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Abstract

It is complicated to identify cancer-causing mutations. The recurrence of a mutation in

patients remains one of the most reliable features of mutation driver status. However, some

mutations are more likely to happen than others for various reasons. Different sequencing

analysis has revealed that cancer driver genes operate across complex pathways and net-

works, with mutations often arising in a mutually exclusive pattern. Genes with low-fre-

quency mutations are understudied as cancer-related genes, especially in the context of

networks. Here we propose a machine learning method to study the functionality of mutually

exclusive genes in the networks derived from mutation associations, gene-gene interac-

tions, and graph clustering. These networks have indicated critical biological components in

the essential pathways, especially those mutated at low frequency. Studying the network

and not just the impact of a single gene significantly increases the statistical power of clinical

analysis. The proposed method identified important driver genes with different frequencies.

We studied the function and the associated pathways in which the candidate driver genes

participate. By introducing lower-frequency genes, we recognized less studied cancer-

related pathways. We also proposed a novel clustering method to specify driver modules.

We evaluated each driver module with different criteria, including the terms of biological pro-

cesses and the number of simultaneous mutations in each cancer. Materials and implemen-

tations are available at: https://github.com/MahnazHabibi/MutationAnalysis.

Author summary

It can be challenging to find mutations that cause cancer. One of the most trustworthy

characteristics for identifying cancer-causing mutations is the recurrence of a mutation

in patients. However, some uncommon and low-frequency mutations should also be

explored as cancer-related mutations, particularly in the setting of networks. In this study,

we suggested a unique approach to discover prospective driver genes and investigate the

functionality of mutually exclusive genes in networks formed from mutation connections

and gene-gene interactions. These networks have identified critical biological elements in

the vital pathways, notably in those that experience infrequent mutations. In the first step,

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010332 October 17, 2022 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Habibi M, Taheri G (2022) A new machine

learning method for cancer mutation analysis.

PLoS Comput Biol 18(10): e1010332. https://doi.

org/10.1371/journal.pcbi.1010332

Editor: Anna R Panchenko, Queen’s University,

CANADA

Received: June 28, 2022

Accepted: October 5, 2022

Published: October 17, 2022

Copyright: © 2022 Habibi, Taheri. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All of our codes and

data available at our github repository: https://

github.com/MahnazHabibi/MutationAnalysis.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-2741-0355
https://github.com/MahnazHabibi/MutationAnalysis
https://doi.org/10.1371/journal.pcbi.1010332
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010332&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010332&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010332&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010332&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010332&domain=pdf&date_stamp=2022-10-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010332&domain=pdf&date_stamp=2022-10-27
https://doi.org/10.1371/journal.pcbi.1010332
https://doi.org/10.1371/journal.pcbi.1010332
http://creativecommons.org/licenses/by/4.0/
https://github.com/MahnazHabibi/MutationAnalysis
https://github.com/MahnazHabibi/MutationAnalysis


we established six enlightening topological features for each gene acting as a network

node. For each gene, we computed the score for our predefined features. Then, we sug-

gested the high-scoring genes with significant connections to cancer as potential targets

for further research. In the second step, we constructed a network based on the relation-

ships between the high-score genes to find the cancer-related modules. We used what we

had learned in the first step about how the high-score potential driver genes interact phys-

ically, biologically, and in terms of how they work to build this network.

1 Introduction

The driving forces behind cancer are gene, nucleotide, and cellular structure changes. Somatic

cells can acquire mutations one or two orders of magnitude more quickly than germline cells,

making them more susceptible to different types of cancer [1]. The vast majority of these

mutations, called passenger, have little effect on cell proliferation compared to a few driver

mutations that give cells a selective advantage [2]. Mutations can activate or deactivate pro-

teins, and they can change a wide range of cellular processes for different patients and types of

cancer. This results in high intra- and inter-tumor heterogeneity in biochemistry and histol-

ogy, which may explain why some cancers are resistant to treatment and make it more chal-

lenging to identify the events that cause cancer [3–5].

The study of cancer genomes has been completely changed by next-generation sequencing

technology, which allows us to analyze millions of cancer genomes in-depth and identify

somatic mutations. The Cancer Genome Atlas (TCGA), a publicly funded genomics project,

contains a collection of mutation profiles from thousands of patients for more than 30 differ-

ent types of cancer [6]. The recent mutation perspective demonstrates the importance of

specifying genes and their associated networks to detect the cancer driver genes [6]. Finding

significantly mutated genes with high recurrent mutations can help us better predict the course

of cancer development and progression. These cancer-causing driver genes are difficult to

track down, and many of the mutations have not been detected using existing methods data-

sets. Methodical studies have shown multiple new genes and classes of cancer genes, respec-

tively [7]. They have also demonstrated that despite some cancer genes being mutated with

high frequencies, most cancer genes in most patients arise with intermediate or low frequen-

cies (2–20%) [7]. Therefore, a complete record of mutations in this frequency class will be

essential for identifying dysregulated pathways and effective targets for therapeutic interfer-

ence [7]. Nevertheless, current studies present significant gaps in our understanding of cancer

genes with intermediate frequency. For example, a study of 183 lung adenocarcinomas discov-

ered that 15% of patients missed even a single mutation influencing any of the 10 known hall-

marks of cancer, and 38% of patients had 3 or even fewer such mutations [8]. As a result, we

cannot capture a complete expression profile of all genes and subsets of genes that drive the

evolution and progression of cancer. Cancer genes tend to alter considerably in a limited num-

ber of pathways, especially in pathways related to survival, cell division, differentiation, and

genomic preservation. Therefore, it is necessary to determine the pathway-level importance of

genes, even those genes mutated at low frequencies [9].

Since mutually exclusive couples of genes usually share similar pathways, one strategy for

detecting these drivers is to explore the mutual exclusivity of changed genes. However, we

know that mutated genes seldom coexist in the same tumor, while only one gene in a pathway

is typically found to have a driver mutation in each patient [10]. This situation may occur due

to cancer pathways’ functional redundancy or synthetic lethality. Typical examples of mutually
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exclusive driver mutations contain EGFR and KRAS mutations in lung cancer [11] and TP53

and MDM2 mutations in glioblastoma [6]. Based on this explanation, finding mutual exclusiv-

ity modules in cancer needs to find important and more relevant genes, find the correlation

between them, and analyze them. Then this analysis needs statistical tests to identify network

modules demonstrating patterns of mutually exclusive genetic changes across multiple patients

[12]. As a new method, Mutex uses a large pathway model of human signaling processes to

explore groups of mutually exclusively changed genes that share a joint downstream event

[13].

The main disadvantage of the current methods is that they need comprehensive filtering of

mutation data, which are restricted to the most significantly mutated genes and concentrate

on predefined network modules [14]. The mutual exclusivity signal may be biased towards rec-

ognizing gene sets where most of the coverage comes just from highly mutated genes [15, 16].

Although cancer-related genes have been shown to be involved in numerous pathways, few

methods determine the important gene sets where a gene has various mutually exclusive corre-

lations with other genes in diverse pathways at different mutation frequencies. Recently, differ-

ent methods have been proposed to identify driver genes [17–23]. Some of these methods,

such as WITER [17] and driverMAPS [18] are based on the driver genes mutation frequency.

These methods are based on the idea that the mutation frequency in driver genes is higher

than the background mutation frequency. Some other methods are network-based identifica-

tion of promoter genes such as HotNet2 [19], NetSig [20], DNmax [21], nCOP [22] and Max-

MIF [23]. In these methods, pathways, networks, and mutation frequencies are studied. Some

of these network-based methods could identify the number of low-frequency mutated genes.

We proposed a novel two-step method to identify candidate driver gene sets with mutually

exclusive mutations to more comprehensively find the mutually exclusive mutation pattern. In

the first step, the proposed unsupervised machine learning method detects candidate driver

genes from TCGA [6], which includes a mutation collection with low and high-frequency

occurrence from thousands of patients for more than 30 different cancer types. For this pur-

pose, we constructed a biological network corresponding to important cancer-related genes.

Then, we defined six informative topological features for each gene as a node in the network.

We calculated the score for our predefined features for each gene. Afterward, we introduced

the high-score genes with meaningful relationships to cancer as candidates for more investiga-

tion. In the second step, we presented a network based on the relationship between genes to

identify the cancer-related modules. We used the information on physical, biological, and

functional interaction between the high-score candidate driver genes obtained in the first step

to construct this network.

2 Materials and methods

In this section, we present a new two-step method for identifying driver genes and modules in

different types of cancer. In the first step, we proposed an unsupervised machine learning

method to recognize a set of candidate driver mutated genes associated with different types of

cancer. In this step, we used the information of different patients (cases) with various types of

cancer and their associated mutated genes to create a weighted network of mutated genes.

Then six informative topological features are calculated for each gene as a node of the con-

structed network. We generated a feature matrix for the set of candidate mutated genes X =

[xij]m×n that each xij component represents the j-th feature for the i-th gene. Then we employed

an unsupervised learning method to calculate the appropriate scores for each of the predefined

features. Finally, our proposed method selects a set of genes with higher scores as a set of

mutated genes that contain valuable information. In the second step, we constructed a network
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based on the relationship between genes to identify the cancer-related driver modules. We

used the information on biological and functional interactions between the high-score genes

obtained in the first step to build this network. Then, we used a heuristic method to find cancer

driver modules in the constructed weighted network. The weight of each driver module is cal-

culated based on the average weight of the nodes of that module. The set of driver modules

with higher weights is identified as the cancer-related modules containing important informa-

tion. The general workflow of the proposed method is illustrated in Fig 1.

Fig 1. In the first step, we used the information of different patients with various types of cancer and their associated mutated genes to create the

weighted network of mutated genes (G). Then, six informative topological features are calculated for each gene as a node of G. We used an

unsupervised learning method to calculate the appropriate scores for each feature. Finally, our method selects a set of genes with higher scores as a set of

mutated genes that contain valuable information. In the second step, we constructed another network based on the gene relationship to identify the

cancer-related modules (G). To build this network, we used the information on biological interactions between the high-score genes obtained in the

first step. Then, we used a heuristicMGmethod to find cancer driver modules in the constructed weighted network. The weight of each module is

calculated based on the average weight of the nodes of that module.

https://doi.org/10.1371/journal.pcbi.1010332.g001

PLOS COMPUTATIONAL BIOLOGY A new machine learning method for cancer mutation analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010332 October 17, 2022 4 / 30

https://doi.org/10.1371/journal.pcbi.1010332.g001
https://doi.org/10.1371/journal.pcbi.1010332


2.1 Datasets

Identifying associated driver genes with different cancer types plays a significant role in deter-

mining mutated driver modules. Therefore, the starting point is identifying appropriate data-

sets to extract complete information about the somatic mutation, corresponding protein-

protein interaction (PPI), and biological process information. A representative set of tumors

and mutations were gathered from TCGA, on March 2022 [6]. We downloaded the informa-

tion on the primary site and mutations for 12,792 cases. This dataset contains 576 mutated

cancer genes and 15 major primary sites. Since there is no comprehensive standard benchmark

for collecting a set of driver genes, comparing driver gene detection methods is a significant

challenge. In this work, we selected six independent data sets as benchmark sets. The first data-

set contains 576 genes from the Cancer Gene Census (CGC; Tier 1; January 2019) [24]. This

set, which we indicated by “CGC”, includes genes and mutations with oncogenic and cancer-

related activity [24]. The second dataset contains a subset of 118 genes, which we demonstrated

with “CGCpointMut”. This subset comprises genes participating in carcinogenesis through

point mutations [24]. The third dataset, which we showed with the “Rule” contains 124 cancer

genes that are included in oncogenes and tumor suppressor genes based on specific mutation

patterns [9]. The fourth set contains 288 driver genes with high confidence predicted by at

least two frequency-based methods. This gene set is denoted by the “HCD” [25]. The fifth set,

CTAT (combined tool adjusted total), contains 297 driver genes [26]. The sixth set contains

232 driver genes, which are collected from the combination of seven driver gene sets (includ-

ing five driver gene sets and two other gene sets). We denoted this set by the “ShiBench” [27].

We used the PPI network from Habibi et al. (2021) [28]. This dataset contains the physical

interactions between proteins that are collected from the Biological General Repository for

Interaction Datasets (BioGRID) [29], Agile Protein Interactomes Data analyzer (APID) [30],

Homologous interactions (Hint) [31], Human Integrated Protein-Protein Interaction refer-

ence (HIPPIE) [32] and Huri [33]. All of the proteins in this dataset are mapped to a universal

protein resource (UniProt) ID [34]. This interactome contains 20,040 proteins and 304,730

interactions. We also used the informative biological processes related to each mutated gene

that is gathered from the Gene Ontology (GO) [35], to identify functional interactions between

mutated cancer genes.

2.2 Construction of the mutation network

We introduced a mutation network based on 576 mutated cancer genes in this work. Suppose

that V = {g1, . . ., gn} indicates the set of mutated cancer genes. Also, suppose that CðgiÞ is the

set of cases that contain a given mutation gene (gi). A weighted mutation network G =< V, E,

ω> was constructed by connecting two genes gi and gj if and only if CðgiÞ \ CðgjÞ 6¼ ;. The

weight of edge gigj 2 E which is denoted by ω(gigj), is defined as follows:

oðgigjÞ ¼
jCðgiÞ \ CðgjÞj

minfjCðgiÞj; jCðgjÞjg
:

A path between gi and gj is determined as a sequence of distinct nodes such that an edge

of G connects two consequent nodes. The weight of a path equals the sum of the weights of

edges in this path. The shortest path from node gi to node gj is a path between two nodes with

minimum weight. The weight of the shortest path between two nodes gi and gj is denoted by

dw(gi, gj).
2.2.1 Informative topological features for mutation network. We defined the following

informative topological features for each node of the weighed mutated network.
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• Weight: The Weight of node gi on weighted graph G =< V, E, ω> as follows:

oðgiÞ ¼
X

gj2V

oðgigjÞ: ð1Þ

• Closeness: The Closeness centrality measure is defined for each node, gi, as follows:

CðgiÞ ¼
jVj � 1

P
gj2V
dwðgi; gjÞ

: ð2Þ

• Betweenness: The Betweenness centrality measure is defined of each node gi on network G
as follows:

BðgiÞ ¼
X

gjgk2V

dgjgkðgiÞ

dgjgk
; ð3Þ

where dgjgk denoted the weights of shortest paths between two nodes gi and gk and dgjgkðgiÞ is

indicated the weighs of shortest paths between two nodes gi and gk pass through node gi [36].

• PageRank: The score for each node gi in the network is calculated based on all the scores

assigned to all nodes gj, which are connected iteratively as follows:

PRðgiÞ ¼ ð1 � dÞ þ d � ½
X

gi 6¼gj

oðgigjÞ
P

gj 6¼gk
oðgjgkÞ

PRðgjÞ�; ð4Þ

where d is a parameter between 0 and 1. In this work, we set the value of 0.85 for d [37].

• Eigenvector: The Eigenvector centrality measure is defined as the amount of influence for a

node gi in the network as follows:

EVðgiÞ ¼
1

l

X

gj2V

oðgigjÞEVðgjÞ; ð5Þ

where λ is the maximum eigenvalue of the weighted adjacency matrix Aw = [w(gi, gj)]. The

weighted adjacency matrix Aw is a weighted version of the adjacency matrix which contains

the weight of each edge instead of 1 [38].

• Entropy: Suppose that ω(gi) is the weight of node gi on weighted network G =< V, E, ω>.

The probability distribution vector P =< π1, . . ., π(|V|) > is defined on set of all nodes of the

network as follows:

pi ¼
oðgiÞP
gi2V

oðgiÞ
: ð6Þ

Then, the entropy of weighted graph G is calculated as follows:

EnðGÞ ¼ �
XjVj

i¼1

pi log pi: ð7Þ

We calculated the effect of each node gi on network entropy as follows:

εðgiÞ ¼ jEnðGÞ � EnðG n giÞj; ð8Þ
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where G\gi is the weighted network that is constructed with respect to the removal of node gi
and its connected edges from the network.

2.3 Machine learning method to select top mutated cancer genes

Since the problem of selecting the set of mutated candidate driver cancer genes is still an open

question, it can be studied as a problem without an exact answer. Therefore, we utilized an

effective unsupervised feature selection method to determine an efficient set of mutated cancer

genes. Suppose that X = [xij]m×n represents the feature matrix and xij represents the j-th feature

of the i-th sample (genes). We assigned a feature vector ~pi ¼< xi1; . . . ; xin > to each sample

and defined the column matrix Fj = [x1j, . . ., xmj]T for the j-th feature. To find an appreciated

score for each feature, we used the Laplacian Score for Feature Selection (LSFS) as an unsuper-

vised machine learning method as follows:

Suppose that S = [sij]m×m indicates the weighted matrix where sij ¼ e�
j~pi � ~pj j

2

t if the euclidean

distance between two feature vectors ~pi and ~pj is less than δ. Also, suppose that D = [di]m×m is

the diagonal matrix where di ¼
Pm

k¼1
sik and L = D − S is the Laplacian matrix. The Laplacian

Score for each feature, j, is calculated as follows:

Lj ¼
~FjTL~Fj
~FjTD~Fj

; ð9Þ

where J = [1, 1, ‥, 1]T and ~Fj ¼ Fj �
FjTDJ
JTDJ J.

Finally, we calculated the LS for each mutated cancer gene gi as follows:

LSðgiÞ ¼
Xn

j¼1

xijLj: ð10Þ

The algorithm to calculate Laplacian Score (LS) for each mutated cancer gene is described

in Algorithm 1. In this algorithm, we consider that δ = 5 and t = 100 respectively.

Algorithm 1 The Laplacian Score for Feature Selection (LSFS)
Require: : Feature matrix X = [xij]m×n.
1: Let ~pi ¼< xi1; . . . ; xin > for each sample i
2: Let Fj = [x1j, . . ., xmj]

T for each feature j
3: for i ( 1 to m do
4: for j ( 1 to m do
5: if j~pi � ~pj j < d then

6: sij ¼ e�
j~pi � ~pj j

2

t

7: else
8: sij = 0
9: end if
10: end for
11: end for
12: S = [sij]m×m
13: D = [di]m×m, where di ¼

Pm
k¼1
sik

14: L = D − S
15: J = [1, 1, ‥, 1]T

16: for j ( 1 to n do

17: ~Fj ¼ Fj �
FjTDJ
JTDJ J.

18: Lj ¼
~Fj TL ~Fj
~Fj TD ~Fj

19: end for
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20: for i ( 1 to m do
21: LSðgiÞ ¼

Pn
j¼1
xijLj

22: end for

2.4 Heuristic algorithm to identify specific modules for each cancer type

A biological network is constructed as an undirect weighted graph G ¼< V; E;W > where the

set of nodes V ¼ fg1; . . . ; gNg is the N top mutated cancer genes regarding maximum LS val-

ues. Two mutated cancer genes gi and gj are connected through an edge eij if they participate in

the same biological process or if there is physical interaction between them. The WðgiÞ repre-

sents the weight of the mutated cancer gene with respect LS value. In this work, we define a

cancer driver module as a dense sub-network in the biological graph with the maximum aver-

age LS of the nodes of the sub-graph. Since this problem is NP, we presented a heuristic algo-

rithmMG to cluster the weighted network G. Suppose that S � V is the subset of nodes in the

network. The neighborhood of S is defined as follows:

CðSÞ ¼ fgi 2 V � Sj9gj 2 S; gigj 2 Eg

TheMG algorithm first selects a node as a module. Then, the new module expands by add-

ing a new node to the module regarding the average LS value of the nodes in this module and

the LS values of adjacent nodes in the module. TheMG algorithm adds a new adjacent node to

a module such that the node’s weight is greater than the average weight of the module nodes. If

the weight of all adjacent module nodes is less than the average module weight, theMG algo-

rithm adds an adjacent node with the highest weight to the module with a small probability.

The likelihood of reaching nodes with smaller weights decreases as the number of nodes in the

module increases. TheMG constructs a new module by selecting a new seed from the network

nodes that have not been placed in a module and then expanding this node to get a new mod-

ule. TheMG algorithm extends modules to weighted graphs described in Algorithm 2. In this

algorithm, we consider that T = 10 and Tlow = 0.01 respectively.

Algorithm 2MG algorithm
Require: : The weighted graph G ¼< V; E;W >

Require: : The module S
1: while T < Tlow do
2: Select gi 2 CðSÞ
3: Select x = random(0, 1)
4: if WðSÞ < WðgiÞ then
5: S ¼ S [ gi
6: elseIf x < exp

ðWðgiÞ� WðSÞ
T

7: S ¼ S [ gi
8: end if
9: T = 0.9 � T
10: end while

3 Results

3.1 Evaluation of LSFS algorithm and candidate mutated genes

In this study, we modeled different topological features for mutation networks with the help of

the feature selection method. The output of our proposed LSFS algorithm shows us the signifi-

cance of each feature. With the help of the LSFS algorithm, we selected the top six features

with the significantly highest Laplacian Score. The LSFS algorithm’s result indicates that this

work’s pre-defined topological features are significant and contain meaningful information

about the network. Table 1 shows the Laplacian Score for each feature, respectively.
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3.1.1 Evaluation of simulated data based on LS. In this study, we derived the simulated

datasets using the prostate cancer-related genes introduced in TCGA [6]. In the first step, we

collected prostate cancer-related genes, including growth factor pathway genes such as PTEN,

P27, and NKX3.1, which increase cancer cell proliferation and include oncogenes such as AR.

To create the simulated dataset related to prostate cancer, we selected 20 genes related to pros-

tate cancer and 80 unrelated genes as samples. For these 100 genes, we defined 200 cases. We

assigned prostate cancer-related genes with a rate of 40% and unrelated genes with a rate of

20% to cases. In this way, we constructed the simulated dataset. Then we used Algorithm 1

and assigned each sample (gene) score. The analysis in this part showed that the set of 20 high-

score genes contains 12 genes related to prostate cancer (mTOR, PTEN, P27, NKX3.1, TP53,

EP300, AR, KRAS, PIK3CA, KMT2D, APC, ARID1A). It shows that our algorithm works as

well on simulated data as on real data.

3.1.2 Evaluation of high score selected genes based on LS. One of the significant chal-

lenges for existing methods is that they need extensive filtering of mutation data, which is lim-

ited to the most significantly mutated genes and focuses on predefined modules. Therefore,

the mutual exclusivity signal can be biased toward recognizing gene sets where most of the

coverage comes from highly mutated genes. Finding a new set of genes with essential proper-

ties, even if they have moderately or infrequently mutated, leads us to some new informative

modules. To evaluate the LSFS algorithm’s performance, we apply LSFS to a representative set

of mutations gathered from TCGA [6]. The proposed unsupervised machine learning method

calculated the LS for each candidate mutated cancer gene in this set. Among 576 candidate

mutated cancer genes, 200 genes with a higher LS than average LS were selected as high-score

mutated cancer genes. Fig 2 shows the heat map of the number of mutations for each gene in

each cancer and the value of the associated LS for these high-score genes. In Fig 2, we sorted

200 high-score genes based on the number of their mutations in 15 different types of cancer.

Genes with high LS are highlighted in Fig 2. This Fig contains some of the frequently mutated

genes such as TP53, FAT4, and KMT2C, and some of the infrequently mutated genes such as

FSTL3, SSX2, and MDS2. We defined some genes with a frequency of less than 100 as infre-

quently mutated genes. Among 200 high-score genes, 25 genes were infrequently mutated

genes, and among these 25 infrequently mutated genes, 18 genes had a high LS. Since most

recent studies have focused on frequently mutated genes, we also studied the 18 infrequently

mutated genes with high LS in addition to the frequently mutated genes. In the following, we

present a list of these infrequently mutated genes with high LS.

• Follistatin-like 3 (FSTL3) is expressed in normal human tissues. Increasing evidence demon-

strates that FSTL3 plays an essential role in regulating embryonic evolution, osteogenesis,

glucose, and lipid metabolism. Furthermore, FSTL3 was found abundantly expressed in cell

lung cancer and breast cancer and participates in tumor progression, containing invasion

Table 1. The Laplace Score value for each feature. Our proposed model includes six topological features of the muta-

tion network, which is made up of mutation frequency information on 15 types of cancer.

Topological Feature Laplacian Score

Weight 0.452

Closeness 0.351

Betweenness 0.992

PageRank 0.32

Eigenvector 0.04

Entropy 0.05

https://doi.org/10.1371/journal.pcbi.1010332.t001
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and metastasis. FSTL3 is an independent risk factor connected with the prognosis for differ-

ent cancers [39].

• Recent studies demonstrate that Cytochrome c oxidase subunit 6c (COX6C) has a particular

association with breast cancer, esophageal cancer, thyroid tumors, prostate cancer, uterine

cancer, and melanoma. Several reports show that the differential expression of COX6C is

associated with predicting some tumors and is expected to become one of the diagnostic

markers of typical tumors [40].

Fig 2. The LS value for 200 high-score genes is based on the number of their mutations in 15 different types of cancer, which are sorted counter-

clockwise. This Fig shows the number of infrequently mutated genes with high LS as a result of our method with red color.

https://doi.org/10.1371/journal.pcbi.1010332.g002
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• Recent studies demonstrated that SSX2 induces aging in different cells, as specified by classi-

cal aging features, including enlargement of the cytoplasm, cell growth arrest, and DNA dou-

ble-strand breaks. SSX proteins are expressed in multiple types of tumors, such as 40% of

melanomas and up to 65% of breast cancers. The SSX family comprises nine similar mem-

bers, most likely redundant in their cellular functions [41].

• LMO1 belongs to the family of LIM-only domain genes (LMOs). Some studies have shown

that LMO1 plays an essential role in the tumorigenesis of several types of cancer, including

leukemia, breast cancer, and neuroblastoma. The author of [42] found that LMO1 was sig-

nificantly over-expressed in non-small cell lung cancer (NSCLC) samples relative to normal

adjacent tissue and that over-expression of LMO1 in NSCLC cells elevated cell proliferation,

supporting an oncogenic function in NSCLC.

• The TNF receptor superfamily member 17 (TNFRSF17) is a gene that encodes a protein

involved in B cell development and autoimmune response. This protein also plays a role in

activating NF-κB and MAPK8/JNK. Multiple types of mutations in TNFRSF17 have been

shown in endometrial cancer, intestinal cancer, and skin cancer. On average, TNFRSF17

mutations are found in 0.50% of all cancers; the most common types are colorectal, colon

cancer, glioblastoma, lung cancer, and malignant cancer melanomas [43].

• The Programmed cell death 1 ligand 2 (PD-L2) is a gene that encodes a protein that involves

in the signal that is required for IFNG production and T-cell proliferation. Multiple types of

mutations in PD-L2 have been observed in intestinal cancer, skin cancer, and stomach can-

cer [44]. On average, PD-L2 mutations are found in 0.83% of all cancers; the most common

types are lung cancer, breast invasive ductal carcinoma, colon cancer, urothelial bladder car-

cinoma, and high-grade ovarian cancer [45].

• POU5F1 is associated with the pluripotency and proliferative potential of ESCs and germ

cells. Previous studies have shown that POU5F1 plays a critical role in maintaining the nor-

mal stem cell self-renewal process. Several studies have noted the expression of POUF1 in

human cancer cells such as breast cancer, ovarian cancer, and melanoma. Moreover, recent

studies revealed that POU5F1 expression was significantly elevated in tumor tissues com-

pared to non-cancerous tissues [46].

• The high mobility group A1 (HMGA1) gene has an essential role in embryonic develop-

ment. Multiple studies have shown elevated HMGA1 expression in malignant cancer such as

breast cancer, lung cancer, colorectal cancer, and uterine cancer. Collectively, these studies

reveal that HMGA1 has an essential role in tumorigenesis and tumor progression [47].

• The Programmed death-ligand 1 (PD-L1), also known as CD274 on cancer cells, contributes

to cancer immune escape. The PD-1/PD-L1 axis is the major speed-limiting step of the anti-

cancer immune response for multiple cancer types. On average, CD274 mutations are found

in 0.96% of all cancers; the most common types are breast cancer, gastric cancer, lung cancer,

colon cancer, bladder cancer, and prostate cancer [48].

• All cancers have genome instability as a hallmark. RMI2 is an important element of the

BLM-TopoIIIa-RMI1-RMI2 complex that supports genome stability. Several studies have

shown the upregulated expression of RMI2, which is caused tumor progression in cervical

cancer, lung cancer, and prostate cancer [49].

• The MDS2 is a gene that encodes a protein that functions in the onset of myelodysplastic

syndrome (MDS). Multiple mutations in MDS2 have been shown in breast and ovarian
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cancer. On average, MDS2 mutations are found in 0.09% of all cancers; the most common

types are breast cancer, appendix cancer, lung cancer, and colon cancer [50].

• Tropomyosin-receptor kinase fused (TFG) encodes a protein which is a maintained regula-

tor of protein secretion that controls the export of materials from the endoplasmic reticulum.

TFG belongs to the systems that control cell size and is implicated in apoptosis and cell pro-

liferation regulatory mechanisms. The TFG fusion proteins play a role in oncogenesis, with

the activity of TFG fusion proteins promoting tumor development. Multiple mutations in

TFG have been shown in intestinal cancer, lung cancer, and stomach cancer. On average,

TFG mutations are found in 0.19% of all cancers; the most common types are breast cancer,

colon cancer, and lung cancer [51].

• The U2AF1 encodes for a member of the spliceosome. This protein plays a vital role in RNA

splicing. Multiple mutations in U2AF1 can cause irregular expression patterns of some

genes affected in cancer pathogenesis. On average, U2AF1 mutations are found in 1.5% of all

cancers; the most common types are acute myeloid leukemia, colon cancer, and lung cancer

[45].

• The SRSF3 is a member Ser/Arg-rich (SR) proteins family. As a potential diagnostic and

prognostic biomarker, SRSF3 is overexpressed in various types of cancer, including cancer

of the breast, retinoblastoma, ovarian cancer, gastric cancer, head and neck cell squamous,

colorectal cancer, cervical cancer and hepatocellular carcinoma (HCC). Recent studies also

show SRSF3 upregulation in mesenchymal tumors [52].

• Previous studies showed that ATF1 plays a crucial role in carcinogenesis and participates in

multiple cellular processes, including cell transformation, cell cycle, DNA damage, and apo-

ptosis. ATF1 is overexpressed in various types of cancer, including lymphomas, nasopharyn-

geal carcinoma, and melanoma. However, other studies have shown that ATF1 acts as a

tumor suppressor in breast and colorectal cancer [53].

• SDHC is a gene that encodes a protein as a part of succinate dehydrogenase. Multiple types

of mutations in SDHC have been observed in ovarian cancer and pancreatic cancer. On

average, SDHC mutations are found in 1.5% of all cancers; the most common types are lung

cancer, breast cancer, pancreatic cancer, colon cancer, and bladder cancer [45].

• HOXD11 is a member of HOX family, which encodes transcription factors that control

different physiological processes. Recent studies have shown that HOXD11 is involved in

tumor development and helps control gene expression. Multiple types of mutations and

changes in expression in HOXD11 have been observed in lung cancer, Oral Squamous Cell

Carcinoma, prostate cancer, ovarian cancer, and Head and Neck Squamous Cell Carcinoma.

HOXD11 may also change cell growth, clonality, and metastatic potential in Ewing sarcoma

[54].

• The protein coded by the ZRSR2 gene plays a vital role in RNA splicing. Multiple types of

mutations in ZRSR2 have been observed in chronic myelomonocytic leukemia and chronic

lymphocytic leukemia. These mutations can drive abnormal expression patterns of some

genes involved in cancer pathogenesis. On average, ZRSR2 mutations are found in 1.2% of

all cancers; the most common types are lung cancer, breast cancer, colon cancer, and ovarian

cancer [45].

3.1.3 Signaling pathways associated with high score genes. One of the effective strategies

for finding appropriate therapeutic approaches for cancer is identifying molecular pathways
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and specifying important genes in these pathways. Finding a new set of infrequently mutated

genes with important properties can identify new pathways in different cancers and introduce

them for further study. Therefore, we looked into the signaling pathways related to these

genes and presented more information about them in Table 2. We also studied the significant

Table 2. Signaling pathways related to infrequently mutated genes.

Gene

name

Signaling pathway

FSTL3 Ample FSTL3 expression promotes epithelial-mesenchymal transition (EMT) and improves aerobic

glycolysis to positively affect cancer cells’ invasive and metastatic capacity by activating the β-Catenin

pathway. Results of [39] show that FSTL3 could be a bridging molecule in the crosstalk between

HIPPO/YAP1 and Wnt/β-Catenin pathways and that FSTL3 is an essential regulatory factor of the β-

Catenin molecular mechanisms in cancer. [39].

COX6C The expression level of COX6C was remarkably up-regulated in different cancers such as gastric and

lung. It has been reported that overexpression of COX6C could promote the proliferation and

decrease the apoptosis of cancer cells through activation of the oxidative phosphorylation pathway

[40].

SSX2 It has been shown that the SSX proteins are activated in several critical mitogenic pathways, such as

MAPK and Wnt [41].

LMO1 Studies show that LMO1 promoted the proliferation, aggression and migration of cancer cells by

activation of NF-κB pathway [56].

TNFRSF17 Recent studies show that overexpression of TNFRSF17 in cells activates the MAPKs pathway,

specifically JNK and p38 kinase, NF-κB, and Elk-1 [43].

PD-L2 Studies show the potential role of PD-L2 in regulating some pathways involved in cancer cell

aggressiveness. They showed the modulation of ERK and Akt/PKB pathways are considered through

PD-L2 [44].

POU5F1 Results of [46] demonstrate that IGF-IR/IRS-1/PI3K/AKT/GSK3β cascade-mediated regulation of

POU5F1 and construction of β-catenin/POU5F1/SOX2 complex is essential for the retention of the

self-renewal and tumorigenicity in cancer [46].

HMGA1 Recent studies show that HMGA1 s a critical transcription factor involved in multiple biological

pathways, such as the TNF-α/NF-κB, EGFR, Hippo, Ras/ERK, Akt, Wnt/beta-catenin and PI3-K/Akt

pathways. In all of these pathways, HMGA1 targets various downstream genes [47].

PD-L1 PD-1/PD-L1 pathway regulates the induction and maintenance of immune tolerance within the tumor

microenvironment. Recent studies show that PD-L1 is involved in multiple essential pathways, such as

PI3K/AKT, MAPK, JAK/STAT, WNT, and NF-κB pathways [48].

RMI2 Results of KEGG enrichment analysis indicated that RMI2 was significantly associated with the p53

signaling pathway [49].

MDS2 Recent studies show that knockdown of SPAG6 significantly increased the apoptosis of MDS cells by

inducing the activation of tumor suppressor genes, such as p53 and PTEN. SPAG6 knockdown

induced autophagy via the AMPK/mTOR/ULK1 signaling pathway in MDS2 cells, and inhibiting

autophagy decreased SPAG6 knockdown-mediated apoptosis [50].

TFG Recent studies show that TFG is involved in the NF-κB and MAPK pathways, and activation of MAPK

pathway occurs in various cancers, and the NF-kB pathway is essential in inhibition of apoptosis and

treatment resistance in cancers [51].

U2AF1 The KEGG pathway enrichment analysis results showed that U2AF1 was involved in several biological

pathways, such as FoxO and PI3K/Akt signaling pathways [51].

SRSF3 Recent studies show that SRSF3 as an oncogene manipulates various cell functions by regulating many

pathways, such as p53, JNK, Ras, Wnt, and HER2 signaling pathways [52].

ATF1 Recent studies showed that ATF1 activates a subset of genes related to apoptosis, Wnt, TGF-β, and

MAPK pathways, and these consequences could increase the risk of various cancers [53].

SDHC Recent studies showed that SDH activity has a significant role in regulating oncogenic signaling

pathways, such as those associated with NF-κB [57].

HOXD11 Recent studies showed that HOXD11 is involved in various cancer-related signaling pathways such as

cell cycle, DNA replication, ECM receptor interaction, and focal adhesion [54].

ZRSR2 Recent studies showed that ZRSR2 is involved in various cancer-related signaling pathways, such as

TLR signaling pathway [58].

https://doi.org/10.1371/journal.pcbi.1010332.t002
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signaling pathways associated with our 200 top-selected mutated cancer-related genes. Table 3

shows some of the significant signaling pathways for these 200 top selected genes, the average

LS of the genes for each of these pathways, and the p − value of them with the help of the Data-

base for Annotation, Visualization, and Integrated Discovery (DAVID) [55]. In the following,

we describe the association between these significant pathways and different types of cancer

and the role of the driver gene in each pathway.

1. hsa04068: FoxO signaling pathway

The first pathway with the highest score in Table 3 is the FoxO pathway. FoxO, as a family

of transcription factors (FoxOs), has a direct role in cellular proliferation, oxidative stress

response, and tumorigenesis. FoxOs are commonly inactivated by phosphorylation by sev-

eral protein kinases such as AKT and PKB. The PI3K-Akt-FoxO signaling pathway has a

significant role in various physiological processes such as cellular energy storage, growth,

and survival [59]. One of the critical genes in this pathway that our algorithm has identified

as a top gene is the transcriptional repressor factor CTCF. Recent studies show the effect of

the CTCF factor on some cancers like prostate cancer by regulating the FoxO pathway [60].

The CTCF downregulates, or inhibition also governs the FoxO signal pathway and delays

tumor growth. Therefore, the overexpression or genetic modification of CTCF affects the

regulation of the FoxO pathway.

2. hsa04015: MAPK signaling pathway

The second pathway is Mitogen-Activated Protein Kinase (MAPK). The cascade of this

pathway is a highly protected module that plays an essential role in different processes such

as cell proliferation, differentiation, and migration, and any deviation from the precise con-

trol of this signaling pathway initiates many diseases [61], including various types of cancer.

This signaling pathway has different signaling paths to the cell nucleus that the protein

members of the MAPK /ERK chain (or Ras-Raf-MEK-ERK) are recognized by our algo-

rithm. Studies show that the ERK signaling pathway plays a crucial role in tumorigenesis,

migration, and invasion [62].

3. hsa04151: PI3K-Akt signaling pathway

The phosphatidylinositol 3-kinase-Protein Kinase-B (PI3K-AKT) plays an important role

in intracellular physiological regulation. Various oncogenes and growth factor receptors

stimulate this signaling pathway, such as MET, KIT, EGFR, and ERBB3, which our algo-

rithm recognizes. This signaling pathway also contains important genes such as PI3K,

PTEN, mTOR, and JAK, which our algorithm recognizes. These gens induce cell prolifera-

tion, stem cell differentiation, and tumor suppressors in metabolic regulation. Disruption

of this pathway and mutations in any of these genes can exhaust the cell of the natural pro-

cess. This pathway is involved in cancer progression, and dysregulation of the PI3K path-

way can be crucial in the cancer process [63].

Table 3. Significant signaling pathways with the high average LS.

Signaling pathway Ave. LS No. gene p-value

hsa04068: FoxO signaling pathway 314.4 10 16 � E−4

hsa04010: MAPK signaling pathway 308.8 15 4.4 � E−4

hsa04151: PI3K-Akt signaling pathway 302.3 20 6.6 � E−6

hsa04014: Ras signaling pathway 299.7 16 7.4 � E−6

hsa04012: ERBB signaling pathway 295 10 11 � E−6

hsa04072: mTOR signaling pathway 290.8 9 47 � E−3

https://doi.org/10.1371/journal.pcbi.1010332.t003
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4. hsa04014: Ras signaling pathway

One of the critical signaling pathways in cellular activity is the Ras signaling pathway.

Abnormal activation of Ras proteins (including RRAS2, MRas, HRas, KRas, and NRas) is

the primary stimulus of oncogenes that has an essential role in the main signaling pathway

in cancer. Mutations of Ras proteins such as KRas, which our method recognizes, cause

cancer development. Meantime, the mutation in the regulatory ligands like EGFR and

EGR, as other top mutated genes identified by our algorithm, cause the activation of their

downstream signaling cascade [64].

5. hsa04012: ERBB signaling pathway

The ERBB tyrosine kinase family members demonstrate some of the most generally

changed proteins in cancer. Anomalous tyrosine kinase activation via gene alterations can

cause tumorigenesis, tumor growth, and progression. This signaling pathway also contains

important genes such as PI3K, CBLB, mTOR, and KRAS, which our algorithm recognizes.

Oncogenic alterations of genes encoding members of the ERBB family, leading to unusual

ERBB signaling and driving tumor growth, have been reported in different types of cancer,

such as breast, lung, and gastrointestinal cancers. Recent studies show that the ERBB fami-

ly’s signaling abnormalities and mutations are essential in escaping antitumor immunity in

the cell process [65].

6. hsa04072: mTOR signaling pathway

Mammalian target of rapamycin (mTOR) participates in multiple signaling pathways and

controls cell proliferation, autophagy, and apoptosis. Studies show that the mTOR signaling

pathway is related to different diseases, such as various types of cancer. This signaling path-

way is often activated in tumors and plays an essential role in tumor metabolism. Therefore,

the mTOR signaling pathway could effectively target through anti-tumor therapy studies

[66].

Eight hallmark biological properties are essential for the emergence and survival of cancer:

(1) replicate immortality, (2) sustained proliferation, (3) evasion of growth inhibitors, (4) inva-

sion metastability, (5) death resistance, (6) angiogenesis, (7) immune evasion and (8) repro-

grammed energy metabolism [45]. Three fundamental processes—cell survival, cell destiny,

and genome maintenance—are supported by one or more of these core processes. One or

more than one of the 12 critical signaling pathways provides support to these fundamental

functions, and blocking these cancer-related pathways will disable cancer persistence and pro-

gression. MAPK, PI3K-Akt, Ras, mTOR are a number of these critical signaling pathways [45].

These 12 pathways’ components communicate with one another through a complex network

of gene nodes, some of which are stimulatory and some of which are inhibitory. The impor-

tance of any of these nodes is dependent on that node’s degree, betweenness, closeness, and its

neighbors as well. Systems analysis can optimize the disruption of a limited target route since

many different genes can have limiting effects on a dominant signaling pathway. Additionally,

many pathways likely need to be targeted due to the cross-talk across pathways and the cancer

network’s resilience, which entails utilizing alternative or compensating secondary pathways.

Fig 3 shows the cross-talk between all significant signaling pathways for these 200 top selected

genes that are all among 12 critical cancer-related signaling pathways.

3.1.4 Evaluation of LSFS accuracy. Comparing different driver gene identification meth-

ods is a major issue in driver gene identification, and it is challenging to show that one method

is better than another. Since there is no specific and accurate benchmark to test the methods.

In this work, to study the reality of the LSFS algorithm, we compared the driver genes obtained
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by LSFS with the driver genes of CGC, CGCpointMut, Rule, HCD, CTAT, and ShiBench as

the benchmark for driver genes. Since only a part of the mutated genes introduced in section,

2.2 as set V = {g1, . . ., gn} included 576 genes, for the fairness of this comparison, we intersect

each of these sets of genes with the set V. In total, 513 genes out of 576 in the CGC set, 112

genes out of 118 in the CGCpointMut, 158 genes out of 297 in the CTAT set, 148 genes out of

288 in the HCD set, 112 genes out of 124 genes in the Rule set, and 201 genes out of 232 genes

in the ShiBench set is selected. To quantify this comparison, we used the following parameters.

The number of genes that are correctly identified as the driver gene as True Positive (TP). The

set of genes that are correctly identified as the non-driver (or passenger) gene as True Negative

(TN). The genes that are incorrectly identified as the driver gene as False Positive (FP), and

The genes that are incorrectly identified as non-driver gene False Negative (FN). The evalua-

tion parameters of Precision (Pre), Recall (Re), and F-measure (F) are defined, respectively.

Pre ¼
TP

TPþ FP
: ð11Þ

Re ¼
TP

TPþ FN
: ð12Þ

Fig 3. Cross-talk between significant signaling pathways for 200 top selected genes obtained by the LSFS algorithm and the role of these genes in

the known cancer-related pathways.

https://doi.org/10.1371/journal.pcbi.1010332.g003
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F ¼ 2 �
Pre � Re
Preþ Re

: ð13Þ

Table 4 shows an acceptable agreement between the LSFS algorithm and benchmark sets.

Table 4 indicates that the LSFS algorithm with an F-measure value of 0.640 has the most agree-

ment with the CGC set. After that, the ShiBench set, a filtered set of seven data sets and more

reliable than the others, has the highest agreement.

In order to have a better evaluation of the LSFS algorithm, we compared the LSFS algorithm

with five algorithms: DNmax, HotNet, MaxMIF, nCOP, and NetSig, which are based on net-

work evaluation, and the driverMAPS and WITER methods, which are based on the statistical

method. In Fig 4, we have compared the LSFS algorithm with these seven algorithms. We

looked into how well each of these algorithms predicted each of the 200 high-score genes that

the LSFS algorithm identified as driver genes. In this Fig, each gene that is detected through

each of the seven mentioned algorithms is denoted with a darker color, and genes that are not

reported through these algorithms showed with a lighter color. Fig 4 shows that except for

KMT2D, KMT2C, ATRX, KMT2A, ZCCHC8, MDS2, and SSX2 genes, the rest of the genes

are recognized as driver genes for at least one of the cancer types by at least four other algo-

rithms. We also investigated the role of mentioned seven genes in different cancers. A recent

study [67] shows that the KMT2 family plays essential roles in controlling developmental path-

ways, and mutations in the genes encoding these proteins have been strongly associated with

multiple cancers. Recent studies have supplied a more reasonable interpretation of the possible

roles of disrupted KMT2 family proteins in cell growth abnormality and carcinogenesis.

Authors in [68] showed that the tumor suppressor gene ATRX is frequently mutated in various

tumors. ATRX is highly unresponsive to existing therapies. In [68], they performed a genome-

wide synthetic lethal screen using CRISPR-Cas9 genome editing to specify potential therapeu-

tic targets for ATRX-mutated cancers. Other studies [41, 50, 69] showed that driver gene

mutations in multiple cancers, such as ZCCHC8, MDS2, and SSX2, were considered indepen-

dent, mutually exclusive events. These studies offered that patients with mutations in these

genes could benefit from targeted therapy for these genes.

To better evaluate the LSFS algorithm, we have built 15 mutated networks related to 15

types of cancer and run the LSFS algorithm for these 15 types separately. Then, we compared

the results of our algorithm and the other mentioned methods on each benchmark set. Fig 5

shows the value of the F-measure for each benchmark and each algorithm separately. As

shown in Figs 4 and 5, WITER and NetSig algorithms could not show acceptable performance

in any of the benchmarks. DNmax, HotNet2, MaxMIF, and driverMAPS algorithms have sim-

ilar and proper performance based on F-measure. Fig 5 shows the significant superiority of

the nCOP and LSFS algorithms based on the F-measure. However, the superiority of LSFS is

apparent in most cancers and all benchmarks. Figs 4 and 5 show that the LSFS is superior to

Table 4. Statistical analysis for comparison of the LSFS algorithm with six benchmarks.

TP TN FP FN Precision Recall F-meature

ShiBench-LSFS 77 251 123 124 0.385 0.383 0.384

CGC-LSFS 187 40 22 178 0.89 0.50 0.640

CGCpointMut-LSFS 42 305 158 70 0.21 0.375 0.269

CTAT-LSFS 59 276 141 99 0.29 0.373 0.329

HCD-LSFS 63 290 137 85 0.315 0.425 0.362

Rule-LSFS 43 306 157 69 0.215 0.383 0.275

https://doi.org/10.1371/journal.pcbi.1010332.t004
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other algorithms and includes different and more complete results than other methods, even

the nCOP.

3.2 Evaluation of MG algorithm and candidate driver modules

3.2.1 Evaluation of MG algorithm result based on random sets. In the MG algorithm,

we propose a method to find dense subgraphs with the highest average weight of nodes. Since

finding sets with such characteristics is an NP problem, it is impossible to find an accurate and

exact answer for this problem. Therefore, we have presented a heuristic algorithm to find solu-

tions. To evaluate the result of the MG algorithm, we have compared the result of the MG algo-

rithm with 1000 random subgraphs with the same size of seven modules. For each module of

size n, we generate 1000 subgraphs of the set C = {g1, g2, . . .gN} (N is the number of top mutated

genes) as samples. Suppose that Ni where i = 1, . . ., 1000 represents the average LS of the i-th

sample andMi where i = 1, . . ., 1000 represents the density of the i-th sample. We defined the

density of a subgraph as the following:

DðHÞ ¼
2jEðHÞj

jVðHÞjðjVðHÞj � 1Þ
: ð14Þ

Fig 4. Comparison of the seven mentioned algorithms in the prediction of each of the 200 high-score genes as results of LSFS algorithm. The dark

color shows the genes that are detected through each algorithm, and the light color demonstrates the genes that are not detected through these

algorithms.

https://doi.org/10.1371/journal.pcbi.1010332.g004
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Which H =< V(H), E(H) > is a subgraph produced by each subset V(H) of the weighted

graph G. Let’s assume that ~N and ~M are the average LS and module density, respectively. Now

suppose

X ¼ fijNi > ~N & Mi >
~Mg ð15Þ

It represents the random sets that perform better than our assumed module. The null

hypothesis,H0, is the insignificant subgraphs of size n, and the alternative hypothesis, H1, is

the selected subgraphs of size n that are significant. We define the Exceeding Value (EV) of

each module as follows:

EV ¼
jXj

1000
: ð16Þ

that |X| represents the number of members of the set X. If EV< α, we reject the null hypothesis

Fig 5. Comparison of the F-measure for each benchmark in LSFS algorithm and seven mentioned algorithms.

https://doi.org/10.1371/journal.pcbi.1010332.g005
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H0 (assuming the α threshold to be 0.05). The EV values for our eight selected modules are

reported in Table 5. The values in Table 5 show that the selected sets represent significantly

better than the random sets.

Fig 6(a) shows the boxplot diagram for each random set’s average LS and Fig 6(b) shows

average module density. The dashed line in this Fig shows the corresponding value of LS and

module density for each of our selected modules. Fig 6 shows that our selected modules have a

high mean value of LS and significantly high density.

3.2.2 Evaluation of the proposed driver modules based on Gene Ontology. One of the

best ways to justify candidate cancer driver modules is to evaluate their biological processes

and functional modules. For this purpose, we have performed an analysis of the GO term

annotations of the obtained driver modules from our method with the help DAVID tool [55].

Fig 7 shows significant GO terms for each driver module resulting from DAVID. In this Fig,

CC, MF, and BP represent cellular components, molecular functions, and biological functions,

respectively. Fig 7 shows that the genes in each module participate in multiple important CC,

MF and BP related to cancer as well. In the following, we describe detailed information about

each module and its biological properties.

The MG algorithm for the first driver module as the most important driver module selects

the TP53 gene as a seed and expands this module by adding PTEN, ARID1A, APC, KMT2A,

ERBB4, and CREBBP genes. The average LS of genes in this module is 360.58. The accumula-

tion of these genes is higher in the nucleoplasm and nuclear lumen region. These genes also

participate in various functions, including binding to nucleotide acid and catalytic activity

[55]. From the above genes, genes such as ATP, PTEN, and TP53 have the function of binding

to protein kinases. These genes are active in many biological processes, some mentioned in Fig

7(a), including GO:0006915� apoptotic process and GO:0012501� programmed cell death.

The MG algorithm for the second driver module selects the PIK3CA gene as a seed and

expands this module by adding KMT2D, ATM, EP300, NCOR1, NSD1, and POLE genes. The

average LS of genes in this module is 320.75. Most of these genes are concentrated in the intra-

cellular organelle lumen or cytoplasm, and all of them have an activity of GO:0003676�

nucleic acid-binding. These genes are involved in critical biological processes such as

GO:0001775� cell activation, GO:0048589 developmental growth, and GO:0008219� cell

death. Fig 7(b) shows significant GO terms associated with the genes of this module.

The MG algorithm for the third driver module selects the FAT1 gene as a seed and expands

this module by adding FBXW7, MED12, POUF1, LMO1, and SSX2 genes. The average LS of

genes in this module is 315.48. All genes in this module are known as regulators of biological

processes and play a role in signal transmission. Fig 7(c) shows significant GO terms associated

with the genes of this module.

The MG algorithm for the fourth module selects the NF1 gene as a seed and expands this

module by adding PIK3R1 and NOTCH1 genes. The average LS of genes in this module is

301.88. The accumulation of these genes is cytoplasm and an intracellular membrane-bounded

organelle. These genes are also involved in critical biological processes such as GO:0016477�

cell migration, GO:0048468� cell development, and GO:0008219� cell death. Fig 7(d) shows

significant GO terms associated with the genes of this module.

Table 5. The EV values for eight selected modules.

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Module 7 Module 8

|X| 1 1 1 1 2 1 1 1

EV 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001

https://doi.org/10.1371/journal.pcbi.1010332.t005
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Fig 6. The boxplot diagram for each random set’s average LS (a) and average module density (b). The dashed line shows the corresponding value of LS

and module density for each of our selected modules.

https://doi.org/10.1371/journal.pcbi.1010332.g006
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The MG algorithm for the fifth driver module selects the KRAS gene as a seed and expands

this module by adding PIK3CA, EGFR, mTOR, ERBB3, PTCH1, KIT, MET, TSC1, CD274,

PDCD1LG2 genes. The average LS of genes in this module is 286.72. These genes are involved in

critical biological processes such as GO:0002250� adaptive immune response, GO:0008219�

cell death, and GO:0042127� regulation of cell proliferation. Fig 7(e) shows significant GO

terms associated with the genes of this module.

The MG algorithm for the sixth driver module selects the SETD2 gene as a seed and

expands this module by adding TP53, RB1, CTCF, and HMGA1 genes. The average LS of

genes in this module is 292.53. These genes are involved in critical biological processes such as

GO:0042127� regulation of cell proliferation and GO:0007049� cell cycle. Fig 7(f) shows sig-

nificant GO terms associated with the genes of this module.

The MG algorithm for the seventh driver module selects the CREBBP gene as a seed and

expands this module by adding ZNF521, MECOM, ATF1, SRSF3, ZRSR2, and U2AF1 genes.

The average LS of genes in this module is 284.07. In this cluster, some genes, such as ATF1,

SRSF3, and ZRSR2, have fewer mutations than other genes. These genes are involved in critical

biological processes such as GO:0048518� positive regulation of biological process and

GO:0048731� system development. Fig 7(g) shows significant GO terms associated with the

genes of this module.

The MG algorithm for the eighth driver module selects the BRCA2 gene as a seed and

expands this module by adding ATM, EP300, CHD4, and ATR genes. The average LS of genes

in this module is 300.52. The accumulation of these genes is more in the chromosome and

cytoplasm regions and they are involved in critical biological processes such as GO:0040007�

Fig 7. Significant GO terms for each module. CC, MF, and BP represent cellular components, molecular functions,

and biological functions, respectively.

https://doi.org/10.1371/journal.pcbi.1010332.g007
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growth and GO:0002376� immune system process. Fig 7(h) shows significant GO terms asso-

ciated with the genes of this module.

Gene Set Enrichment Analysis (GSEA) is one of the most common approaches for evaluat-

ing driver modules. In this approach, Eq 17 is used to show the significance of the driver mod-

ules obtained based on the set of well-known cancer-related pathways.

p � value ¼
K
k

� �
N � K
n � k

� �

N
n

� � : ð17Þ

N is the total number of mutated genes in set V, which includes 576 mutated genes. K is the

number of genes in an understudied well-known cancer-related pathway. n is the number of

driver genes of the understudy module, and k is the number of genes in the driver module that

are in an understudied well-known cancer-related pathway. We selected eleven cancer-related

pathways for this evaluation. We have highlighted the p − value of less than 0.05 corresponding

to each pathway in Table 6 for each driver module.

We also statistically studied the genes in each module that simultaneously have several muta-

tions in multiple cases. Table 7 shows the set of modulated genes for each cancer. The first col-

umn of Table 7 shows the module number. The second and the third columns show the genes

found in more than 10% and less than 10% of the cases simultaneously. For example, among

1379 patients with breast cancer, 65 patients in module 2 had mutations in the NCOR1 gene. Of

these 65 patients, 38 patients had mutations in NCOR1 and PIK3CA genes simultaneously. The

important point to finding the module like previous studies, we have examined the number of

simultaneous mutations in the most significant number of cases. Genes with fewer mutations

are expected to participate in fewer modules. Therefore, if we want to see genes with fewer

mutations in our modules, we should define other criteria than the number of mutations. Fig 8

shows the number of cases in the modules introduced by our algorithm in each cancer sepa-

rately. For example, modules 3, 4, and 8 are found in more cases than the other five modules.

Conclusion and discussion

New sequencing technologies and improving genomics data help us identify cancer-related

genes and modules in various cancers. Most previous studies focus on using statistical methods

to identify high-frequency mutation genes. Finding these mutation genes is important in

determining the cancer progression mechanism. The critical point is that some critical genes

Table 6. GSEA for driver modules evaluation.

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Module 7 Module 8

FoxO signaling pathway 0.04 0.004 0.0071 0.14 0.02 0.75 0.27 0.02

Wnt signaling pathway 0.002 0.235 0.764 0.874 0.582 0.7834 0.235 0.183

MAPK signaling pathway 0.0856 0.562 0.61 0.2007 0.0019 0.66 0.011 0.02

p53 signaling pathway 0.01 0.19 0.81 0.9 0.66 0.014 0.78 0.009

Estrogen signaling pathway 0.7 0.23 0.76 0.12 0.011 0.79 0.73 0.779

Ras signaling pathway 0.6 0.3 0.67 0.01 0.004 0.72 0.64 0.72

ErbB signaling pathway 0.24 0.24 0.74 0.12 0.0009 0.78 0.71 0.78

mTOR signaling pathway 0.19 0.19 0.8 0.09 0.0042 0.8 0.77 0.83

Pathways in cancer 0.03 0.29 0.23 0.1 0.02 0.22 0.29 0.22

PI3K-Akt signaling pathway 0.02 0.44 0.049 0.262 0.0069 0.347 0.44 0.55

VEGF signaling pathway 0.84 0.14 0.86 0.7 0.02 0.88 0.84 0.88

https://doi.org/10.1371/journal.pcbi.1010332.t006
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Table 7. A set of obtained important modules for each cancer separately.

Cancer type Modules No. Genes Mutated in > 10% cases Genes Mutated in < 10% cases

Bladder Module 1 TP53, PTEN ARID1A

Module 2 KMT2D, EP300

Module 5 PIK3CA, ERBB3

Module 6 TP53, RB1

Module 8 EP300 ATM

Brain Module 1 TP53 PTEN

Module 2 KMT2D POLE

Module 3 FAT1, FBXW7

Module 4 NF1, PIK3R1

Module 5 EGFR PIK3CA

Module 6 SETD2, RB1 HMGA1

Breast Module 1 TP53, PTEN ARID1A

Module 2 PIK3CA NCOR1

Module 4 NF1, PIK3R1

Module 5 PIK3CA KRAS,

Module 6 TP53 SETD2

Lung Module 1 TP53, PTEN, ARID1A

Module 2 KMT2D, ATM,

Module 3 FAT1, FBXW7

Module 4 NF1, NOTCH1

Module 5 KRAS, EGFR SDHC

Module 6 TP53, RB1

Module 8 ATM EP300

Cervix uteri Module 1 PTEN, ARID1A

Module 2 PIK3CA, EP300

Module 3 FAT1, FBXW7

Colon Module 1 TP53, PTEN

Module 2 POLE KMT2D

Module 5 KRAS PIK3CA,

Module 6 SETD2 TP53

Module 7 CREBBP ATF1

Module 8 ATM, EP300,CHD4

Corpus uteri Module 1 PTEN, ARID1A, KMT2A TP53, ERBB4

Module 2 PIK3CA, KMT2D, NSD1, POLE ATM

Module 3 FAT1, FBXW7

Module 4 NF1, PIK3CA

Module 5 PIK3CA, mTOR, ERBB3, PTCH1 EGFR, KIT, MET, TSC1

Module 6 SETD2, RB1, CTCF TP53

Module 7 CREBBP ATF1

Module 8 CHD4 ATM

Esophagus Module 1 TP53, ARID1A

Module 2 KMT2D, ATM PIK3CA

Module 5 KRAS PIK3CA

Kidney Module 1 TP53, PTEN

(Continued)
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Table 7. (Continued)

Cancer type Modules No. Genes Mutated in > 10% cases Genes Mutated in < 10% cases

Liver Module 1 TP53, ARID1A

Module 6 TP53, SETD2

Ovary Module 1 TP53, KMT2A

Module 6 TP53 SETD2

Pancreas Module 1 TP53 ARID1A

Module 5 KRAS PIK3CA

Skin Module 1 TP53, PTEN

Module 2 KMT2D, ATM

Module 3 POUSF1, SSX2

Module 6 TP53, SETD2

Stomach Module 1 TP53, PTEN ARID1A, ERBB4

Module 2 PIK3CA, KMT2D, ATM

Module 4 NF1, PIK3R1

Module 5 PIK3CA, KRAS, TSC1

Module 7 CREBBP, ZNF512

Module 8 ATM, CHD4, ART

Uterus Module 1 TP53, PTEN

Module 2 PIK3CA, KMT2D

Module 7 ZNF512 ZRSR2

https://doi.org/10.1371/journal.pcbi.1010332.t007

Fig 8. The number of cases in each module in each cancer separately. In each type of cancer, the number of cases

with a simultaneous mutation in each module’s genes is shown in a distinct color.

https://doi.org/10.1371/journal.pcbi.1010332.g008
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do not have high mutation frequencies and can not be identified depending on the number of

mutations and statistical techniques. In this study, we used a machine learning method to find

important cancer genes with low-frequency mutations along with the driver genes with high-

frequency mutations. For this purpose, we extracted 576 cancer-related genes for 15 common

cancers reported on TCGA and constructed a weighted graph for the corresponding mutations

of these genes. The weight of the associated edge between two genes in this network is based

on the number of common cases that contain these mutated genes simultaneously. Since the

problem of finding candidate driver genes is still an open question, it can be studied as a prob-

lem without an exact answer. We used an unsupervised learning method to determine an effi-

cient set of mutated cancer genes to find an appropriate response to this question. We defined

six informative features for each gene and calculated the score for these features with the help

of the mentioned unsupervised machine learning method for each gene. Afterward, we intro-

duced 200 high-score genes with meaningful relationships to cancer as candidate genes for

more investigation. We comprehensively compared our methods with seven different algo-

rithms, simulated data, and multiple benchmarks. Our results showed that the proposed

method has an outstanding performance. Our method proposed some genes, such as TP53,

FAT4, and KMT2C, with high-frequency mutations as high-score genes that are presented

through other statistical methods. In addition to these genes, our method also identified some

genes, such as FSTL3, SSX2, and MDS2, with low-frequency mutations. We briefly studied

these genes with low-frequency mutations and examined the association of each of these genes

with different types of cancer. In addition, we studied the KEGG signaling pathways of the set

of high-score genes. We also examined the roles of these high-score genes and the effects of

mutations and abnormalities of these genes in the proposed set of signaling pathways in the

different cellular processes such as proliferation and migration.

Genomic analysis of different types of mutation in genes indicates the mutation heteroge-

neity problem. Genes should be accepted as a module rather than as individuals in order to

solve this heterogeneity issue. We used the knowledge of gene binding in protein-protein

interaction networks and the information on the biological processes of each of these genes to

detect the high-score genes and identify cancer-stimulating modules with high accuracy. For

this purpose, we created a network based on information about the physical interactions of

genes and the biological processes of these genes. We added weight to each node of this net-

work with the help of the LS. Then, we proposed a heuristic algorithm and clustered the net-

work. We introduced 8 top modules with the highest LS. To better understand the biological

function of the genes in each module, we analyzed the GO term annotations of the genes for

each module with the help of the DAVID tool. We have used GSEA as one of the most com-

mon approaches for evaluating driver modules and showed significant p-value corresponding

to each pathway related to each proposed module.

It can be concluded that the methods that filtrate mutation data based on the most mutated

genes and pre-defined network modules may lose important information about genes with a

lower frequency of mutations. The mutual exclusivity signal may be biased toward recognizing

gene sets that have a large proportion of their coverage in highly mutated genes. Although can-

cer-related genes have been shown to be involved in numerous pathways, few methods have

been developed to identify the candidate driver gene sets with different mutation frequencies.

We proposed a method to detect candidate driver genes with varying mutation frequencies

and showed their critical role in cancer progression.
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