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Abstract

Adaptive collective systems are common in biology and beyond. Typically, such systems

require a task allocation algorithm: a mechanism or rule-set by which individuals select par-

ticular roles. Here we study the performance of such task allocation mechanisms measured

in terms of the time for individuals to allocate to tasks. We ask: (1) Is task allocation funda-

mentally difficult, and thus costly? (2) Does the performance of task allocation mechanisms

depend on the number of individuals? And (3) what other parameters may affect their effi-

ciency? We use techniques from distributed computing theory to develop a model of a social

insect colony, where workers have to be allocated to a set of tasks; however, our model is

generalizable to other systems. We show, first, that the ability of workers to quickly assess

demand for work in tasks they are not currently engaged in crucially affects whether task

allocation is quickly achieved or not. This indicates that in social insect tasks such as ther-

moregulation, where temperature may provide a global and near instantaneous stimulus to

measure the need for cooling, for example, it should be easy to match the number of work-

ers to the need for work. In other tasks, such as nest repair, it may be impossible for workers

not directly at the work site to know that this task needs more workers. We argue that this

affects whether task allocation mechanisms are under strong selection. Second, we show

that colony size does not affect task allocation performance under our assumptions. This

implies that when effects of colony size are found, they are not inherent in the process of

task allocation itself, but due to processes not modeled here, such as higher variation in task

demand for smaller colonies, benefits of specialized workers, or constant overhead costs.

Third, we show that the ratio of the number of available workers to the workload crucially

affects performance. Thus, workers in excess of those needed to complete all tasks improve

task allocation performance. This provides a potential explanation for the phenomenon that

social insect colonies commonly contain inactive workers: these may be a ‘surplus’ set of

workers that improves colony function by speeding up optimal allocation of workers to tasks.

Overall our study shows how limitations at the individual level can affect group level out-

comes, and suggests new hypotheses that can be explored empirically.
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Author summary

Many complex systems have to allocate their units to different functions: cells in an

embryo develop into different tissues, servers in a computer cluster perform different cal-

culations, and insect workers choose particular tasks, such as brood care or foraging. Here

we demonstrate that this process does not automatically become easier or harder with sys-

tem size. If more workers are present than needed to complete the work available, some

workers will always be idle; despite this, having surplus workers makes redistributing

them across the tasks that need work much faster. Thus, unexpectedly, such surplus, idle

workers may potentially significantly improve system performance. Our work suggests

that interdisciplinary studies between biology and distributed computing can yield novel

insights for both fields.

Introduction

Many systems in biology and engineering, from cells to mobile networks and human societies,

consist of several or many interacting units that contribute ‘work’ towards a central goal [1–6].

Each of these systems employs a ‘task allocation mechanism’, i.e., individual workers choose,

or are allocated to, a specific part of the total workload, a task, which they then attempt to com-

plete. The simplest such task allocation mechanism might be one where each individual picks

a task randomly; another simple (from an algorithm standpoint) mechanism might be one

where each individual is preprogrammed to always pick a defined task. For example, in a sim-

ple multicellular organism such as the alga Gonium [7], each cell processes nutrients that it

happens to encounter, and each cell is equally likely to reproduce. Conversely, a car may be

made up of lots of elements that need to work together to make the car run, but these elements

have no flexibility with regard to how they contribute to this goal: each part fulfills its prepro-

grammed and unchangeable function. However, most biological systems, and many engi-

neered ones, do not behave according to either of these extremes. Instead, individuals have to

choose how to contribute, and may use various types of information about the need for differ-

ent types of work to make this choice (note that we are using the term ‘choice’ in the sense of

possessing an algorithm that leads to task selection, and do not imply free will). The goals of

any such task allocation mechanism are to achieve efficiency and robustness of system func-

tion. For example, in a developing embryo, multiple cells have to select which organs or tissues

to develop into [8]. The task allocation mechanism used has to ensure that the right cells are

allocated to all necessary organs; at the same time, it has to tolerate the occasional loss of cells.

Similarly, in cloud computing, the demand for different types of computation may change

dynamically over time, and so might the availability of individual processors [9, 10]. The ideal

task-allocation mechanism used here again has to achieve a match of allocated processors with

current needs, which likely requires repeated re-allocation.

Is task allocation a difficult problem, and does it matter which algorithm is chosen? If task

allocation is an easy problem, then the match of work to workers should be close enough to

the theoretical optimum that the efficiency and robustness of the evolved biological systems

and designed/engineered systems are not substantially reduced. However, there is evidence

from theoretical computer science that indicates that task allocation (referred to as ‘resource

allocation’) is difficult [11–13] in that it requires a non-negligible amount of resources (such as

time, memory, and/or communication messages). In particular, [12] shows that if individuals

also differ in how well they can perform different types of work, then in the model they con-

sider, task allocation is an NP-hard problem. Another line of evidence for the idea that task
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allocation is difficult is the number of workers in distributed systems that are in fact not allo-

cated to any tasks [14]. In social insect colonies in particular, a large fraction of workers do not

appear to work [15]; in addition, at any point in time, there is another substantial group of

individuals who are thought to be actively looking for work [16]. This may indicate either that

these workers are in excess of the number needed to perform tasks, or that they are result of a

task allocation mechanism that either costs time (in the form of workers looking for work) or

produces inadequate allocation (unemployed workers that could be employed). Either way,

this would indicate that task allocation is not an easy problem (several other hypotheses, unre-

lated to task allocation, have also been proposed [15]). In distributed computing, extra com-

puting devices (in addition to the number necessary to complete the tasks) are often used to

achieve fault tolerance and increase efficiency by replicating information and computation

over multiple devices [9, 10]. Both of these phenomena might indicate that task allocation is

neither effective nor fast: if task allocation were easy to achieve quickly, then there would not

be a need for costly buffering. If task allocation is a difficult problem, we would expect to see

complex systems employ imperfect mechanisms that lead to approximate solutions, or which

sometimes fail to allocate workers to tasks correctly, or we might see additional strategies that

compensate for mistakes of imperfect task allocation, or trade-offs between the resources

invested and the quality of task allocation achieved. Thus, in these cases we expect the chosen

task allocation mechanism to contribute significantly to system performance or biological fit-

ness. It will not then be possible to understand the evolution of system organization, or to

design an efficient and robust system, without also understanding the constraints imposed by

the process of task allocation.

Here we aim to contribute to an understanding of what limits flexible and robust task allo-

cation. To do this, we develop a model of task allocation in social insect colonies. We are spe-

cifically interested first in how group size, i.e. the number of individuals that may be allocated

to work, affects the difficulty of correct task allocation, and second, in the effects of having

more workers available than work (which would lead to inactive workers). We also discuss the

effect of the number of distinct task types to which workers have to be allocated. We quantify

performance of three generalized task allocation mechanisms that differ in the amount of

information available to workers about the demand for work in different tasks. We are think-

ing of our model as representing individual insect workers making choices among such tasks

as foraging or brood care. However, our model is kept general in many respects, and is thus

likely to apply to many similar systems where individuals are making choices about tasks using

local information.

Group size is typically thought to be a central factor in determining complex system func-

tion [17]: multicellular organisms [18], human societies and organizations [19, 20], and social

and computer networks [21] all have been argued to develop more complexity, acquire new

functionalities, and be competitively superior at larger group sizes, and all of this has also been

argued for social insect colonies [22]. In many cases, although not unequivocally [19, 22],

larger group size has been associated with more specialized, and possibly less flexible, individu-

als within the group; this may result from the smaller variance typically experienced by larger

groups because of the ‘law of large numbers’ [23]. Larger groups may also benefit from ‘econo-

mies of scale’ when there are fixed costs that do not scale linearly with the number of individu-

als [24]; for example, broadcast signals reach more individuals in larger groups at the same

cost [25]. Biological accounts of the evolution of larger groups, at any level of organization,

typically focus on these benefits of group size [17]. In computer science, on the other hand,

research has often focused on the costs of group size [13, 26]. Generally speaking, algorithms

that require interactions between individuals take much longer to execute in larger groups,

because the number of possible interactions increases faster than linearly with group size (with
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N2 for pairwise interactions, exponentially when any number of interactants is possible).

Indeed this effect of group size on ‘naive’ distributed problem-solving algorithms is so great

that the group size is typically equated with ‘problem size’, and the performance of algorithms

is measured mainly in terms of how strongly they depend on group size or other measures

closely related to group size [13, 27]. This makes sense if one assumes that the effect of group

size will outweigh the effects of any constant factors on the performance of the algorithm, even

for moderately large groups.

As stated above, we are using social insect colonies as a model system to study the effect of

group size on the difficulty of task allocation. Social insects such as bees, ants, wasps, and ter-

mites typically live in colonies that contain one or a few queens, who are the source of colony

reproduction, and many, anywhere from a handful to millions of workers, who do not repro-

duce but complete all other tasks [28–30]. These tasks include foraging (finding and collecting

food), nest building and repair, brood care (caring for immature individuals; Hymenopteran

insects such as bees and ants spend� 10 − 30% of their lifespan in an immature stage in which

they cannot move and have to be cleaned, fed, defended, and kept at a tolerable temperature

much like the most dependent mammals in their infant stage), colony defense, and various

other tasks that may include thermoregulation (such as by ventilation or heating), nest clean-

ing, undertaking (removing dead individuals), etc. [15]. The need for work in these different

tasks typically fluctuates in daily and seasonal patterns as well as stochastically [31].

Social insect colonies are self-organized, meaning that neither the queens nor any other

workers ‘direct’ the task choices of other workers, although interactions between individuals

such as communication signals and aggression may affect task selection [29, 32]. There are

more than 10000 species of ants alone, and different species of social insects may use different

task allocation mechanisms. Any task allocation mechanism consists of two parts: the traits of

individuals that predispose them to particular tasks, and the behavioral rules that lead them

to select a particular task at a given moment (the individual-level algorithm; [33]). In social

insects, body size, age, physiological and nutritional status, sensory abilities, and other internal

factors are thought to create variation among individuals in task preferences and skills; in addi-

tion, individual experience, interactions with other workers, spatial and hierarchical position

in the colony, and random encounters with tasks will do so as well, in the short and long term

[14, 32, 34]. In different species, some or all of these factors may play a role in task allocation,

and to differing degrees. The behavioral rule set, i.e. the algorithm, by which individuals

choose a task to work on in the moment, is typically thought to involve a comparison between

an individual’s task preferences and the need for a particular task; this is sometimes referred to

as the ‘task stimulus response threshold mechanism’ (because workers are thought to have dif-

ferent thresholds at which they decide to work on a task, depending on the level of ‘task stimu-

lus’ which communicates demand for work in the task, [35]). However, it is worth noting that

the actual precise algorithm is seldom defined in the insect literature; e.g. ‘thresholds’ may

actually be continuous probabilistic functions, and it is unclear how multiple task stimuli are

evaluated (in random order, or at the same time, and do they interact or not). It is also typically

unclear how the factors listed above interact to produce variation in preferences across tasks or

across individuals; e.g. are the preferences for different tasks independent of one another or

not [36]. All of this may also vary across species.

Despite this uncertainty about the precise mechanism, the fact that social insects achieve

task allocation is well studied. Workers in a colony specialize to a large or small degree on dif-

ferent tasks, and may switch tasks as needed [37], although this may come at additional cost

[38]. Colonies are typically able to effectively compensate for worker loss ([36], although see

[39]) or changes in demand for different tasks [14]. However, it is also the case that inactive

workers are common: at any point, often > 50%, sometimes > 70%, of the colony appear not
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to be performing any tasks [15]. This may be in part due to need for rest, selfish reproduction

by workers [40, 41], or immaturity of workers [42]; but it has also been suggested that

completely inactive and ‘walking’ (without apparently getting anything done) workers may

either be looking for work and failing to find it [16], or in fact be a surplus of workers not nec-

essary to complete the work of the colony [14]. Inactive workers, i.e. units within a complex

system that are not contributing, may also be common elsewhere, both in biology and engi-

neering [43, 44]. Here we examine the effect of such a buffer of apparently redundant workers

on task allocation efficiency.

This study aims to contribute to understanding why social insects evolved the task alloca-

tion mechanisms that they did, and, more generally, what limits effective task allocation in dis-

tributed sytems. We contribute to these aims by measuring the performance of task allocation

mechanisms under different assumptions. To achieve this, we derive how quickly task alloca-

tion can be achieved using distributed computing theory methods to analyze algorithm perfor-

mances. We use a generalized task allocation mechanism with three different assumptions

about how individual workers can acquire information about the need for more work in spe-

cific tasks (what we call the ‘deficit’). This approach then leads us to insights about whether

and how task allocation is limited by group size, the relationship of group size to the total need

for work (what we call the ‘demand’), the information available to workers, the number of

tasks, and how precisely the colony must match the allocation of workers to demands for work

across tasks. The rest of this paper is organized as follows: in the Methods section, we describe

the tools and techniques we use from distributed computing theory, together with a formal

model of the task allocation system we consider; in the Results section, we mathematically

derive bounds (that is upper limits) on the time for ants to allocate themselves to tasks in

the various versions of our formal model, and also provide some intuitive explanations and

numerical examples of the results; in the Discussion section, we emphasize the implications of

our results for actual ant and bee species and we address some caveats and open questions.

Methods

In this paper, we use modeling and analysis techniques from the field of theoretical distributed

computing to study the difficulty of task allocation in insect colonies. Distributed computing is

a field that typically studies networked computers that jointly, but in a self-organized manner,

solve a computational problem [13]. Similar to biological complex systems, the individual

computers may pass messages to each other, but will be otherwise acting independently. We

believe that many of the insights and tools from the field of distributed computing theory will

be directly useful and informative for biology, and some recent studies have started to apply

them to biological problems ([12, 45–49]).

In distributed computing theory and in this paper, models are generally abstract, discrete

and probabilistic; moreover, they are modular in that each individual is modeled indepen-

dently from other individuals, from the environment (including the tasks), and from the infor-

mation about tasks the environment may provide to individuals. In these models, we design

distributed algorithms and assign an independent copy of the algorithm to run at each individ-

ual. We analyze the algorithms mathematically, using proof techniques from probability theory

and algorithm complexity, to derive guarantees on the solvability and efficiency of task alloca-

tion (measured as the time for workers to allocate themselves correctly to tasks). The specific

results we present have both a worst-case and an average-case flavor. The worst-case aspect of

the results refers to the possible initial values of the parameters in the system; in other words,

we do not measure the performance of our algorithms with respect to the expected average

performance given some distribution of starting environments, but instead consider how well
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the algorithm will do with the worst possible starting conditions (e.g. with respect to the distri-

bution of demands across different task types). The average-case aspect of the results is with

respect to the probability distribution of the actual decisions of the workers and the probabilis-

tic feedback they receive from the environment. We elaborate more on this distinction in the

Informal Definitions and descriptions section.

Our approach

The specific abstraction of the task allocation problem that we study involves a distributed pro-

cess of allocating all workers to tasks with the goal of satisfying the demand for each task. The

demand for each task can be thought of as a work-rate required to keep the task satisfied. We

consider all workers to be equal in skill level and preferences. While this is an abstraction, we

focus here on simply the challenge of allocating generalist workers among tasks. We do not

attempt to model how the demand for a task is computed or measured empirically. Instead, we

assume that as a result of workers trying to maximize the fitness of the colony, there is some

optimal number of workers performing each task, and this is what the workers should attempt

to match.

At each time step, each worker decides what task to work on based on simple feedback

from the environment informing the worker of the state of the tasks. In particular, we consider

two specific types of environment feedback: (1) whether the worker is successful at its current

task, and (2) which task does the work choose next. We analyze whether this general algorithm

is able to successfully allocate the workers so that all tasks are satisfied, and the time for this

process to terminate. In particular, we focus on upper bounds for the time to satisfy all tasks

(i.e. how long it is expected to take given the worst possible starting conditions) as a function

of colony size, the number of tasks, and the total amount of work in the presence or absence of

extra workers (beyond the minimum to satisfy all tasks) in the colony.

Informal definitions and descriptions

Model. We consider a setting in which all workers are identical and each worker can sup-

ply one unit of work to each task type (brood care, foraging, nest maintenance, etc.). For brev-

ity, for the rest of the paper, we will refer to tasks types as tasks.
At the start of the re-allocation process, each task is characterized by an integer-valued

demand, and we consider a task to be satisfied when the number of units of work provided to

the task is at least as much as the demand of the task. In order to guarantee that it is possible to

satisfy the demands of all tasks, we assume that the number of workers is at least as large as the

total sum of all demands.

We also assume the workers perform actions in lock step and that each such step is suffi-

ciently long so that the workers can re-evaluate the state of the environment at the end of each

round, which includes the effect of the work performed by other workers in that round. Based

on that information, at the end of each step, each worker decides what action to perform (what

task to work on) in the next step. We measure the efficiency of the re-allocation process as the

number of steps necessary for the workers to re-allocate to the tasks in a way that matches or

exceeds the demands (we term this ‘successful reallocation’).

Feedback about task demands. We abstract away from actual low-level mechanisms that

workers use to acquire knowledge about the environment; instead, we focus on the informa-
tion content of the environment feedback. Therefore, we can model feedback that is minimal

and probabilistic. Our goal is to provide only limited information about the state of the

environment.
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In particular, we consider environment feedback that consists of two components: success
and choice. The first component, success, informs each worker whether it is successful at the task

it is currently working on (i.e. whether its work was needed there), and the second component,

choice, provides each worker with an alternative task to work on, in case it is not successful at its

current task. From a biological perspective, the separation between these two components is

motivated by the two main ways a worker interacts with its environment: (1) from attempting

to work on some task, a worker learns whether its work is needed, and (2) from randomly inter-

acting with tasks in the nest, it may perceive need for work in tasks it is not active in. We con-

sider the following specifications for success and choice.
Success feedback: We assume that for a given time step and a given task, if the number of

workers working on this task is less than or equal to the demand of the task, then all workers

working on the task are ‘successful’. Otherwise, if more workers are working on the task than

the demand requires, then we assume success informs only as many workers as needed to sat-

isfy the demand that they are successful, and it informs the rest of the workers working on the

task that they are unsuccessful. Since workers are identical and do not store any work history

(similarly to a Markov process), it is not important which workers are the successful ones and

which workers are the unsuccessful ones among all the workers working on some task, as long

as the number of successful workers does not exceed the demand of the task.

A good analogy to the success feedback is the game of musical chairs: the number of chairs

corresponds to the demand of the task, and the number of workers working on the task corre-

sponds to the number of people playing the game. In musical chairs, all players who manage to

find a seat when the music stops continue to the next round; similarly, the workers that man-

age to complete some amount of work that contributed to decreasing the demand are consid-

ered successful.

As a result, success provides each worker with implicit information about the amount of

work needed for the task without directly informing the worker of the exact value of that

amount.

Choice feedback: For the second component, choice, of the environment feedback, we

assume workers determine an alternative task to work on by encountering tasks randomly. We

model three probability distributions for the choice component.

The simplest way to model a worker encountering a random task in the nest is to assume

choice provides the worker with (1) a uniformly random task (that is, each task is equally likely

to be chosen). We think of the uniform distribution as a very natural way to choose a task with-

out any information about the set of tasks or their demands. Other distributions imply some

knowledge about parameters of the distribution. For example, the normal distribution implies

we have some information about the mean and variance of the distribution. Even more impor-

tantly, since our random variable is discrete, the normal distribution is not a good choice

because we do not assume any ‘ordering’ of the tasks. Thus, the ‘uniform’ distribution here

simply means that each task is chosen with equal probability. Alternatively, we might think

workers recognize tasks that need work, and choice might provide (2) a uniformly random

task only among the unsatisfied tasks. Finally, we might think that tasks provide information

on their level of demand, and thus workers may be able to choose (3) a task that needs more

work compared to other tasks. Option (1) implies that workers initially choose a task with no

information on the demand for work in different tasks. Options (2) and (3) imply that workers

can sense which tasks need work before engaging in them, e.g. through a task stimulus pro-

duced by unsatisfied tasks such as pheromone produced by hungry (unfed) brood (indicating

need for brood care). Since we assume that in all cases workers will discover whether their con-

tribution was actually needed through the ‘success feedback’ mechanism, options (1) and (2)
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imply that tasks are ultimately checked for demand one at a time, i.e. with a cost of one round

per task checked, while in option (3) workers can sense demand for all tasks at once.

See Table 1 for an example execution of the task allocation system.

Performance measure. In all three of the options for the choice component, keeping the

success component the same, we are interested in upper bounds on (that is, the maximum

value of, and thus the worst-case for) the time until workers are correctly re-allocated such

that the demands of the tasks are satisfied. It is important to note that our results have both a

worst-case flavor (in terms of the initial configuration of the system) and average-case flavor

(in terms of the probability distribution defined by the choice component).

The worst-case analysis refers to the initial assignment of workers to tasks as well as the

demands of the tasks. So, when we say that for some scenario the running time is at most t,
informally, it implies that for any possible initial configuration of task demands and assign-

ment of workers to tasks, starting from that configuration, it takes time at most t to re-allocate

the workers correctly. It is not always clear whether there exists an initial configuration

(assignment of workers to tasks and task demands) that results in a re-allocation of exactly

time t; it is also not straightforward to identify the initial configuration that requires the most

rounds for workers to re-allocate correctly (the ‘worst-case’ initial configuration). In other

words, we do not average the time to re-allocate over all possible initial configurations. Averag-

ing over all possible initial configurations would be a challenging task given that the space of

such initial configurations is very large; moreover, we would have to assume all initial configu-

rations are equally likely to arise, which may not necessarily be a reasonable assumption.

The average-case (or more generally, probabilistic) analysis refers to the fact that we use the

distribution of outputs of the choice component. So, when we say that for some scenario with

probability at least p the running time is at most t, informally, it implies that we took into

account all possible outputs of choice and their likelihood in order to calculate t. In other

words, it is possible that the workers do not re-allocate within time t (or ever), but the proba-

bility of that happening is less that 1 − p (usually extremely small). Analyzing the running time

in such a probabilistic way is a manageable task because we know exactly what the distribution

of outputs of choice is for each of the three options and at each step.

Formal definitions

See S1 Text for a more detailed version of this section.

Table 1. Sample execution of a task allocation in our model.

Inactive Workers Task 1

??

Task 2

? ? ??

Task 3

?

Task 4

? ? ?

Time 0: • • • • • • • • • • •• �� • � �� � • � �

Time 1: • • • • • • • • •• •� • � �� • • � �

Time 2: • • • • •• •� • • �� • • • �

Time 3: • • •• •� • • �� • • • • • �

Time 4: •• •• • • •• • • • •

Sample execution of a task allocation in our model. The stars denote the demand of each task, the empty circles denote unsatisfied units of work, and the

solid circles denote workers working on specific tasks. The execution begins at time 0 when only two workers are working on tasks 2 and 4. Then, at time 1

some workers join tasks 1 and 3. At time 2, more workers join all tasks. At time 3, too many workers join Task 3 and only one of them is successful because

the demand for the task is 1. Finally, at time 4 all tasks are satisfied. The remaining workers indicate that the size of the colony is greater that the total sum of

the demands of all tasks.

https://doi.org/10.1371/journal.pcbi.1005904.t001
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Let A denote the set of workers and T denote the set of tasks. Each task i 2 T has an integer

demand di that represents the minimum number of workers required to work on task i in

order to satisfy the task. Let wi denote the total number of worker units of work currently

supplied to task i. Let ~w and~d denote the vectors of wi and di values, respectively, for each

1� i� |T|. The~d vector is static, while ~w changes over time depending on the different

tasks workers choose to work on. Clearly, in order for all demands to be met, there should

be sufficiently many workers in the colony. We assume that there exists a real c� 1 such that

|A| = c � ∑i2T di.
Feedback. We consider two feedback components, success and choice, that provide each

worker with a boolean in {0, 1} and a task in T [ {?}, respectively, determined based on ~w
and~d . The output values of success and choice are determined according to some probability

distributions.

Workers. Each worker a 2 A has a state q 2 Q = {q?, q1, q2, � � �, q|T|} at each point in time,

where q? indicates that worker a is not working on any task and each state qi, for i 2 {1, � � �, |T|},

indicates that worker a is working on task i. Each worker is modeled as a finite state machine

with transition function δ: Q × ({0, 1} × (T [ {?}))! Q; in other words, each worker’s new

state is determined by its old state and its inputs from the success and choice components. Let q
be the current state of some worker a, and let q0 be the resulting state of worker a after applying

δ. In each step, q0 is determined as follows: q0 = q if success outputs 1, and q0 = qi if success outputs

0 and choice outputs i 2 T [ {?}.

Execution. The execution of any algorithm solving the task allocation problem starts at

time 0 and proceeds in synchronous rounds, such that each round r + 1, for r� 0, denotes the

transition from time r to time r + 1. In each round r + 1, the success and choice components

provide each worker with a boolean and a task. Each worker component performs a state tran-

sition using its δ transition function and performs some amount of work on the task associated

with its state.

Problem statement. A task i 2 T is satisfied at time r if di� wi(r). An algorithm satisfies

all tasks by time r� 0 if for each r0 � r, all tasks i 2 T are satisfied at time r0.
The specification of success and some of the specifications of choice in this section are

inspired by the biological model by Pacala et al. [50] and simplified for the sake of easier

analysis.

Success component. The success component determines whether each worker is success-

ful at the task it is currently working on and allows excess workers working on a satisfied

task to switch to another task. Throughout this paper, we consider success components that sat-

isfy the following conditions in each execution and at each time r of the execution: for each

task i 2 T, |{aja is in state qi at time r and receives 1 from the success component in round

r + 1}| = min(di, wi(r)). Also, each worker in state q? at time r receives 0 from success in round

r + 1.

Choice component. The choice component returns a candidate task to each worker as an

alternative task to work on. We consider three different specifications of choice:

1. choice returns a task drawn from all the tasks in T uniformly at random (with probability

1/|T|).

2. choice returns a task drawn from the set of unsatisfied tasks, U(r) = {ijdi> wi(r)}, uniformly

at random. If there is no such task, then choice returns?.

3. choice returns a task i drawn from the set of all unsatisfied tasks with probability

(di − wi(r))/∑j2U(r)(dj − wj(r)). This option corresponds to the scenario where workers can
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somehow sense the need to work on each task, and are more likely to work on tasks with

high deficit di − wi(r) compared to the total deficit of all unsatisfied tasks ∑j2U(r)(dj − wj(r)).

Results

First, we present the formal statement of our results, together with simple proof overviews. We

start by introducing a few general facts about the task allocation system, like properties of the

success and choice feedback, and simple results about the the general growth of the level of sat-

isfaction of each task. Next, we describe the main results corresponding to each of the three

options for the choice components. For each such option, we present the formal result on how

much time is required for workers to correctly re-allocate, and then describe informally the

main arguments of the proofs. The full proofs of all the results are available in S2 Text. Readers

uninterested in the specific mathematical arguments can skip to the Non-technical Summary

of Results section. Finally, in the Numerical results section, we provide numerical examples

that illustrate our results with respect to concrete values of the parameters.

General facts

In this section, we give some basic definitions and results that will be used in the subsequent

analyses of the convergence times for the various choice options.

A task is satisfied at time r if di� wi(r). Let S(r) denote the set of satisfied tasks at time r. Let

U(r) = T \ S(r) denote the set of unsatisfied tasks at time r. For each task i 2 T and each time r,
let Fi(r) = max{0, (di − wi(r))} be the deficit of task i at time r. If i 2 U(r), then Fi(r) = di − wi(r).
We define the total deficit at time r:

FðrÞ ¼
X

i2T

FiðrÞ:

Define a worker to be inactive in round r, for r> 0, if it is in state q? at time r − 1 or if it

receives 0 from success in round r. In other words, a worker is inactive if it is not working on

any task, or if it unsuccessful at the current task it is working on.

For a full list of the parameters used in the model and analysis, see Table 2.

Based on the basic properties of the success and choice components, we can establish the fol-

lowing facts:

1. The number of work units supplied to a given task i 2 T is non-decreasing.

2. For each r� 0, |U(r)|� |U(r + 1)| and |S(r)|� |S(r + 1)| (follows from fact 1). In other

words, the number of unsatisfied tasks never increases and the number of satisfied tasks

never decreases.

3. For each r� 0, Fi(r)� Fi(r + 1). The deficit of each task never increases.

4. By the assumption that |A| = c � ∑i2T di, the number of inactive workers in round r + 1 is at

least c � F(r). So, the more total deficit, the more inactive workers we have.

5. If the probability to satisfy a task in round r + 1 is at least p, then E½jUðr þ 1Þj� �

jUðrÞj � ð1 � pÞ and E½Fðr þ 1Þ� � FðrÞ � ð1 � pÞ. In other words, if we know the probability

with which each task gets satisfied in a given round, we can calculate the expected number

of unsatisfied tasks and the expected total deficit in the next round.

6. If choice always returns an unsatisfied task to each worker, then the workers re-allocate suc-

cessfully in at most |T| rounds.
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Next, we analyze the three variations of the choice component.

Uniformly random tasks

In this section, we consider the first option for the choice component, where in each round

choice returns a task i with probability 1/|T|. This section includes only proof overviews and

approximate running times. For detailed proofs of the results in this section, refer to S2 Text.

One of the main results for this option of the choice component states that for any success

probability 1 − δ that we choose, the time until workers re-allocate correctly is at most

OðjTjc� 1Þðln Fð0Þ þ lnð1=dÞÞ. We can see the time is linearly proportional to the number of

tasks |T|, logarithmically proportional to the total amount of work needed (F(0)) and the

inverse of the failure probability, and inversely proportional to c, the ratio of the colony size to

the total sum of demands of tasks.

Theorem 1. For any δ, 0< δ< 1, with probability at least 1 − δ, all tasks are satisfied by time
OðjTjc� 1Þðln Fð0Þ þ lnð1=dÞÞ.

Proof Idea: We know that the number of inactive workers in round r + 1 is at least c � F(r)
(by fact 4). By the definition of choice in this section, each inactive worker starts working on

each task i with probability 1/|T|. Therefore, we can show that, in each round, the expected

number of new workers to join each unsatisfied task is at least c � F(r)/|T|.

First, consider the case when c� 2|T| and consider some time r. After some workers join

task i in round r + 1, it is not guaranteed that the entire new set of workers remains working

on task i because some workers may be unsuccessful if task i does not require that many work-

ers. Assuming c� 2|T|, since the total deficit is F(r) and there are |T| tasks, we can show that

in expectation the total deficit in the next round is at least c � F(r)/|T| (which can be 0 if all

tasks are satisfied). Therefore, in expectation, at least c � F(r)/|T| of the new workers that join

tasks will remain working on them. This implies that the expected total deficit F(r) decreases

by approximately c � F(r)/|T| in round r + 1.

Next, we consider the case of c> 2|T|. We can express c as a multiple of |T|: c = c0 � |T| for

some c0 > 2. We can show that in each round, the probability to satisfy each task is at least

Table 2. Summary of parameters in the task allocation model and analysis.

Symbol Parameter definition Plausible

range

Explanation for range References

|T| number of tasks [2, 20] At low end if conceived of as the number of distinct worker task groups; at higher end if all

‘identifiable’ worker activities are included.

[15, 51–53]

Φ initial deficit [5, 500] Considerable variation across species and situations; what is empirically measured is the

number of workers actually re-allocated or activated.

[31, 54–57]

|A| number of workers [2, 20 million] Most species are in the 10-500 range for total colony size. [22]

D total task demands [2, 20 million] We assumed here that the demand for work, measured in insect workloads, is in the

same range as the colony size (see section 4.3 for discussion).

[22]

c extra workers (|A|/D) [1, 2] Since D has not been empirically measured, neither has c. If we assume ‘inactive’

workers may be in excess of work that needs to be performed, values in the entire range

are plausible.

[15, 52, 58–

60]

1 − δ success probability [0.5, 0.95] To our knowledge, no attempts to estimate delta or epsilon exist. Our estimates are

simply based on the assumption that in some cases, e.g. defense, colonies would need

to be ‘very’ certain that approximately the correct number of workers are allocated to the

task at hand; in other cases, such as foraging, colonies may only need moderate

certainty that task allocation is successful.

1 − � fraction of deficit to

be satisfied

[0.7, 0.9] � reflects the degree to which the demand for work in a task is exactly matched. Given the

high degree of stochasticity observed in task allocation in social insects, we assumed

here that 1 − � is not required to be ‘very’ close to 1 in most cases.

[54, 61]

https://doi.org/10.1371/journal.pcbi.1005904.t002
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some constant, and consequently (using fact 5 above), we conclude that the expected number

of unsatisfied tasks and the total deficit decrease by a constant fraction in each round.

Finally, we start at time 0, when the total deficit is F(0), and inductively apply the conclu-

sions above in the cases of c� 2|T| and c> 2|T|. By facts 2 and 3, we know that both |U| and F

are non-increasing, so we just need to analyze how fast they decrease. For the case of c� 2|T|,

the expected total deficit F(r) decreases by approximately c � F(r)/|T| in each round r + 1. So it

will take approximately (|T|/c) ln F(0) rounds until the total deficit decreases to 0. To turn this

into a more formal probabilistic claim, we can add approximately ln(1/δ) rounds, for some

0< δ< 1, in order to ensure that the tasks are satisfied not only in expectation, but with prob-

ability at least 1 − δ. This trick works by applying a simple Markov bound (see S2 Text).

The second main result for this option of the choice component studies the time until work-

ers re-allocate in such a way that, for any success probability 1 − δ and any fraction � that we

choose, a (1 − �)-fraction of the total work F(0) is satisfied with probability at least 1 − δ. The

time to re-allocate in this case is at most OðjTjc� 1Þðlnð1=�Þ þ lnð1=dÞÞ. Similarly to the first

result in this section, the time is linearly proportional to the number of tasks |T|, logarithmcally

proportional to the inverse of the failure probability, and inversely proportional to c, the ratio

of the colony size to the total sum of demands of tasks. However, here, we do not have a depen-

dence on F(0), but only a logarithmic dependence on 1/�.

Theorem 2. For any δ and �, 0< δ, � < 1, with probability at least 1 − δ, the deficit at time
OðjTjc� 1Þðlnð1=�Þ þ lnð1=dÞÞ is at most � � F(0).

Proof Idea: Following the same structure as the proof above, we can also compute the num-

ber of rounds until the tasks are satisfied approximately. Suppose we only want a (1 − �) frac-

tion of F(0) to be satisfied for 0< � < 1. Recall that for c� 2|T|, the expected total deficit F(r)
decreases by approximately c � F(r)/|T| in each round r + 1. So it will take only (|T|/c)(ln(1/�) +

ln(1/δ)) rounds to ensure this is true with probability at least 1 − δ (again, the ln(1/δ) factor is

to ensure the probability guarantee).

For the case of c> 2|T|, we proceed similarly. Recall that in this case c0 = c/|T| and the

expected number of unsatisfied tasks and the total deficit decrease by a constant fraction in

each round (this constant depends on c0). So, with probability at least 1 − δ, all tasks are satis-

fied by time approximately (1/c0)(min{ln |T|, ln F(0)} + ln(1/δ)). The reason for having a mini-

mum is to take advantage of the smaller value between |T| and F(0). And similarly, if we only

want to satisfy the tasks approximately the ln F(0) term turns into ln (1/�).

Uniformly random unsatisfied tasks

In this section, we consider the second option for the choice component where in each round

choice returns a task i 2 U(r) with probability 1/|U(r)|. This section includes only proof over-

views and approximate running times. For detailed proofs of the results in this section, refer to

S2 Text.

One of the main results for this option of the choice component states that for c� 1 and any

success probability 1 − δ that we choose, the time until workers re-allocate correctly is at most

Oðln Fð0Þ þ lnð1=dÞÞ. We can see the time is logarithmically proportional to the total amount

of work needed (F(0)) and the inverse of the failure probability. Since c may be extremely

close to 1, we do not get any effect of c in this result.

Theorem 3. For c� 1 and for any δ, 0< δ< 1, with probability at least 1 − δ, all tasks are
satisfied by timeminfjTj;Oðln Fð0Þ þ lnð1=dÞÞg.

Proof Idea: Suppose c� 1 and consider some time r. We can show that in round r + 1 at

least one of the following happens: (1) the total deficit decreases by a constant fraction, or (2)

the number of unsatisfied tasks decreases by a constant fraction. To show the first property
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holds, we consider tasks with a fairly high deficit, which are not likely to get satisfied in one

round. We show that the number of new workers joining such tasks is enough to decrease the

total deficit by a constant fraction. To show the second property (the number of unsatisfied

tasks decreases by a constant fraction), we focus on tasks with fairly low deficit which are likely

to get satisfied within one round. We can show that these tasks are enough to decrease the

total number of unsatisfied tasks by a constant fraction in one round. For showing both (1)

and (2), we first prove a bound on the probability to satisfy any given task in a single round

and then use fact 5 to get a bound on the expected number of unsatisfied tasks and the

expected total deficit.

Finally, we start at time 0, when the total deficit is F(0) and the number of unsatisfied tasks

is at most |T|, and inductively apply the two results above. By facts 2 and 3, we know that both

|U| and F are non-increasing, so we just need to analyze how fast they decrease. If it is the case

that the expected total deficit F(r) decreases by a constant factor in each round, then it will

take approximately ln F(0) rounds until the total deficit decreases to 0. If it is the case that

the number of unsatisfied tasks decrease by a constant factor in each round, then it will take

approximately ln |U(0)| rounds until the total deficit decreases to 0. Since F(0)� |U(0)|, we

know either F(0) or |U(0)| will decrease to 0 in approximately 2 ln F(0) rounds. To turn this

into a more formal probabilistic claim, we can add approximately ln (1/δ) rounds, for some

0< δ< 1, in order to ensure that the tasks are satisfied not only in expectation, but with prob-

ability at least 1 − δ. This trick works by applying a simple Markov bound (see S2 Text). The

minimum in the final bound follows by fact 6 in the General Facts section.

The second main result for this option of the choice component states that for c> 1 and any

success probability 1 − δ that we choose, the time until workers re-allocate correctly is at most

Oð1=ln cÞðln jTj þ lnð1=dÞÞ. Similarly to the result above, the time is logarithmically propor-

tional to the total amount of work (F(0)) needed initially, and the inverse of the failure proba-

bility. Now, c is strictly greater than 1, so we see that the time is also inversely proportional to

the natural logarithm of c.
Theorem 4. For c> 1 and for any δ, 0< δ< 1, with probability at least 1 − δ, all tasks are

satisfied by timeminfjTj;Oðð1=ln cÞðln jTj þ lnð1=dÞÞÞg.

Proof Idea: Suppose c> 1 and consider some time r. Unlike the case of c� 1, where in

round r + 1 either the total deficit or the number of unsatisfied tasks decreases by a constant

fraction, here we can show that the number of unsatisfied tasks decreases by at least a constant

fraction in round r + 1. We consider all tasks with a fairly low deficit, which are likely to get

satisfied in a single round. The total deficit at time r is F(r), and the total number of inactive

workers in round r + 1 is at least c � F(r). The fact that the number of inactive workers is at

least a constant fraction greater than the total deficit lets us show that the expected number of

low-deficit tasks is at least a constant fraction of all unsatisfied tasks. Therefore, by satisfying

these low-deficit tasks the number of unsatisfied tasks decreases by a constant fraction in

expectation. Again, we can show this by proving a bound on the probability to satisfy any

given task and then using fact 5. The value of that constant fraction by which the number of

unsatisfied tasks decreases is what determines the dependence of the running time on 1/ln c in

this case.

Finally, we start at time 0, when the total deficit is F(0) and the number of unsatisfied tasks

is |U(0)|, and inductively apply the result above to show that the workers will re-allocate cor-

rectly within Oðln jUð0Þj þ lnð1=dÞÞ rounds. Note that ln |U(0)|� ln |T| and ln |U(0)|� F(0).

The minimum in the final bound follows by fact 6 in the General Facts section.

We can combine the results of the two theorems in this section. Clearly, if c is extremely

close to 1, the 1/ln c term becomes very large, and in the limit the running time becomes1.

Therefore, we can take the minimum of the running times in the cases of c� 1 and c> 1 to get
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the overall running time of the algorithm. Essentially, the running time is determined mostly

by the case of c> 1, except for the small range of values for c when c is very close to 1.

Unsatisfied tasks prioritized by deficit

In this section, we consider the third option for the choice component where in each round

choice returns a task i 2 U(r) with probability (di − wi(r))/F(r). This section includes only

proof overviews and approximate running times. For detailed proofs of the results in this sec-

tion, refer to S2 Text.

One of the main results for this option of the choice component states that for c� 1 and any

success probability 1 − δ that we choose, the time until workers re-allocate correctly is at most

Oðln Fð0Þ þ lnð1=dÞÞ. We can see the time is logarithmically proportional to the total amount

of work needed (F(0)) and the inverse of the failure probability. Since c may be extremely

close to 1, we do not get any effect of c in this result.

Theorem 5. For c� 1 and for any δ, 0< δ< 1, with probability at least 1 − δ, all tasks are
satisfied by timeminfjTj;OðlogFð0Þ þ logð1=dÞÞg.

Proof Idea: Since an inactive worker starts working on a task i with probability (di − wi(r))/
F(r), and since there are at least F(r) inactive workers in round r + 1, the expected number of

new workers to join task i in round r + 1 is at least a constant fraction of di − wi(r), which is

exactly the deficit of the task at time r. We can show that each task is satisfied in round r + 1

with probability 1/2, and so, by fact 5 the total number of unsatisfied tasks and the total deficit

decreases by half in expectation. Finally, we start at time 0, when the total deficit is F(0) and

inductively apply the observation above to show that the workers will re-allocate correctly in

approximately logF(0) rounds. The minimum in the final bound follows by fact 6 in the Gen-

eral Facts section.

The second main result for this option of the choice component states that for c> 1 and any

success probability 1 − δ that we choose, the time until workers re-allocate correctly is at most

Oð1=cÞðln Fð0Þ þ lnð1=dÞÞ. Similarly to the result above, the time is logarithmically propor-

tional to the total amount of work needed (F(0)) and the inverse of the failure probability.

Now, c is strictly greater than 1, so we see that the time is also inversely proportional to the nat-

ural logarithm of c.
Theorem 6. For c> 1 and for any δ, 0< δ< 1, with probability at least 1 − δ, all tasks are

satisfied by timeminfjTj;Oð1=cÞOðln Fð0Þ þ lnð1=dÞÞg.

Proof Idea: For the case of c> 1, similarly to the case of c� 1, we show that each task is

satisfied with a constant probability, so the number of unsatisfied tasks and the total deficit

decrease by a constant fraction in each round. The value of that constant fraction is what let us

show that the running time depends on 1/c. The minimum in the final bound follows by fact 6

in the General Facts section.

We can combine the results the two theorems in this section. Clearly, if c is extremely close

to 1, the 1/c term becomes very large, and in the limit the running time becomes1. Therefore,

we can take the minimum of the running times in the cases of c� 1 and c> 1.

Introducing noise. Suppose the success component is not completely reliable and it can

flip the 0/1 bits of at most 0� z� |A| workers in round r + 1. Moreover, we assume the infor-

mation needed to determine the outputs of the choice component in the same round is based

on the state variables at time r. That is, the choice component does not incorporate the z poten-

tial mistakes into its outputs. Also, suppose the choice component is also not completely reli-

able and can change the probability of outputting task i from exactly Fi(r)/F(r) to any value

larger than (1 − y)(Fi(r)/F(r)) for any 0� y< 1 while still maintaining a probability distribu-

tion over all the tasks.
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Although it is no longer possible to guarantee that all tasks are satisfied, we can show that

the deficit does not exceed z, and the time to achieve this increases as y approaches 1. For any

success probability 1 − δ that we choose and any noise parameters y and z (within the permit-

ted ranges), we study the time until workers re-allocate in such a way that at most z units of

work remain unsatisfied. Similarly to above, the time is logarithmically proportional to the

total amount of work needed (F(0)) and the inverse of the failure probability. Additionally, for

the case of c� 1 (in particular when c is very close to 1) the time is inversely proportional to ln

(1/y), a value that gets extremely large as y gets very close to 1. In the case of c> 1, the time is

inversely proportional to c and does not have the dependence on y.

Theorem 7. For c� 1, for any δ, 0< δ< 1, and for
r ¼ minfjTj;Oð1=lnð1=yÞÞðln Fð0Þ þ lnð1=dÞÞg, Pr[F(r)� z]� 1 − δ.

Proof Idea: Similarly to the proofs in the previous sections, we need to get a statement on

how quickly the expected value of the total deficit decreases. Here, we get a similar result;

however, the rate of decrease of the total deficit also depends on the parameters of the noise y
and z. In particular, we can show that in each round, the expected total deficit decreases by a

1 − (3 + y)/4 fraction (note that this extremely small as y gets close to 1) and it may never go

lower than z. The minimum in the final bound follows by fact 6 in the General Facts section.

With the above result in mind, we can apply the usual strategy of starting at time 0 when

the total deficit is F(0) and inductively applying the claim above. The time until the workers

re-allocate correctly (with the exception of at most z units of work) is approximately (1/ln(1/

y))(ln F(0) + ln(1/δ)).

Theorem 8. For c> 1, for any δ, 0< δ< 1, and for
r ¼ minfjTj;Oð1=cÞðln Fð0Þ þ lnð1=dÞÞg, Pr[F(r)� z]� 1 − δ.

Proof Idea: Similarly to the previous sections, we can show a similar result for c> 1. We

show that the probability to satisfy each task in each round is some constant that depends on c
and that determines the 1/c factor in the running time. Then, we show that the expected total

deficit decreases by a constant fraction (that also depends on c) and it may never go lower than

z. Note that, unlike the case of c� 1, here the ‘extra workers’ help cancel the effect of y on the

running time. Finally, we start at time 0 when the total deficit is F(0) and inductively apply the

claim above. The time until the workers re-allocate correctly (with the exception of at most z
units of work) is approximately (1/c)(ln F(0) + ln(1/δ)). The minimum in the final bound fol-

lows by fact 6 in the General Facts section.

As in the previous sections, we can combine the above two theorems by taking a minimum.

Non-technical summary of results

For the various options for the choice feedback component (keeping the success component the

same), we study the time to correctly re-allocate all workers: the number of steps workers need

to take until the demands of all tasks are satisfied or over-satisfied. In particular, we show three

types of results, which differ in precisely what conditions are set on this performance measure

(rows in Table 3).

First, we consider the case where the demand D has to be fully satisfied with a high proba-

bility (1 − δ). For this case, in options (2) and (3), we see that if the number of task types (|T|)

is small, the time to allocation only depends on this parameter (see also Table 4). If the number

of task types is high, we see a positive (logarithmic) dependence of the time to correctly re-allo-

cate all workers on the deficit across all tasks (i.e. the value of F). That is, correct allocation

takes longer if more workers have to be re-allocated; this relationship is not linear but saturates

over time. In the case of option (1) (where workers can only check for demand in different

tasks sequentially rather than instantaneously), we also see a linear positive dependence on the

Costs of task allocation in complex systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005904 December 14, 2017 15 / 29

https://doi.org/10.1371/journal.pcbi.1005904


number of tasks |T|. Finally, as the workers-to-work-ratio (c) increases, the time to re-allocate

all workers decreases: this means that if there are ‘extra workers’ (workers in excess of the total

demand for work), task allocation becomes faster. In options (1) and (3), that dependence is

approximately 1/c, and in option (2), the dependence is slightly weaker: 1/ln c (Fig 1). How-

ever, note that extra ants do not contribute towards a faster task allocation until c is large

enough (approximately until c� e).
Second, we studied the time until the demand D in different tasks is satisfied approximately

(to within a (1 − �) fraction) rather than exactly as above (but still with high probability of

1 − δ). In general, the effect of different parameters on performance is similar to the case

where task demands are satisfied exactly. However, we show that in this case, for all options of

Table 3. Summary of results.

option (1) option (2) option (3)

satisfy all Φwork with prob. 1 − δ OðjT jð1=cÞÞ
(ln Φ + ln (1/δ))

min{|T|,

ðminf1;Oð1=ln cÞg�
(ln Φ + ln (1/δ)))}

minfjTj;Oð1=cÞ
(ln Φ + ln (1/δ))}

satisfy Φ(1 − �) work with prob. 1 − δ OðjT jð1=cÞÞ
(ln (1/�) + ln (1/δ))

min{|T|,

ðminf1;Oð1=ln cÞg�
(ln (1/�) + ln (1/δ)))}

minfjTj;Oð1=cÞ
(ln (1/�) + ln (1/δ))}

satisfy Φ − z work under uncertainty did not analyze did not analyze min{|T|,

(ln Φ + ln (1/δ))

Oðmaxf1=c;
1/ln (1/y)})}

The values in the table are upper bounds on the time for workers to achieve a task allocation that fulfills the

criteria in the first column, given a particular option for the choice feedback. Results are presented in ‘big O’

(asymptotic) notation, which only gives the type of dependence on particular parameters, without specifying

constant factors. This helps emphasize the parameters the results depend on, and does not give any

information on the exact values of the running times. For precise values of these results, see the Numerical

results section and S2 Text.

https://doi.org/10.1371/journal.pcbi.1005904.t003

Table 4. Numerical results.

Insect name |T| c Φ 1 − δ 1 − � (1) (2) (3)

Honey bee (Apis mellifera) predator attack 10 1.3 5000 0.95 0.7 708.49

(258.44)

10

(10)

6.32

(4.73)

Honey bee (Apis mellifera) change in foraging conditions 10 1.3 150 0.8 0.7 407.39

(173.13)

10

(10)

4.93

(3.35)

Rock ants (Temnothorax rugutulus) change in foraging conditions 4 1.7 5 0.5 0.7 43.34

(35.71)

4

(4)

2.69

(2.43)

Rock ants (Temnothorax rugutulus) emigration after nest breakdown 4 1.7 25 0.9 0.9 103.93

(86.69)

4

(4)

4

(4)

Bumble bee (Bombus impatiens) 8 1.5 5 0.9 0.75 166.91

(157.39)

8

(8)

4.62

(4.3)

We calculated the time to successful allocation, in the three options of our model, using numerical parameter values that approximate the conditions in

some example cases of task re-allocation in social insects. For each option, we calculate the number of rounds until the entire demand D (consequently, the

entire initial deficit Φ) is satisfied and, in parentheses, the number of rounds until a (1 − �) �Φ fraction of the demand is satisfied. These are not intended to

be exact time estimates; the values for c, δ, and � have not been estimated empirically for any species, nor is it clear how long a ‘round’ precisely should be.

The intent, here, is to check whether task allocation might take a significant amount of time in realistic scenarios (and thus be considered a difficult problem,

and its solutions, i.e. task allocation algorithms, subject to natural selection). These numerical estimates also serve to illustrate how the different parameters

affect the time to successful reallocation in a realistic context of other parameter values.

https://doi.org/10.1371/journal.pcbi.1005904.t004
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choice, surprisingly, the time to re-allocate all workers does not depend on the total deficit (F)

at all. Instead, it depends on the value of �. In particular, the smaller � gets, the more accurately

we need to re-allocate all workers, leading to a longer time to do so, until the same time as for

the exact case is reached (as in the first row in Table 4).

The results in both cases (exact and approximate matching of task demands) are the same

for � = 1/F. This implies that for very large F, � needs to be very small in order to have equal

values in the two rows. Approximate task allocation is achieved faster than precisely accurate

task allocation when F> 1/�.

Finally, for the third option of the choice component, we also study the time to re-allocate

all workers under some noise in the success and choice components. In particular, we assume

the success component can make a limited number of ‘mistakes’ (at most z flipped bits from 0

to 1 and vice versa) and the choice component may return a task with a probability slightly

larger or smaller than we require in option (3) (change the probability of a task being suggested

to a worker by at most a factor of 1 − y). We show that the best the workers can do in re-allo-

cating is to satisfy all but z units of work, and the time to reach such a re-allocation increases as

the range of the probabilities of choice increases.

Numerical results

Here, we choose some sample values for the parameters in the model and calculate numerical

results (Table 4 and Fig 2). The expressions used to generate these values roughly correspond

to the first two rows of the table in Table 3, with the difference that here the values are exact

upper bounds and not asymptotic (big-oh) notation (see S2 Text for how they are calculated).

The most obvious pattern here is that task allocation takes a lot more rounds under option

(1) (workers are not able to assess quickly which tasks need more work) than under options

(2) and (3) for choice. Is task allocation then a ‘difficult’ problem that requires a significant

amount of time? This depends on how long, in real time, a ‘round’ is. If workers require time

Fig 1. Time for workers to re-allocate as a function of c. The three plots indicate the times until workers re-

allocate successfully for options (1), (2), and (3) of the chocie component as a function of c. The x-axis

denotes the value of c, and the y axis denotes the time for workers to re-allocate. For options (1) and (3) the

plotted function is approximately 1/c multiplied by the corresponding time to re-allocate for c = 1. For option

(2), the plotted function is approximately 1/ln c, truncated at the time for workers to re-allocate for c = 1.

https://doi.org/10.1371/journal.pcbi.1005904.g001
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on the order of minutes to choose a task, attempt to perform work in it, and assess whether

they have successfully contributed to the colony with this work, then the results for option (1)

imply that a colony will need one or several hours to correctly match workers to tasks when

the demand for work in the different tasks changes. For the examples given here, that would

imply a definite cost, in terms of not being able to maintain a correct match of workers to the

tasks that need work (since the level of demand for work is likely to change more frequently

than every few hours, or because a lag in matching demand in the realm of hours implies a sig-

nificant cost). If workers only require seconds to assess demand for work across all tasks (e.g.

because task stimuli are volatile pheromones, or global variables like temperature), and can

choose a task based on this information, then the time cost of correct allocation in options (2)

and (3) is likely insignificant. This would imply that a correct allocation can be achieved

quickly, and thus workers should be dynamically and optimally reallocated to changing

demands on a timescale of less than a minute.

Another pattern emerging from these calculations is that under options (2) and (3) for

choice, it is primarily the number of task types (|T|) that affects how fast task allocation pro-

ceeds. Neither the number of extra workers (c) nor the size of the initial work deficit (F) play a

major role; also neither does �, i.e. allowing a small amount of error in allocation does not

decrease the time to successful reallocation in a meaningful way. How accurate are these con-

clusions, given that we are only examining somewhat arbitrarily chosen parameter combina-

tions? Our results in Table 3 give a more complete picture, as do the plots in Fig 2; this table is

only intended as an illustration of the results. However, the parameter values illustrated here

are not entirely arbitrary, but represent best-guesses given empirical data (see Table 4). For

example, many authors have tried to examine the number of task types in social insects, and

our results cover the range generally found (2–30; Table 4).

Discussion

Modeling, in general, can serve different purposes in the scientific process [62, 63]. Our paper

has the goal of examining, first, whether ‘task allocation’, i.e. the process of using a distributed,

self-organized algorithm to dynamically match workers to work, is a difficult problem, and

Fig 2. Time for workers to allocate as a function of c and 1 − δ. The two plots indicate the times until workers re-

allocate successfully for options (1), (2), and (3) of the chocie component as a function of c and 1 − δ respectively, with

specific parameter values assumed (compare the left plot to Fig 1). For both plots, we assume |T| = 4,Φ = 10, and � = 0.

Additionally, for the plot on the left, we assume 1 − δ = 0.99, and for the plot on the right, we assume c = 1. For the plot on

the left, the y-intercept for option (1) (corresponding to c = 1) is approximately 221 (and thus this is also the value for

option 1 at 1 − δ = 0.99 in the right plot.

https://doi.org/10.1371/journal.pcbi.1005904.g002
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second, what factors determine the optimal algorithm to achieve such task allocation. Our

paper thus aims to provide a ‘proof of principle’ sensu [63]: namely, we aim to show under

which factors should be expected, or not expected, to affect the performance of task allocation

mechanisms given certain assumptions. Next, we survey the relevant work on theoretical

modeling and empirical studies of task allocation; then, we discuss our results, and examine

the assumptions we made in the model to achieve them.

Related work

The process of task allocation and its typical outcome, division of labor, have received a lot of

attention in the social insect literature. Empirical studies typically focus on determining the

individual traits or experiences that shape, or at least correlate with, individual task specializa-

tion: e.g. when larger or older individuals are more likely to forage (e.g. [53]) or when interac-

tion rates or positive experience in performing a task affect task choices [32, 64]. Generally the

re-allocation of workers to tasks after changes in the demand for work often needs to happen

on a time scale that is shorter than the production of new workers (which, in bees or ants,

takes weeks or months, [65]), and indeed empirical studies have found that the traits of new

workers do not seem to be modulated by colonies to match the need for work in particular

tasks [66]. Therefore, more recent empirical and most modeling studies focus on finding sim-

ple, local behavior rules that generate individual task specialization (i.e. result in division of

labor at the colony level), while simultaneously also enabling group-level responsiveness to the

changing needs for work in different tasks [35, 67, 68]. For example, in classic papers, Bona-

beau et al. [69] showed theoretically that differing task stimulus response thresholds among

workers enable both task specialization and a flexible group-level response to changing task

needs; and Tofts and others [70, 71] showed that if workers inhabit mutually-avoiding spatial

fidelity zones, and tasks are spread over a work surface, this also enables both task specializa-

tion and flexible response to changing needs for work.

In this paper we examined how well we should expect task allocation to be able to match

actual demands for work, and how this will depend on group size and the number of ‘extra’,

thus inactive, workers. Neither of the modeling studies cited above explicitly considered

whether task allocation is improved or hindered by colony size and inactive workers. In addi-

tion, while several studies find increasing levels of individual specialization in larger groups,

the empirical literature overall does not show a consensus on how task allocation or the pro-

portion of inactive workers is or should be affected by group size (reviewed in [14, 22]).

In general, few studies have cosidered the efficiency of the task allocation process itself, and

how it relates to the algorithm employed [72], often in the context of comparing bio-(ant-)

inspired algorithms to algorithms of an entirely different nature [73, 74]. For example, Pereira

and Gordon, assuming task allocation by social interactions, demonstrate that speed and accu-

racy of task allocation may trade off against each other, mediated by group size, and thus

‘optimal’ allocation of workers to tasks is not achieved [72]. Duarte et al. also find that task

allocation by response thresholds does not achieve optimal allocation, and they also find no

effect of colony size on task allocation performance [75]. Some papers on task allocation in

social insects do not examine how group size per se influences task allocation, but look at fac-

tors such as the potential for selfish worker motives [76], which may be affected by group size,

and which imply that the task allocation algorithm is not shaped by what maximizes collective

outcomes. When interpreting modeling studies on task allocation, it is also important to con-

sider whether the number of inactive workers is an outcome emerging from particular studied

task allocation mechanisms, or whether it is an assumption put into the model to study its

effect on efficiency of task allocation. In our study, we examined how an assumed level of
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‘superfluous’, thus by definition ‘inactive’, workers would affect the efficiency of re-allocating

workers to tasks after demands had changed.

While the above models concern the general situation of several tasks, such as building,

guarding, and brood care, being performed in parallel but independently of one another, sev-

eral published models of task allocation specifically consider the case of task partitioning [77],

defined in the social insect literature as a situation where, in an assembly-line fashion, products

of one task have to be directly passed to workers in the next task, such that a tight integration

of the activity in different tasks is required. This is, for example, the case in wasp nest building,

where water and pulp are collected by different foragers, these then have to be handed to a

construction worker (who mixes the materials and applies them to the nest). Very limited buff-

ering is possible because the materials are not stored externally to the workers, and a construc-

tion worker cannot proceed with its task until it receives a packet of water and pulp. One

would expect different, better-coordinated mechanisms of task allocation to be at work in this

case. In task partitioning situations, a higher level of noise (variation in availability of materi-

als, or in worker success at procuring them) increases the optimal task switching rate as well as

the number of inactive workers, although this might reverse at very high noise levels [78]. Gen-

erally larger groups are expected to experience relatively lower levels of noise [79]. In this line

of reasoning, inactive workers are seen as serving a function as ‘buffer’ (or ‘common stomach’,

as they can hold materials awaiting work) [79, 80]; this implies that as noise or task switching

rate increase, so does the benefit (and optimal number) of inactive workers.

Does task allocation matter?

Is task allocation a difficult problem, and does it matter which algorithm is chosen? If task

allocation is an easy problem, then the match of work to workers can be achieved without sig-

nificant costs. If task allocation is difficult, on the other hand, the choice of task allocation algo-

rithm matters for system performance; in biological systems where this is the case, we would

expect task allocation mechanisms to be under strong selection, and their evolution to reflect

the specific ecological context of the system. In social insect colonies, for example, task alloca-

tion mechanisms appear to differ between species—this could be the case because they are not

under selection, and different species happen to have hit on different, equally good, solutions,

or because they are under selection, and different species have different requirements (e.g.

because they differ in the frequency with which demand for work in different tasks changes).

There is some evidence that even brief mismatches of work to workers, i.e. incorrect task allo-

cation, can be detrimental in certain species (e.g. because brood do not develop well when

briefly not thermoregulated [81]).

Here we estimate the time to correct allocation for several species and contexts (Table 4).

For example, we estimate that when a honey bee colony is attacked by a large predator, and

5000 (±30%) bees should ideally be allocated to defense, the time to achieve this within our

generalized task allocation algorithm would be around 5 − 10 rounds if all bees can directly

sense the need for more defenders (options (2) or (3)), and 700 rounds if they cannot (and

only arrive in the defense task because they randomly tested different tasks in different rounds,

option (1)). Since this particular situation requires a quick collective response, the difference

between option (1) and options (2) or (3) appears meaningful, regardless of whether a ‘round’

takes minutes or seconds to complete. In another example, a change in foraging conditions in

the case of rock ants (Temnothorax) may imply that only five additional workers need to be

allocated to the task of foraging; however, in that system it appears likely that individuals need

on the order of a minute rather than seconds to assess both the state of their environment and

whether their own task performance is successful (in the sense of fulfilling a demand). If that is
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the case, a delay of 40 rounds may also be a meaningful and costly delay to appropriately

exploiting novel food sources, for example. In all cases, the main effect on the difficulty of task

allocation is whether or not individuals can assess the demand across different tasks simulta-

neously (instead of only in the one task they are working on), and what time period a ‘round’

in our model corresponds to (i.e. how long it takes a worker to assess whether its current work

is needed, i.e. whether it is ‘successful’ in the task according to the terms used in our model).

In addition, the costs as presented in Table 4 have to be paid each time the demands for work

in different tasks change, and workers have to be reallocated to match these new demands.

Overall, our calculations show that realistic parameter estimates can lead to potentially mean-

ingful costs of slow task allocation. Our calculations are pretty coarse however, as the precise

values of many of the parameters are not known (however see Table 2 for references on param-

eter estimates). More empirical work in this area would be useful.

Our work also addresses a more general question. Division of labor is widespread in com-

plex systems from developing embryos to human organizations; it implies a degree of individ-

ual specialization, i.e. more or less consistent differences between individuals in the tasks

chosen. Division of labor is often associated with ‘progress’ or ‘increase in complexity’ (e.g.

[17]). All systems with division of labor must implement some algorithm that lets individuals

choose their task. How do these task allocation algorithms evolve, i.e. which external or inter-

nal conditions select for which kinds of mechanism? For example, under which conditions

and in which systems do the best task allocation algorithms produce highly specialized work-

ers, insensitive to small changes in demands across tasks? One might argue that in a system

with highly specialized workers, the cost of allocation mismatch is never more than the average

allocation minus current demands, because the system can make specialized workers in the

correct proportion for the average expected allocation. Any algorithm that allows workers to

be fully generalist, i.e. to freely switch between any tasks, must ensure that the mismatch of

workers to demands is not on average greater than that. Understanding more about why par-

ticular task allocation mechanisms are selected for would thus increase our understanding

about the evolution of specialization and division of labor more generally.

Colony size does not affect ease of task allocation

Does colony size lead to a change in which task allocation algorithms perform well, and does it

lead to selection for specialization? The answers to these questions are not straightforward

(and neither are the empirical results on this [22]). Contrary perhaps to conventional wisdom

in both biology and computer science, we do not find a direct dependence of the time to solve

the task allocation problem on ‘colony size’ or ‘problem size’, if we assume that the total

amount of work scales linearly with the number of workers (c = |A|/D, the number of workers

per work available, is constant across different |A|). This holds even if all work only has to be

satisfied with a certain probability, and if only close to the total needed work has to be satisfied.

This result is perhaps logical because we implemented neither the type of noise that would lead

to a benefit of large numbers (where the relative amount of variation in environments experi-

enced decreases with colony size), nor did we implement any economies of scale (there are no

broadcast signals; we did not model any communication explicitly, and if the task feedback is

thought of as the result of communication, we did not implement any constant costs with col-

ony size). No matter how logical in hindsight however, this was not what we had intuitively

expected nor what is sometimes suggested in the literature [22].

If we find empirically that in some systems the level of specialization or the task allocation

mechanism implemented change with colony size, some factors not modeled here have to be

at play: e.g. fixed costs leading to economies of scale, or non-linear scaling in the effectiveness
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of communication. For example, it may be that the feedback on whether an individual worker

contributes to reducing a deficit depends on social interactions that do not scale linearly with

colony size. This is plausible of course (and has been demonstrated empirically in some cases,

e.g. [50]). Importantly however, it is not obvious that task allocation will perform better at

larger colony sizes in all systems. It is worth noting that even if the time to correct allocation

did change with colony size, this does not make obvious predictions for the evolution of divi-

sion of labor (the degree to which workers should be specialized). If task allocation is difficult

(takes a long time), it may be that colonies abandon the attempt to dynamically reallocate

workers at all, and instead employ specialized, ‘preprogrammed’ workers in proportions of the

average expected demands across tasks.

The amount of work available per worker affects ease of task allocation

We discover that to understand the dependence of task allocation on the number of workers

in the colony (|A|), actually what we really need to know is (D), the total amount of work that

needs to be done. Note that D refers to currently open tasks, thus is not likely to be ‘unlimited’;

in social insects, if nothing else, in the short term, available work will be limited by the queen’s

egg laying rate. This total amount of work available (or necessary) has not been studied explic-

itly either empirically or in models of social insect task allocation, with few exceptions [28]. So,

we do not have a good understanding of how D behaves with |A| intra- or inter-specifically.

Here we have simply assumed that |A|/D is constant, but this may well not generally be so: pre-

vious studies and conceptual papers have suggested either that larger colonies are relatively

less productive, perhaps suggesting that less work is available per worker, or that they are more

productive (because they are capitalizing on some economies of scale) — it is unclear what the

latter would imply for the amount of work per worker available. One interesting new hypothe-

sis here is that the evolution of task allocation across social insects may, in part, be driven by

the factors that limit productivity -– e.g. is the colony raising brood at near the queen’s maxi-

mal egg laying rate? In this case D may increase less than linearly with increasing colony size,

and thus task allocation may become easier, even trivial, at higher colony sizes. Our modeling

study thus suggests a new hypothesis (one for the purposes of modeling more generally, [82]),

by providing the insight that a previously ignored variable impacts the outcome of a well-stud-

ied process.

‘Extra’ workers make task allocation faster

Our results also suggest that c (the ratio of |A|/D, or the number of workers divided by the

amount of work available) matters, and higher c generally leads to faster allocation time. Thus

colonies may benefit from having more workers available than work. This is a novel hypothesis

for the existence of ‘inactive’ workers in social insect colonies and other complex systems [14].

That is, colonies may produce more workers than needed to complete available work simply in

order to speed up the process of (re-)allocating workers to work, and thus potentially reducing

costs of temporary mismatches of workers with needed work. In other words, inactive, ‘sur-

plus’ workers in colonies may increase colony flexibility and how close colonies get to an

‘optimal’ task allocation in environments where task demands often change and workers fre-

quently have to be reallocated. The benefit of extra workers (higher c) does not depend on

colony size (|A|), thus we would expect both large and small colonies to have as many extra

workers as they can afford. Although the dependence on c varies with task allocation algorithm

(it is least strong in option (2)), higher c is always beneficial.

Apparently inactive workers are common in social insect colonies. While these workers

may be selfish [40, 41] or immature [42], or temporarily unemployed due to fluctuating total
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demand [14], our work here thus implies that they may also be present simply to improve task

allocation. That is, colonies may produce extra workers such that some workers are ‘unem-

ployed’ at all times on average, but so that the time to correct reallocation of workers when

demands across tasks change is minimal. This is a novel hypothesis for the function of inactive

workers in complex systems more generally.

The number of task types matters

It is intuitive that task allocation may be more difficult if workers have to choose among many

different possible tasks to perform (high |T|). However, we show that the effects of |T| are

mixed and depend both on the information available to workers and the actual combination

of parameter values, particularly on the size of |T|. Specifically, in the parameter ranges we

explored numerically (based on empirically plausible parameter values), the time to correctly

allocated workers to tasks depends linearly on the number of task types for options (1) and

(2), and not at all for option (3). In option (1), where workers effectively have to ‘test’ tasks

sequentially to discover where work is needed (because they only find out through the success
mechanism), |T| always enters into performance as a linear factor. This would be the case for

example if workers have to walk to different locations in the nest, or if they have to invest some

other significant effort into assessing demand for each specific task. In options (2) and (3),

workers can effectively assess demand across all tasks in parallel; this may be the case if task

demand is communicated through global stimuli, such as temperature or volatile pheromone

levels. In such a case, the number of task types matters only if it is lower than the second term

in the minimum function (for example, see Corollary C.6 in S2 Text). Thus, whether the num-

ber of task types affects task allocation performance depends on the context of other parameter

values.

What do we know about |T| empirically? Several authors have attempted to quantify this

number (see Table 2). However, empirically studies have often acknowledged that what are

‘separate tasks’ and what are just elements of the same task is difficult to define, and that this

may lead to number estimates that are quite subjective. In our model, workers within the same

task are assumed to immediately (within one round) correctly distribute the work among

themselves, whereas the demand for work in a different task is only assessed via the choice and

success feedback mechanisms as defined above. So, one may think, for example, of each item to

be worked on as a ‘task’ (e.g. each larva that needs tending and feeding, or each breach in the

wall), in which case |T| might be a quite large number; or one may think that all larvae are

part of the single task of brood care, and all places in the wall that need repair are part of the

task of nest building, in which case |T| is likely to be a small number (perhaps below 20, or

even below 10). Which is the more appropriate way of counting tasks, in the context of our

model, depends on whether, for example, each ant worker dedicated to brood care will be able

to immediately assess which particular larvae need care, not loosing time in arriving at a con-

sensus with other brood care workers about who is tending to which exact brood item, or alter-

natively where each brood care worker can jointly and concurrently contribute to the work in

that task without internal coordination required at the timescale of overall task allocation.

Assumptions made in our approach

The results presented in this paper were derived using methods from the field of theoretical

distributed computing. The problems considered in this field are very similar to those that are

relevant in the biological study of distributed systems—and almost all biological units, from

cells with their metabolic and molecular networks to ecosystems, are really distributed systems.

We believe that the techniques and results from theoretical distributed computing may lead to
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many novel approaches and insights in biology in the future, and interdisciplinary work in this

area is increasing [29, 46, 47, 83, 84]. In particular, research in theoretical distributed comput-

ing has examined the limitations of distributed algorithms, for example in such contexts as dis-

tributed task allocation as we study here.

Generally, this field analytically derives results about models that often assume stochastic

individual behavior, and in particular quantifies system-level performance given specific indi-

vidual algorithms (i.e. behavioral rules). Here, we have analyzed how our model, a generalized

form of an insect-inspired task allocation algorithm, performs in terms of how long it takes

to correctly allocate workers to different task types which need work. We have allowed for

approximate solutions, by looking at the time to allocating workers correctly only with a cer-

tain minimum probability (1 − δ), and only to within � of the best allocation. We have also

allowed for errors in the demand assessment function, e.g. if workers make mistakes when

assessing whether they are needed in a particular task. We have made the assumption that the

relevant measure of how well a task allocation mechanism performs is related to the time to

correct allocation, that is the time until workers are matched to tasks that need work. Other

performance measures are possible, such as assessing how quickly the task-worker match

approaches an ideal allocation, or how good the match can ever get; or entirely different

parameters may be under selection, such as how much workers have to switch tasks [38], how

well workers prioritize more important tasks over unimportant ones, or how much informa-

tion workers need to collect in order to allocate correctly.

Second, our approach makes another assumption about how the performance of a task allo-

cation mechanism is measured: we only quantify this performance for the worst-case inputs,

namely the configuration of task deficits (i.e. the distribution of unfulfilled demands across

tasks) that leads to the longest possible time to re-allocate. Thus, while stochasticity in worker

decisions and information is taken into account and expected results derived, we do not make

any assumptions about what configuration of task deficits workers are likely to encounter. If

this was known, more precise expectations for performance could be derived. In distributed

computing theory, there is a general assumption that such a worst-case scenario (generally

called the upper bound of performance) is a good measure of algorithm performance; however

it does not need to be close to the overall expected case.

Finally, we make the crucial assumption that all workers are identical in preferences and

skills. Thus, our model represents a system of flexible, homogeneous workers. If workers ran-

domly differed in their ability to perform different tasks, matching them optimally to tasks

with changing demands for work becomes an extremely hard problem [12]. On the other

hand, worker skills in a task may be linked to their preferences for that task, either because

these are innately linked, or because workers learn to prefer the tasks they do well, or learn

to do the tasks well they prefer [85]. How much the dynamic (re-)allocation of workers in

response to changing demands in different tasks is affected by such worker heterogeneity

remains to be analyzed.

Conclusion

We mathematically derived how the time it takes to correctly allocate workers to work is

affected by several factors, such as colony size and the number of ‘extra’ workers. We make

only minimal assumptions about the algorithm used, and we explore several ways of measur-

ing performance of task allocation, which means these relationships should hold fairly gener-

ally. Our model brings several insights. First, costs or benefits of group size do not arise in task

allocation ‘automatically’, that is from minimal assumptions such as ours. Second, such a result

clarifies our thinking and suggests how, for example, colony-size-dependencies may occur
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(e.g. if information on work deficits is communicated faster in larger colonies), thus guiding

future research as well as identifying which variables qualitatively affect system behavior. One

such variable is the amount of work available; this has not been considered in previous empiri-

cal studies but appears to be a crucial factor affecting the evolution of task allocation algo-

rithms [28]. Third, the model results have generated a novel hypothesis for the existence of

inactive workers in social insect colonies [14], namely that they may serve to speed up the task

allocation process. It now can be studied whether this may be the reason for their evolution.

All of these results are derived analytically, using approaches from theoretical distributed com-

puting, without the need for parameter estimation such as would be necessary in a simulation

study. In summary, our ‘proof of concept’ model sensu [63] helps to identify how limitations

and processes at the individual level can affect group level processes in a distributed system.

Supporting information

S1 Text. Formal definitions. We provide mathematically rigorous definitions of our task allo-

cation model.

(PDF)

S2 Text. Full proofs. We provide full formal proofs of the mathematical statements in the

Results section.

(PDF)
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