a dose increase of nearly 100% to achieve therapeutic
concentrations of prednisolone when co-administered with ri-
fampin [160]. Despite these findings, there are no specific dos-
ing recommendations available in consensus guidelines;
however, clinicians should be made aware of the significant ef-
fect that rifampin can have on prednisolone concentrations and
increase doses according to clinical response.

Rifamycins in Solid Organ Transplantation

In summary, the use of rifampin should be avoided whenever
possible in solid organ transplant recipients due to the
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significant effect that rifampin can have on multiple mainte-
nance immunosuppressive medications, a recommendation
that is also supported by the American Society of
Transplantation (AST) Infectious Diseases Community of
Practice (IDCOP) guidelines on the management of DDIs
[154, 155]. Rifabutin is considered the preferred rifamycin in
these clinical scenarios. Rifabutin is still likely to induce
CYP3A4; therefore, dose increases of immunosuppressive
medications are still expected in order to achieve therapeutic
concentrations; however, the doses required are likely to be
considerably lower than those required with rifampin. In cases
where rifabutin is unavailable and rifampin is subsequently ini-
tiated, it is recommended that doses of tacrolimus, cyclospor-
ine, sirolimus, and everolimus be doubled empirically.
Regardless of the rifamycin prescribed, the trough levels of
these immunosuppressive medications should be monitored
within 7 days of rifamycin initiation to assess the extent of
the interaction and to provide appropriate dose adjustments.
With regards to mycophenolate, the AST IDCOP provides
the same recommendations for rifampin and rifabutin.
Similar to calcineurin inhibitors, rifabutin should be used pref-
erentially over rifampin in an attempt to mitigate the extent of
DDIs encountered with co-administration of these immuno-
suppressive medications. There is no recommendation for
dose adjustments of mycophenolate when co-administered
with rifabutin [154, 155]. However, as rifabutin is a less potent
inducer of UGT, it is not expected to have the same effect on
mycophenolate metabolism as rifampin. The role of therapeu-
tic drug monitoring of mycophenolate is unclear as the thera-
peutic index is not well established in solid organ transplant
recipients.

Reducing Immunosuppression

An aspect of immunosuppression management that is not well
elucidated is the role of reducing the degree of immunosup-
pression in patients with M. chimaera infections. Currently, it
is recommended to reduce the degree of immunosuppression
when feasible, but this a weak recommendation based on low
quality of evidence [155]. It is a particularly difficult situation,
as excessive immunosuppression can lead to clinical failure;
however, inadequate immunosuppression increases the risk
for allograft rejection. Further studies are needed to describe
the impact of reduced immunosuppression on the resolution
of infection while maintaining optimal allograft function in in-
dividuals with M. chimaera infections.

CONCLUSIONS

The clinical diagnosis ofM. chimaera infections can be difficult.
Infection should be suspected in patients with postoperative in-
fections following open heart surgery in which HCUs were
used for cardiopulmonary bypass. In addition to aggressive

surgical intervention, combination antimycobacterials are the
standard of care for all patients with M. chimaera infections.
First-line therapy includes a 4-drug regimen, consisting of a
macrolide, a rifamycin, ethambutol, and amikacin. Multiple
second-line agents can be utilized in the setting of clinical fail-
ure, intolerances, or toxicities, but clinical data to support their
use are limited. Clinical outcomes in individuals with M. chi-
maera infections are poor, with mortality rates as high as
50%–67% in infections post–cardiothoracic surgery; however,
more long-term clinical outcomes data are needed in patients
treated with combination first-line and second-line recom-
mended agents [7, 161]. Additionally, there are no studies
that have compared the effectiveness of different antimicrobial
regimens on treatment outcomes. DDIs are a major component
of optimal management ofM. chimaera infections, as many pa-
tients are likely to be prescribed concomitant medications that
can interact with at least 1 antimycobacterial agent. These in-
teractions are particularly challenging in solid organ transplant
recipients. Therapeutic drug monitoring is highly recommend-
ed and can help to ensure appropriate concentrations of immu-
nosuppressive therapy, balancing the tradeoff between clinical
failure due to overimmunosuppression vs allograft rejection
due to inadequate immunosuppression. Consultation with an
infectious disease expert is highly recommended for optimal
management of antimycobacterials. With regards to DDIs,
consultation with a transplant and/or infectious disease phar-
macist is also highly recommended to maximize the likelihood
of clinical success and avoidance of toxicity. More studies are
needed to assess long-term treatment outcomes and to define
optimal pharmacologic management, including preferred
drug combinations and duration of therapy.
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