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Different emerging viral infections may emerge in different regions of the world and pose a
global pandemic threat with high fatality. Clarification of the immunopathogenesis of
different emerging viral infections can provide a plan for the crisis management and
prevention of emerging infections. This perspective article describes how an emerging
viral infection evolves from microbial mutation, zoonotic and/or vector-borne transmission
that progresses to a fatal infection due to overt viremia, tissue-specific cytotropic damage
or/and immunopathology. We classified immunopathogenesis of common emerging viral
infections into 4 categories: 1) deficient immunity with disseminated viremia (e.g., Ebola);
2) pneumocytotropism with/without later hyperinflammation (e.g., COVID-19);
3) augmented immunopathology (e.g., Hanta); and 4) antibody-dependent
enhancement of infection with altered immunity (e.g., Dengue). A practical guide to
early blocking of viral evasion, limiting viral load and identifying the fatal mechanism of
an emerging viral infection is provided to prevent and reduce the transmission, and to do
rapid diagnoses followed by the early treatment of virus neutralization for reduction of
morbidity and mortality of an emerging viral infection such as COVID-19.

Keywords: emerging viral infections, immunopathogenesis, evasion, fatality, prevention, early diagnosis,
early treatment
INTRODUCTION

Whether an RNA virus causes an endemic, epidemic, or pandemic is determined by the interactions
among microorganism, host immunity, and environment. “Death or Survival” in an emerging viral
infection depends largely on host immune responses because some patients are succumbed to death
but most of the patients survive from the emerging infection. It is necessary to clarify varied
immunopathogenesis of different emerging viral infections to prevent infection, morbidities, and
mortality. Based on literature and our experiences with different emerging viral infections including
enterovirus 71 encephalitis, dengue hemorrhagic fever, severe acute respiratory syndrome
coronavirus-1 (SARS-CoV-1), novel influenza A(H1N1), and SARS-CoV-2 in the past 2 decades,
this perspective article describes the evasion and evolution of an emerging infection among different
aspects of RNA virus, environment and host, including microbial evasion and evolution (mutation,
deletion, and recombination), changes of ecosystems (season, climate, and urbanization), host
susceptibility, and herd immunity. “Know thyself and thy adversary to win a hundred battles”, each
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emerging viral infection requires individualized strategies to
p r e v en t i n f e c t i on and to a vo i d po s t - i n f e c t i ou s
immunopathology and fatality. A series of stepwise practical
guides to infection and immunity controls are provided to
prevent evasion, morbidity, and fatality of emerging
viral infections.
EVOLUTION OF AN EMERGING
INFECTION ON AN IMBALANCE
BETWEEN INFECTION AND IMMUNITY

An emerging infection is usually caused by the naive immunity
of human beings encountering a novel pathogen arising from
microbial mutation, vector-borne, or/and zoonotic transmission
(Table 1) (1–12). Most of the common emerging infections are
mediated by RNA viruses, which pose a higher rate of genetic
mutation, sequence deletion, recombination, and reassortment
of RNA virus codes (1, 13). As shown in Table 1, severe acute
respiratory syndrome (SARS), avian flu, swine flu, and
enterovirus 71 (EV71) are known to emerge from sequence
mutation, deletion, recombination, and/or reassortment of
RNA segments (1–6). Vector-borne diseases such as yellow
fever, dengue hemorrhagic fever, and West Nile virus
encephalitis are transmitted by mosquitos (Table 1) and
affected by weather, global warming, and herd immunity (5–9).
Zoonotic diseases such as Ebola, Lassa, and Hantavirus
infections are affected by culture, movement of animals, and
exploitation of forests (8–12).
IMMUNE EVASION OF RNA VIRUSES

Mutations of RNA Viruses
Many emerging infections are caused by single-stranded RNA
viruses. RNA viruses pose a higher mutation rate because its
RNA-dependent polymerases usually lack a 3’-exonuclease that
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is present in DNA-dependent polymerases to provide
proofreading ability for the genome stability during replication.
RNA polymerases can produce one mutation over 10,000
replications (1, 13) and DNA viruses can produce only one
mutation in 106 ~ 108 replications (14). The higher mutation
rates of RNA viruses pose challenges to many emerging
infections in human beings. For instance, influenza viruses,
which are single-stranded negative RNA viruses, frequently
have a nucleotide mutation causing an antigen drift
responsible for periodic seasonal flu within the same host
species (15). Similarly, EV71, which is a single-stranded
positive RNA virus reveals varied genomic sequences in the
isolates with different phenotypes (16). In an animal model,
point mutations in different regions of EV71 have been
attributed to different tissue tropism and fatality (17). Human
severe acute respiratory syndrome coronavirus (SARS-CoV-1)
caused an epidemic in Asia in 2003. SARS-CoV-1 virus mutation
was estimated to be low at 0.1 per genome, similar to common
single-stranded RNA viruses (18). However, SARS-CoV-2
appears to have an average of 7.23 mutations per sample (19).
Single nucleotide transitions have been recognized as the major
mutation of SARS-CoV-2 worldwide (19–23). The SARS-CoV-2
variant B.1.1.7 with mutation of N501Y and P681H reported
from United Kingdom showed a 61% more virulence, and the
variant B.1.617 with point mutations of E484Q, L452R and
P681R from India revealed a 160% higher transmission rate
(Ro > 5.0) (20, 21). More importantly, the variant B.1.351 with
mutations of N501Y, K417N, and E484K from South Africa
tended to cause breakthrough of COVID-19 vaccines showing a
significant reduction in neutralization of antibodies raised by
different vaccines (22, 23), potentially contributing to
re-infection after natural infection or vaccination.

Genetic Reassortment of RNA Viruses in a
Cross-Species Influenza Outbreak
It is believed that the 1918 Pandemic Spanish flu that killed
millions of people originated from the reassortment of
cross-species virus genetic segments among avian, swine,
TABLE 1 | Evolution of the outbreaks of common emerging infections.

Emerging infections Genetic changes Vector-borne Reservoir

Mutation
Avian flu Mutation Birds/Ducks
Swine flu Reassortment Birds/Pigs
SARS-CoV-1 Deletion/recombinations Civet cats/Bats
SARS-CoV-2 Mutation/recombinations Pengolin/Bats
Enterovirus 71+ Mutation
Vector-borne
West Nile virus+ – Mosquito Birds
Dengue fever – Mosquito –

Yellow fever – Mosquito –

Zika fever – Mosquito –

Zoonotic
Ebola – – Vertebrates
Lassa – – Rodents
Hantavirus – – Rodents
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horse, and humans (24). Flu viruses from different host animals
recognize different sugar residues on respiratory and/or
gastrointestinal epithelium. For instance, avian flu viruses
recognize sialic acid alpha 2,3 galactose as a receptor and
human flu viruses recognize sialic acid alpha 2,6 galactose as a
receptor. A mutation or RNA segment reassortment of avian flu
virus codes can change its hemagglutinin and recognize sialic
acid alpha 2,6 galactose, thus expanding its host range to humans
(25). Avian influenza uses segment reassortment of the genome
to promote its cell surface binding, expand its host ranges and
pose an epidemic or pandemic threat (26). These studies
supported the cross-species adaptation of flu viruses through a
series of reassortment events in mammals over a period of years
before a pandemic outbreak (24–26), suggesting continual
surveillance strategies for detection of flu viruses with cross-
species genetic codes may alert to pandemics in advance.

Nucleotide Deletion or Recombination of
RNA Viruses
Coronavirus, which possesses a 3’-exonulcease to maintain a
relative larger RNA genome, uses recombination and deletion to
expand to and adapt in human beings (27–29). The SARS-CoV-1
likely originated in civet cats and raccoon dogs, with precursor
SARS-like viruses potentially circulating in live-animal markets,
and later transmitted to and adapted in humans by certain
nucleotide sequence deletion (30). SARS-CoV-2 is also believed
to have jumped from bats to pangolins and humans via a
recombination of the genome in the cell binding region of
spike glycoprotein (31, 32). Similarly, MERS-CoV jumped
from bats to camels and humans through a series of
recombinations among coronaviruses of bats, civet cats, and
camels (33). Deletion of certain nucleotides in the open reading
frame 8 (ORF8) has been found in SARS-CoV-2 isolates, which
potentially contribute to milder infections in humans (34).
Another pattern of gene deletion involved in the emerging
infection of a zoonotic disease are the vaccinia-like viruses
Aracatuba and Cantagalo viruses, which have been isolated
from diary workers and cattle (35). The viruses have a 99%
homology to the vaccinia virus but show an 18-nucleotide
deletion in the A56R hemagglutinin gene (35, 36).
CHANGES OF ECOSYSTEMS: SEASON,
CLIMATE, AND URBANIZATION

In addition to virus mutation, temperature and humidity are
known to affect human-human transmission of emerging
infections. Aerosol, droplet and vector-born transmissions are
affected by extreme climate changes and global transportation,
and zoonotic infections are affected by urbanization, moving of
animals, and exploitation of forests.

Seasonal Weather Influences
Aerosol Transmission
Human seasonal influenza is usually prevalent during the winter
season in which lower temperature and humidity enhance
Frontiers in Immunology | www.frontiersin.org 3
droplet and aerosol transmission. Enteroviruses are prone to
outbreaks during the summer season when higher humidity
enhances oral-fecal route transmission. An experimental study
showed that higher temperatures and humidity block droplet
and aerosol routes of influenza transmission but not close
contact transmission (37). In contrast to seasonal patterns of
influenza and enterovirus infection, the SARS-CoV-2 pandemic
widely spread to over 180 countries in both hemispheres at the
same time, suggesting that this pandemic could be related to a
micro-organism that is relatively insensitive to warmer
temperature and/or humidity, and can survive for a longer
time on fomites, such as surfaces of handles and/or handrails.
The fact that mandated face-covering, and regional or national
lockdowns, even in a region of SARS-CoV-2 variant with a high
reproduction number, accounts for the significantly reduced
number of infections in different countries, suggests aerosol
transmission as the dominant route for the SARS-CoV-2
infection (21, 38).

Climate Changes and Global
Transportation Enhance Vector-Borne
Diseases
Warming temperatures and precipitation (humidity) may
decrease aerosol transmission of influenza infections, but
increase mosquito-borne diseases, such as Dengue fever (DF),
Zika fever, Yellow fever, and Chikungunya infections which
have emerged in Western and Eastern countries (39). Global
transportation and urbanization may also enhance mosquito-
transmitted emerging infections. These emerging RNA viruses
are primarily transmitted by the mosquito Aedes aegypti, which
originated in Africa and breeds in fresh water such as tree holes
or standing water, and is now responsible for outbreaks of urban
Yellow fever, dengue, and Zika fever, following the movement of
larva or eggs of Ae. aegypti through slave trade from Africa to
the New World (39–41). The relatively cold-hardy Ae.
albopictus has moved even further north with global warming
(40, 41). More than 100 countries in Africa, the Americas, the
Eastern Mediterranean, South-East Asia and theWestern Pacific
are seriously affected by DF, with Asia representing
approximately 70% of the global burden (42). Dengue fever,
caused by 4 different serotypes, used to present a benign febrile
illness for a century until the 1950s when a severe form of
dengue called dengue hemorrhagic fever (DHF) and dengue
shock syndrome (DSS) was reported in the Philippines (41).
DHF/DSS spread to South America in 1981 and currently
threatens countries in East Asia and South America (42). The
reasons for the transition of benign DF to life-threatening DFH/
DSS may be related to vector adaptation, climate change
(warming and precipitation), and/or prevalence of heterotypic
serotype infections (43). Like dengue, Zika virus with a mutation
of NS1, transmitted by Ae. aegypti, has spread worldwide with a
recent introduction from African and Asian lineages to the
Americas (44). Zika virus causes intrauterine infection,
especially in the first trimester, which can lead to congenital
anomalies, particularly microcephaly, intrauterine growth
restriction, and eye diseases (45).
July 2021 | Volume 12 | Article 690976
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Urbanization and Environmental Changes
Enhance Zoonotic Infections
Transition of jungle Yellow fever to endemic and epidemic urban
Yellow fever is largely due to environmental changes, particularly
industrialization and urbanization which enhance contacts between
humans and the virus vectors in forests, as well as contacts between
humans and urban virus vectors after urbanization (46). Although an
effective live attenuated vaccine is available for Yellow fever, recent
outbreaks in Africa and South America, where urbanization has
promoted the Yellow fever virus to circulate from a jungle cycle
(jungle mosquito-nonhuman primate) into an urban cycle (human-
urban mosquito, Ae. aegypti), pose a risk to an estimated 400-500
millionunvaccinatedpeople living inat-riskareas (47).WestNilevirus
(WNV) is transmittedbetweenavianhosts.Thevirus is transmittedby
Culex spp.mosquitos thatare infected fromfeedingonbirds.Thevirus
has however, expanded its geographic range fromAfrica, Europe, and
theMid-East to theAmericas throughglobal commerceandecological
changes (48). West Nile virus is not transmitted by a human-to-
human or human-to-mosquito transmission, but rather by bird-to-
mosquito-to-human transmission inwhich humans are the dead-end
host; most of the infections are subclinical, but some can develop into
severe neurological diseases, including fatal encephalitis and
meningitis, particularly in older or immunocompromised patients
(49). The spread of WNV north to Canada and south to Argentina
indicates the growing burden of WNV in the world (50). A similar
situationalsooccurs in Japaneseencephalitis virus (JEV) transmission.
JEV is an emerging flavivirus infection, transmitted by Culex spp.
mosquitos in theAsia-Pacific region (51). JEVwas initially reported in
Africa and is now prevalent in the Asia-pacific region. Recently, both
Aedes and Culex spp. have been shown to carry JEV in Europe (52),
posing a great concern over its further spread in Northern
Hemisphere countries.

Moreover, increased precipitation is associated with prevalence
of Hantavirus hemorrhagic fever. Hantavirus hemorrhagic fever is
transmitted by secretions of rodents and does not cause human-
human transmission. The virus is found in urine and body
secretion of rodents in large quantities and causes infection in
humans by aerosol transmission. Hantavirus infection can lead to
massive vascular damage causing “hemorrhagic fever with renal
syndrome” (HFRS). HFRS was initially reported in Korea in 1950s
and is now prevalent in China and Europe (53–55). The other
hemorrhagic fever called “hantavirus cardio-pulmonary
syndrome” (HCPS) is prevalent in the New World in North and
South America (56). Recently certain overlapping hemorrhagic
manifestations between HFRS and HCPS are increasingly
observed (55). The HFRS has a relatively low fatality rate at
about 1-3%, and the HCPS has a higher fatality rate of about
15-45%, depending on different outbreaks (53–56).
HERD IMMUNITY AND SUSCEPTIBILITY
OF HOST VARIANTS

Herd Immunity
Herd immunity is another key factor that determines the
endemic or epidemic spread of an emerging infection.
Frontiers in Immunology | www.frontiersin.org 4
Seasonal flu is usually involved in a community where less
than 10% of the population has immunity to a mutant
influenza virus. Each year, human seasonal flu emerges with
a certain serotype of a mutant with antigen drift resulting in an
endemic or epidemic depending on herd immunity and
immunization coverage. The seasonal flu, whether endemic
or epidemic, usually occurs in autumn and winter when
humans live in an atmosphere with a closer social distance,
and lower temperature and humidity. The flu epidemic can be
limited by herd immunity and/or mass vaccination that is
selected and prepared from the emergence of seasonal
influenza in the previous years. This is an example of the
balance between virus mutation and herd immunity (57). A
seasonal flu usually has a reproduction number (Ro) about
1.2~1.3, which can be controlled by herd immunity or
vaccination if coverage is over 25% of the population (1 - 1/
Ro = 1 - 1/1.3 = 25%). A flu pandemic is different and is usually
caused by a series of antigenic reassortments (shifts) among
cross-species flu viruses, which is novel to a population
without immunity and causes a potential pandemic and fatal
transmission. A novel cross-species flu virus usually causes a
pandemic involving about 30-50% of the population in the
initial years because almost all humans are susceptible to the
novel influenza virus (58). This pandemic could re-emerge
after a period of several years or decades; approximately 36
years (58), depending on the evolution and adaptation of a
cross-species flu virus among avian, swine, and human hosts,
and on the control of school closures, vaccination, facemask
use, and isolation (59, 60). Another hypothesis for pandemic
re-emergence is related to introduction of a dominant flu
subtype virus into a population where the kinetic balance
between virus virulence and human immunity is broken.
Once a novel strain of flu virus can cause human-human
transmission, it usually has a Ro value around 1.8 in the first
wave of the epidemic and an attack rate of 10-30%. Second
and/or 3rd waves will follow until herd immunity of over 60% is
reached (60). The novel strain virus eventually transforms into
a dominant subtype of the influenza epidemic and affects most
of the population, particularly children who become infected
with the pandemic strain over several years. This will confer
some level of protection to older individuals and protect them
from morbidity and mortality of influenza until the next
pandemic (60). In a simulation model, the Ro of a novel
influenza virus transmission among human-human transmission
is around 1.3~1.8 (61), and that of the SARS-CoV-2 is around 2.3
(62), respectively. To control the pandemic requires infection or
immunization rates of 33% (1 – 1/1.5) and 57% (1 – 1/2.3),
respectively, based on the equation, 1 - 1/Ro, to cease the
pandemic (63). Although a number of SARS-CoV-2 vaccines
have been shown effectiveness on controlling the outbreaks with
different SARS-CoV-2 variants, certain variants cause higher
virulence, higher reproduction number, and/or breakthrough of
COVID-19 vaccines (20–23), potentially contributing to
re-infection after natural infection or vaccination. Whether the
novel SARS-CoV-2 pandemic might also cause periodic waves of
epidemics remains a great concern (64).
July 2021 | Volume 12 | Article 690976
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Genetic Polymorphisms Associated With
Infectivity and Immunopathology
Genetic polymorphisms of immunity genes and virus receptors
also affect infectivity and fatality of an emerging infection.
Polymorphisms of CCR5, CCR2, CX3CR1, and SDF1 have
been shown to influence HIV susceptibility and treatment
responses (65). Polymorphisms of human leukocyte antigen
(HLA), MBL2, CD209, and vitamin D receptor genes were
associated with development of TB in HIV patients (66). We
have found that a combination of TGFb and CTLA-4 genotypes
was significantly associated with the susceptibility to DHF (67).
We (68) and others (69) have shown that a promoter
polymorphism of CD209, a C-type lectin, was significantly
associated with DHF. Recently, we found that the L-SIGN
(CD299) polymorphism at the neck region of 9-tandem
repeats was associated with susceptibility to DHF and
correlated to virus replication and immune response
(unpublished data). Similarly, the nine-repeat of CD299
isoform was associated with increased HIV viral load and HIV
sexual transmission (70). ACE2 is a receptor for SARS-CoV-1
and SARS-CoV-2 infection, but the polymorphism of ACE2 was
not associated with severity of infection (71). In contrast,
glycosylation of Spike antigen is critically involved in
recognition and binding of coronavirus (72) and affects
binding affinity of host antibodies (73). TLR7 genetic variants
cause predisposition to severe COVID-19 infections (74).
Genetic variants in IL6R, TLR3, and DC-SIGN genes were
associated with susceptibility and/or severity of DF (75).
Genetic polymorphisms of DC-SIGN, TLR3 and TNF-a genes
are also risk factors for the susceptibility and disease progression
of Chikungunya infection (76). Interferon-inducible
transmembrane protein 3 (IFITM3) gene is associated with
susceptibility to severe influenza (77), and the variant with
higher TMPRSS2 expression confers a higher risk to
susceptibility of human A(H7N9) influenza and severity of A
(H1N1)09 influenza (78). Ran Binding Protein 2 (RANBP2) gene
mutations increase the susceptibility to recurrent episodes of
necrotizing encephalitis with respiratory viral infections,
particularly influenza infection (79).

Culture, Occupation, and Social Events
Culture, occupation, and socioeconomic status also affect the
spread of emerging infections. A patient with hemorrhagic fever
and symptoms of bloody diarrhea, bleeding gums and skin,
hemorrhagic eyes or urine, should be traced back to the
suspected contact of Ebola virus or Marburg virus through a
dead or sick animal (for Ebola virus) or a mine or cave with bat
colonies (for Marburg virus) (80). Ebola and Marburg
hemorrhagic fevers usually begin as an exposure to affected
animals followed by human-human transmission (80).
Travelers who visit the endemic area of Africa may spread the
filoviruses worldwide (81). Health caregivers or people in
diagnostic laboratories who come into contact with tissue fluid
samples may become infected through human-human
transmission of Ebola virus because the virus shedding time in
tissue fluids can persist for 30 to 60 days (82). Ebola outbreaks
Frontiers in Immunology | www.frontiersin.org 5
are also related to cultural funeral ceremonies, including washing
and touching the corpse and close contact during funeral
ceremonies (83). Another cultural issue that influences
emerging infections is wet markets in Asia. SARS coronaviruses
and avian influenza viruses can be identified in live poultry
markets (84), posing a need for virological and serological
monitoring of viruses and hosts in live poultry markets which
are still popular in Asian countries.
CLASSIFICATION OF
IMMUNOPATHOGENESIS OF DIFFERENT
EMERGING INFECTIONS

An emerging infection can rapidly lead to a pandemic with
high fatality rates. Each individual emerging infection has its
unique pattern of infectivity related to virus-host interactions
underlying ligation of pathogen-associated molecular pattern
(PAMP) to pattern recognition receptor (PRR) for the
signaling of immune responses toward proper defense or
morbidity. It is always debatable whether the high fatality of an
emerging infection is related to viral virulence, immune
deficiency, or immunopathology.

We studied immune responses to enterovirus 71 (EV71) (85–88),
dengue (67, 68, 89–96), SARS-CoV-1 (30, 97–100), and influenza
A (H1N1) 2009 infections (101–104) employing a real time
simultaneous detection of viral load and immune responses
(Figure 1). A TaqMan qRT-PCR was used to replace classical
time-consuming plaque-forming unit assay of viral load, and cell
cytometers were used to measure quantity and quality of leukocyte
counts and activation. Based upon our studies and others’ studies, we
have classified common immunopathogeneses of different emerging
infections into 4 categories in Table 2: 1) Deficient immunity
with disseminated viremia; 2) Pneumocytotropism with/without
later hyperinflammation; 3) Augmented immunopathology;
and 4) Antibody-dependent enhancement of infection with
altered immunity.

Deficient Immunity With Disseminated
Viremia
Emerging infections that fit into this category include Ebola, Lassa
fever,West Nile virus (WNV) encephalitis, and EV71 encephalitis
(Table 2). A study with Ebola and Lassa viruses showed that
Ebola and Lassa virus infection could compromise monocyte-
derived dendritic cell function resulting in impaired adaptive
immunity (105). Patients with fatal Ebola infection tended to have
an impaired humoral response associated with 100% detectable
viremia (106, 107). Lassa fever with fatal outcome was related to
impaired T cell reaction associated with overt viremia and
disseminated vascular insults (108, 109). For WNV encephalitis,
the virus tended to infect immunocompromised hosts, especially
those with B cell defect, causing higher mortality (110).

Our study on the immunopathogenesis of EV71 encephalitis
also demonstrated that younger children with impaired T cell
activation of CD40L were associated with EV71 infection
complicated by encephalitis (85). Patients with EV71
July 2021 | Volume 12 | Article 690976
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encephalitis tended to have higher IL-8 and IL-2 levels than those
without (86). Patients with encephalitis associated with
neurogenic pulmonary syndrome had augmented IL-6 and
TNFa levels in their blood (87). Further studies showed
Frontiers in Immunology | www.frontiersin.org 6
sialylated glycans as a receptor and inhibitor of EV71 infection
to DLD-1 intestinal cells (88). The blood viral load in EV71
encephalitis patients was significantly higher than in those
without encephalitis (Figure 2A). In contrast, the blood viral
TABLE 2 | Mechanisms of different emerging infections.

Diseases Immunity Tissue response

Regional Systemic

Mechanism 1: Defective immunity with systemic dissemination
Ebola B cell defect Hemorrhage Shock
Lassa T cell defect Hemorrhage Shock
Enterovirus 71 T cell defect Neurotropism Brain-pulmonary Syndrome
WNV B cell defect Neurotropism Encephalitis
Mechanism 2: Pneumocytotropism with/without hyperinflammation
SARS-CoV-1 Proinflammation Pneumocytotropism ARDS
Swine flu Immunosuppression Pneumocytotropism ARDS
SARS-CoV-2 Proinflammation Pneumocytotropism Hyperinflammation
Mechanism 3: Augmented immunopathology
Hantavirus Augmented inflammation Renal/lung damage Shock/ARDS
Avian Flu Augmented inflammation ARDS Hemophagocytosis
Mechanism 4: Immune cross-enhancement of infection with altered immunity
Dengue Antibody-dependent Hemorrhage Shock
Ross River virus Antibody-dependent Rashes Polyarthritis
July 2021 |
Abbreviations used: WNV, West Nile virus; ARDS, acute respiratory distress syndrome; SARS, severe acute respiratory syndrome.
A C

B

FIGURE 1 | A model on simultaneous measurement of viral load and immune responses in an emerging infectious disease such as dengue fever. The study model
presented is derived from our previous publication (Yeh, et al. FEMS Immunol Med Microbiol. 2006;48 (1):84-90). (A) A TaqMan qRT-PCR is used to replace
classical time-consuming plaque-forming unit assay of viral load (B). The limit of detection (LOD) is 14 copies of the dengue 2 virus while cutting off the PCR cycle at
35, and the LOD is 1.4 copies of the dengue virus while cutting off the PCR cycle at 40. (C) A flow cytometric assay is used to gate different populations of
leukocytes (neutrophil, monocyte and lymphocyte) for the activation assay such as ERK activation in lymphocytes as indicated.
Volume 12 | Article 690976
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load in patients with dengue hemorrhagic fever (DHF) was not
significantly different from patients with dengue fever (Figure
2B). Taken together, the severity of Ebola, Lassa fever, West Nile
encephalitis and EV71 encephalitis is correlated to immune
deficiency with disseminated viremia. Detection of definite
impaired immunity and/or viremia in these infections alerts to
the seriousness and calls for emergent medical assistance.

Pneumocytotropism With/Without
Later Hyperinflammation
Emerging infections fit into this category include SARS-CoV-1,
SARS-CoV-2, and swine influenza A(H1N1)2009 which bind and
fuse into the cells of respiratory tract and cause proinflammatory
reaction in the lungs, called pneumocytotropism (Table 2).
SARS-CoV-1 and SARS-CoV-2 are believed to infect the
human respiratory tract by binding to angiotensin-converting
enzyme 2 (ACE2) (111), and influenza A virus recognizes sialic
acid alpha 2,6 galactose on respiratory epithelial cells as a receptor
(23). The viruses enter the lung epithelial cells and induce
innate immunity with production of interferons which limit
viral replication before adaptive immunity. In different
virus-host interactions, the virulent antigen(s) of the viruses
(112), or host genetic variants (74–78), could impair the
innate immune response and cause proinflammation or
immunosuppression, followed by altered hyperinflammation
with skewed Th17 reaction (113, 114). The viral RNA of SARS-
CoV-1 and SARS-CoV-2 cannot only be detected in respiratory
secretions but also in urine, feces, tears, and blood (115, 116).
Virus shedding is not apparent during the incubation period in
SARS-CoV-1 but can persist for 15-20 days after illness onset
(115). However, virus shedding of SARS-CoV-2 virus is found in
nasopharyngeal swabs before symptom onset and can persist for
at least 3 weeks (116). The RNA virus was found in blood and
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urine of SARS-CoV-2 patients, but the urine or blood samples
never yielded the virus from culture (116). In SARS-CoV-2
infections, the predominant pattern of lung lesions in autopsy
is ARDS, similar to the findings in other two coronavirus,
SARS-CoV-1 and MERS-CoV, showing capillary congestion,
hyaline membrane, interstitial edema, pneumocyte hyperplasia
and platelet-fibrin thrombi, associated with infiltration of
macrophages in alveolar lumens, and lymphocytes (117, 118).
Electron microscopy revealed viral particles in cytoplasmic
vacuoles of pneumocytes. Pathogenesis of the deaths in
cardiopulmonary events of COVID-19 patients are not due to
pneumonia with ARDS at all, but some sort of thrombosis or
disseminated intravascular coagulopathy (DIC) which occurred
before death (119). Patients with severe COVID-19 have a
hyperinflammation with higher plasma IL-2, IL-7, IL-10,
G-SCF, IP-10, MCP-1, MIP1A, and TNFa levels, particularly
in elders showing “inflamed-aging” (120). Elders with
SARS-CoV-1 or SARS-CoV-2 infections had a higher mortality
in an age-dependent correlation, and in an association with
co-morbidities (121–123).

We found that one-third of SARS patients had detectable
blood SARS-CoV-1 RNA, although the viremia was unlikely
related to the outcome of the disease (97). Patients with
SARS-CoV-1 infection had a significant higher IL-8 level
associated with augmented phosphorylated p38 expression of
CD14 cells and depressed phosphorylated p38 expression of CD8
T cells in early stage (<7 days) but higher IL-2 levels in late stage
(>7 days) (97, 98). One of the 15 SARS patients studied had a late
exacerbation of ARDS with a surge of p-ERK expression of CD8
T cells requiring steroid pulse therapy, which reversed the
hyperactivation of p-ERK expression after the steroid pulse
therapy (Figure 3). An exposure history and an early
progression of chest X-rays in SARS-CoV-1 patients was
A B

FIGURE 2 | Different patterns of viral load in EV71 and dengue infections. (A) The blood viral loads in EV71 encephalitis patients were significantly higher than those
with no encephalitis (data derived from 12 pairs of case-control samples). Based on the unit of one milliliter blood (ml), the limit of detection (LOD) is 9 copies/ml in
patients with EV71. In contrast, (B) the blood viral loads in patients with dengue hemorrhagic fever (DHF) were not significantly different from those in dengue fever
(DF). The LOD is 3 copies/ml in patients with dengue infection (the representative graph is derived from the publication (Chen, et al. FEMS Immunol Med Microbiol.
2005;44 (1):43-50).
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associated with poor outcomes (99). SARS patients tended to
have lymphopenia and thrombocytopenia which was caused by
cell apoptosis associated with higher sFasL levels, and vascular
sequestration associated with increased sVCAM-1 levels (100).
Taken together, these results suggest uncontrolled regional
pneumocytotropic lung damage, but not viremia responsible
for the poor outcome of SARS-CoV-1. Some SARS-CoV-1
patients revealed a secondary exacerbation between the second
and third weeks of infection in which CD8 T cell activation with
higher IL-2 production was found (Figure 3).

In the swine influenza A (H1N1) 2009 outbreak, we found
different clinical features between children and adults (101–103),
and the younger children had a longer viral shedding time (102),
and characteristic early lymphopenia and lower C-reactive
protein levels (103). The influenza A (H1N1)2009 infection was
associated with depressed NK cell function (Figures 4A, B). In
other words, a higher initial viral uptake and/or suppressed
immunity determines whether there is overwhelming regional
lung damage and complication or not.

Augmented Immunopathology
Certain viruses do not cause systemic virus dissemination in the
blood, but cause a systemic immune response with cytokine storm,
or indirectly assault vessels by augmented immune reactions
resulting in hemorrhage or vascular leakage (124–126). Emerging
Frontiers in Immunology | www.frontiersin.org 8
infections fit into this category, including Avian flu and Hanta
viruses (Table 2). Patients with fatal H5N1 infections had a cytokine
storm with low peripheral blood T-lymphocyte counts, associated
with pharyngeal viral loads (127). Patients with fatal Hantavirus
fever renal syndrome (HFRS) or Hanta cardiopulmonary syndrome
(HCPS) had varied cytokine storms without viremia (128).
Currently, H5N1 avian flu virus infects humans via the bird-to-
human transmission and likely by the oral-fecal route, but not via
aerosol transmission (129). However, avian H5H1 flu virus RNA
was detected by RT-PCR in the lungs, intestines, and spleen. Active
viral replication was limited to the lungs and intestine. This
is compatible with clinical symptoms of pneumonia and
diarrhea associated with altered immunity with circulating
thrombocytopenia, cytokine storm and hemophagocytic syndrome
(130). This suggests that regional unlimited viral replication due to
depressed immunity, which is associated with uncontrolled
proinflammatory cytokine production, is involved in the
immunopathogenesis. An appropriate treatment may require not
only an anti-viral agent (e.g. Tamiflu for avian flu within 3 days), but
also immunomodulation of cytokine storm (e.g. anti-IL6 for
COVID-19) as early as possible.

Hantavirus infects humans exposed to secretions of reservoir
hosts (e.g., rats), resulting in a dead-end infection in humans
with a long incubation period between 2-4 weeks. The hantavirus
replicates in endothelial cells without cytopathic effect (CPE) but
A B

FIGURE 3 | A kinetic tracing of chest X-rays, intracellular p-ERK and plasma IL-2 levels in a patient with late exacerbation of SARS-CoV-1 before and after
methylprednisolone pulse treatment (MP pulse Rx). An early phase X-rays film in a SARS patient (A), who developed late phase exacerbation (B) showing a high
intracellular p-ERK level of CD8 T cells (flow cytometric analysis of intracellular phosphorylated ERK levels) in exacerbation, and dramatically decreased after a 3-day
course of methylprednisolone (MP; 1 gm/day) pulse Rx, associated with a decrease in plasma IL-2 level after the MP pulse Rx. (Data presented are derived from Li &
Yang, et al. J Immunol. 2004;172 (12):7841-7).
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induces vascular leakage by a mechanism related to anti-viral
mediators of endothelial cells, or cell immunity directed against
infected cells by different cytokine storms in blood and affected
tissues (56, 131). Infections occurring in the lungs are called
HCPS (55, 56), and those occurring in the kidneys are called
HFRS (53, 54). Hantaviruses infect endothelial cells via the b3
integrins which induce hyperresponsive to the permeability of
endothelial cells by VEGF (131).

Antibody-Dependent Enhancement of
Infection With Altered Immunity
The human immune system can discriminate non-self-microbes
and raise a memory immune reaction after the infection. The
memory immune response produces neutralizing antibodies for
immuno-surveillance of the same microbes and/or cross-reactive
protection of similar microbial infections. Unfortunately, certain
emerging infections that raises antibodies may cause cross-
enhancement of infections as seen in dengue fever and Ross
River viral infections (Table 2). Patients with secondary dengue
fever are more susceptible to complications of DHF and dengue
shock syndrome (DSS) (132–134). The antibodies raised in
primary dengue infection can circulate in the blood for years
or even decades, providing protection from the same serotype of
Frontiers in Immunology | www.frontiersin.org 9
dengue infection, but cause cross-enhancement of secondary
heterotypic dengue infections, in which subneutralizing
antibodies enhance heterotypic dengue virus infection (89–92),
and alter immune response shifting type 1 T helper (Th1)
response to Th2 response with dominant IL-10 in patients
with DHF (89, 92, 94). The first implication for DHF was the
observation that over 85% of children with DHF had high
dengue heterotypic cross-reactive antibody titers in a Bangkok
outbreak of DHF (43, 132), suggesting an antibody-dependent
enhancement (ADE) of dengue infection in the pathogenesis.
This hinders dengue vaccine development because of antibody-
dependent enhancement (ADE) of dengue infections due to
vaccine-induced heterotypic antibodies. In contrast to the
DHF, which more frequently occurs to children in East Asia,
our studies found that elders with comorbidities are more
susceptible to DHF (90, 91, 95), and patients carrying certain
genotypes were significantly associated with DHF (67, 75). We
also found that previous subclinical dengue infections are more
frequently associated with DHF (92, 94, 96), and elders with
comorbidity or concurrent bacteremia have a higher mortality
(91, 95). To explore the biomarker for early detection of DHF, we
found that blood IL-10 levels were significantly associated with
severity of DHF (Figure 4C). In addition to the ADE of dengue
A B

C

FIGURE 4 | Immune alteration of influenza A (H1N1) 2009 and dengue infection. (A) Depressed NK cell activity in influenza A (H1N1) 2009 infection. Employing
K562 cells labeled with CFDA dye, the cell cytotoxicity was detected by propidium iodide (PI). (B) The NK cell cytotoxic activities in patients with influenza A (H1N1)
2009 infection were significantly depressed either in effector-target (ET) ratio at 20:1 or 40:1 in comparison to those in patients with other febrile illness (OFI). (C) A
significant association of IL-10 levels among dengue infections with mild or severe DHF. In a dengue outbreak, a cohort of patients with dengue fever, and dengue
hemorrhagic fever mild or severe showed a significant higher level of IL-10 toward severe DHF (data derived from Chen RF, Yang KD, et al. Trans R Soc Trop Med
Hyg. 2007;101 (11):1106-13).
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infections (43, 89, 92), another example of ADE was
demonstrated in Ross River viral infections with polyarthritis,
in which the presence of antibody enhances viral infection by
macrophages (135). Like ADE of dengue, antibodies of COVID-19
infections have been proposed to induce augmented immune
response by Fcg-receptor mediated enhancement (136).
STRATEGIES TO PREVENT FATALITY
BASED ON MECHANISTIC SIGNATURES
OF IMMUNOPATHOGENESIS

Mechanisms of the fatality in various emerging infections are
different so that protection from fatality of each emerging
infection requires an advanced deployment on early detection
of the fatal pathogenesis among viral dissemination, immune
deficiency, and immunopathology to develop a proper strategy to
prevent or decrease fatality. For those with disseminated viremia,
anti-viral agents such as interferons, inhibition of RNA
replication with drugs such as remdesivir or favipiravir, and/or
agents that block viral shedding, such as silmitasertib can be
applied (137–139). Those with immune deficiency or with high
viral load require earlier supplementation of hyperimmune
immunoglobulins, neutralizing MoAbs, or convalescent
plasma from convalescent patients (140–142). Those
with immunopathology such as cytokine storm require
administration of cytokine antagonist, inhibition of
complement cascade, or adsorption of circulating cytokines
(143–145). Those with infection-associated hemophagocytosis,
also called secondary hemophagocytic lymphohistiocytosis or
macrophage activation syndrome, require administration of
IVIG, cyclosporin-A, corticosteroids, and/or anti-cytokine
Frontiers in Immunology | www.frontiersin.org 10
therapy (146, 147). As shown in Table 3, we have summarized
how to differentiate fatal mechanisms and early signature markers
for crisis management of early recognition and prevention, based
on pathogenic mechanisms of overt viremia, tissue-specific organ
failure, cytokine storm, and iatrogenic insults.

Early Detection of Viremia for Reducing
Viral Spread and Fatality
An emerging infection that causes impaired or delayed cell
immunity or production of neutralizing antibodies can raise
systemic viremia or immunopathology that causes a high fatality
with hemorrhagic fever (coagulopathy), respiratory failure, and/or
encephalitis. Patients with fatal Ebola infection tend to have 100%
detectable viremia (106, 107). The early recognition of infection,
viremia or antigenemia could promote not only an early
administration of neutralizing antibodies (MoAbs or
convalescent plasma) for reducing viral load and fatality, but
also a timely interruption of the transmission of the emerging
infection (Table 3.1). For instance, a rapid diagnostic test (RDT)
for the Lassa viral antigen by a point of care test of
immunochromatography can alert for systemic viremia (148).
Detection of an early systemic viral load of Lassa fever in blood
will raise the warning sign for early intervention (149) with
administration of ribavirin (anti-viral agent), and/or
convalescent plasma. These early interventions were shown to
significantly reduced fatality (150, 151). Our study on the
immunopathogenesis of enterovirus 71 encephalitis also
demonstrates that younger children with impaired T cell
reaction are associated with delayed CD40L expression and
viremia (85, 86). In a simulation for Ebola containment based
on a Ro value of 2.0, it is estimated that a rapid blood test reduces
the attack rate from 80% to nearly zero, and the average diagnostic
TABLE 3 | Early recognition of fatal mechanism for prevention of fatality.

Fatal Mechanisms Early Recognition Prevention of fatality

1. Systemic viremia Early detection of viremia Early anti-virus & ring vaccination
Lassa fever RDT ≧ qPCR > ELISA Rivavirin or convalescent plasma
EV71 qPCR of blood & saliva IVIG
Ebola qPCR of blood & stool REGN-EB3, MoAbs, & Ring vaccination, rVSV-ZEBOV
2. Cytotropic organ
failure

Host response & genotype Early organ protection

HCPS PaO2/FiO2, neutrophilia ECMO/CRRT, steroids
HFRS Creatinine, cytokines CRRT/Icatibant
Necrotizing
encephalitis

Host RANBP2 and IFITM3 mutations Prophylactic oseltamivir

(Fulminant influenza)
3. Cytokine storm Immunopathology assays Immunotherapies
Hyperinflammation IL6, IL8, TNFa, IL1b Anti-IL-6, anti-IL1, CRRT
Shock, Coagulopathy D-dimer, low platelets ECMO, LMWH, anti-C5a
Hemophagocytosis Ferritin, sCD25, anemia IVIG/steroids, Cyclosporin
4. Superposition Microbial/metabolic factors Integrated therapies
Sepsis MS fingerprinting Anti-virus & anti-bacteria
Nosocomial infections Comorbidities Containment, protection, RDTs, MoAbs, and plasma therapy
Iatrogenic side-effects Drug toxicity/interactions, pipeline clogging, overload of health providers,

shortage of medical supplies
Monitor of drug levels, continuing education, practicing virtual

reality, advance deployment
RDT, rapid diagnostic test; qPCR, quantitative polymerase chain reaction; ELISA, enzyme-linked immunoassay; ECMO, extracorporeal membrane oxygenation; MoAbs, monoclonal
antibodies; CRRT, continuous renal replacement therapy; sCD25, soluble CD25; LMWH, low molecular weight heparin; RANBP2, Ran Binding Protein 2; IFITM3, interferon-inducible
transmembrane protein; IVIG, intravenous immunoglobulin; MS, mass spectrometry.
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time from 5 days to 1 day in 60% of Ebola virus-infected patients
(152). More importantly, in an Ebola outbreak, the early diagnosis
would also promote the efficacy of ring vaccination by rVSV-
ZEBOV which provided 100% vaccine efficacy (0/4539 vs. 39/4557
cases) in the immediate vaccinees after known exposure compared
to the delayed group vaccinated 21 days after exposure (153).
Administration of MoAbs or convalescent plasma in early stage of
infection has also been shown effectiveness on the limitation of
disease progression in Ebola (140), SARS-CoV-1 (141), MERS-
CoV (142), and SARS-CoV-2 (154).

Rapid Diagnosis for Preventing Cytotropic
Organ Failure
Rapid diagnoses of emerging viral infections using point of care
tests (POCT) for detection of specific antigen or nucleotide are
made available in recent years, particularly during the COVID-19
pandemic (155). The paper-based POCT can be done in 15
minutes by detecting antigen-antibody reaction in secretion of
upper respiratory tract or blood (155). The early detection within
3 days may be followed by early treatment of neutralizing
antibodies to reduce viral load of the lung and reduce
complication (140, 154). Some emerging infections can cause
tissue-specific cytotropism; for instance, SARS-CoV-2 and Avian
influenza virus can cause respiratory distress syndrome and
Hanta virus can cause renal failure. The emergence of Avian
flu and Hantavirus syndrome did not cause systemic viral
dissemination, but assaulted vascular endothelium by
augmented immune reactions, resulting in hemorrhage,
pulmonary edema, or renal failure (125, 126). As shown in
Table 3.3, kinetic monitoring of lung and kidney functions is
mandatory to prevent Hantavirus-induced organ failure. This
can be accomplished through ventilation support, continuous
renal replacement therapy (CRRT), and/or extracorporeal
membrane oxygenation (ECMO) support (156). In addition,
Icatibant which blocks the binding of bradykinin has been
used to treat hantavirus infection with complement activation
and coagulopathy (157). For patients with a fulminant or a
treatment resistant course, strategies to identify host genetic
variants that compromise defense, or to identify viral virulent
factors that induce immunosuppression are required. For
instance, a respiratory tract infection with repeated influenza
infections or fulminant (necrotizing) encephalitis should be
screened for genetic mutations at Ran Binding Protein 2
(RANBP2) (79) or interferon-inducible transmembrane protein
3 (IFITM3) (77), respectively, and anti-virus treatment (e.g.
Tamiflu) should be initiated as early as possible.

Targeting Cytokine Storm by
Immunotherapies
Certain emerging infections can cause altered immunity which
results in the release of untoward cytokines causing cytokine
storm of immunopathology. Because organ failure is related to
inflammatory insults, anti-inflammatory regimens are necessary
(Table 3.3). The cytokine storms in different emerging infections
are frequently associated with augmented levels of IL-6, IL-1b,
IL-8, TNFa, and/or IP-10 (87, 89, 92, 97, 120, 158). Anti-IL6R
Frontiers in Immunology | www.frontiersin.org 11
and/or anti-IL1 antibodies are indicated in the treatment of
cytokine storm of COVID-19 (159). Moreover, the cytokine
profiles induced by coronavirus infections are related to
T helper cell type 17 (Th17) reactions (97, 114, 120, 158, 159),
to which immunoregulatory therapies have been proposed (113,
160). For cases complicated by abnormal complement cascade
and coagulopathy (higher D-dimer and lower platelets), a
combined therapy with anti-C5a antibody and Jak1 inhibitor
may be needed (161). In addition, some patients may require
utilization of heparin, ECMO and/or CRRT treatment (162).
Avian flu with cytokine storm might be associated with
augmented immune responses such as hemophagocytosis
showing anemia, thrombocytopenia, hyperferritinemia,
hypertriglyceridemia, and adult type respiratory distress
syndrome (ARDS) without detectable viremia, which may
require a combination of IVIG with steroids, and cyclosporin
A or etoposide (163, 164).

Prevention of Superimposed and
Iatrogenic Morbidity
An emerging infection can cause high fatality when conditions
such as sepsis and complications due to comorbidities or
malpractices are superimposed (Table 3.4). Strategies to alert
to these superimposed conditions will promote integrated
therapies including anti-virus, anti-bacteria, anti-inflammation,
and ventilation or renal support. Many patients with an
emerging infection die of sepsis because of virus-induced
immunosuppression (95, 165). In these cases mass
spectrometry fingerprinting of blood culture is necessary to
early detect bacteremia, identify antibiotic resistance, and
prevent sepsis. New drugs or crisis management may result in
novel toxicity or unexpected drug interactions in patients with
comorbidities. Certain emerging infections, particularly those
prone to nosocomial infections such as Ebola and SARS, can
impact not only the general population but also health care
providers and medical institutions. Containment of nosocomial
and emerging infections in health care centers and long-term
care facilities where elders are frequently bedridden with
multiple comorbidities is especially important, since co-morbid
patients are usually super-spreaders and succumb to higher
morbidity and mortality, requiring early RDTs and reduction
in viral load by MoAbs or convalescent plasma. Overtreatment
or undertreatment of an emerging infection may cause iatrogenic
morbidity and mortality. For instance, early mechanical
ventilation or late use of neutralizing antibodies may increase
morbidity and mortality. Shortage of medical resources or
shortages of health providers could also increase potential
complications. Continuing education with advanced
deployment and use of computer simulation can be used to
reduce iatrogenic side effects.
SUMMARY

Because each individual emerging infection has its own
evolutionary trait, transmission route, and immunopathogenesis,
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each emerging infection requires individualized strategies to
prevent infection, morbidity and mortality. However, “stones
from other hills may serve to polish the jade of this one,” advance
deployment may be made for mitigating a pandemic and
reducing fatality. A stepwise guideline for infection and
immunity controls to prevent an emerging infection may be
possible (166). As shown in Figure 5, there are 5 check points of
infection controls to prevent infection, morbidity and fatality:

(1) Monitoring for mutant viruses, vectors & zoonosis. The best
way toprevent pandemics and fatalities due to an emerging infection
is to monitor potential emerging microbials in mutations, vectors,
and zoonosis before andduring pandemics (1–13, 27–30, 84). In this
era of a global village and changes of ecosystems, early prediction,
recognition, and elimination of an emerging infection is not
guaranteed. Preparedness of mass vaccination, convalescent
plasma and specific anti-virus agents is also important.

(2) Platforms for development of vaccines. A couple of new
platforms for rapid development of vaccines by avirulent virus
vectors with DNA, mRNA vaccine and recombinant protein
technologies that are safe and efficacious have been made
possible (167–170). For instance, the fast pipelines of vaccines
for an emerging infection such as COVID-19 were made
available within one year (169, 170).

(3) Blockade of viral transmission. Before a vaccine is
available for an emerging infection, it is important to
encourage wearing of facemasks, keeping social distance and
doing surface disinfection. These measures may not only have an
effect on blocking transmission of the emerging infection, but
may also have collateral benefits by decreasing other upper
respiratory tract infections (171, 172).

(4) Inhibition of viral replication. The inhibition of viral
replication could be made by antiviral agents directed against
Frontiers in Immunology | www.frontiersin.org 12
virus-cell fusion, virus and host proteases, and RNA synthetase
(137–139).

(5) Inhibition of viral shedding. In SARS-CoV-2 infections
activations of casein kinases (CK2) and protein kinases (MAPK)
have been demonstrated (137). Inhibitors of CK2 and protein
kinases which have demonstrated safety data in human trials
have been proposed to re-purposing of the FDA-approved
kinases inhibitors for the treatment of COVID-19 (137, 173,
174). A combination of anti-viral replication and shedding may
provide a synergistic effect on mitigation of viral transmission

There are 5 other check points for immunity controls of an
emerging infection:

(1) Host genetic susceptibility and herd immunity. In
different emerging infections mortality ranges from 1% to 60%.
Many humans survive because of host immunity and herd
immunity. For patients who experience a fulminant disease
course or treatment resistance, it is necessary to survey for host
genetic susceptibility. For instances, deletion or mutation of
TLR7 has been attributed to severity of COVID-19 in young
adults (74), in which protection or early administration of
MoAbs (REGN-CoV-2) may limit morbidity and mortality.
Similarly, Ran Binding Protein 2 (RANBP2) mutation has been
associated with fulminant necrotizing encephalitis of influenza
(79), in which early prophylactic use of Tamiflu may prevent
complication and fatality.

(2) Rapid diagnosis and interrupting viral spread. Rapid
diagnostic tests have made early detection and interruption of
disease progression and viral transmission possible (148, 149,
152, 153, 155). In an Ebola outbreak, an RDT made a ring
vaccination possible that provided 100% vaccine efficacy in the
immediate vaccinees (152, 153). Early administration of MoAbs
or convalescent plasma has also shown effectiveness on the
A

B

FIGURE 5 | A stepwise practical guide to do infection controls and immunity controls. As specified, (A) Infection controls can be made by a 5-step program, and
(B) Immunity controls can be approached by another 5-step program.
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limitation of disease progression in Ebola (140), SARS-CoV-1
(141), MERS-CoV (142), and SARS-CoV-2 (154, 175–177). It is
also postulated that a combination of neutralizing MoAbs and
anti-virus agent may induce a synergistic effect (178). The early
diagnosis followed by early treatment with MoAbs or
convalescent plasma in 72 hours has been shown to reduce
viral load, hospitalization and disease progression of COVID-19
(175–177).

(3) Targeting cytokine storm by immunoregulation. Different
emerging infections may induce variant types of cytokine storm
(87, 92, 97, 120, 158) to which immunotherapies with anti-
cytokine and/or immune regulatory therapies have been
proposed to rescue the patients with cytokine storm (114, 159–
161). It is, however, postulated that aiming at a single target of
one cytokine action may be ineffective, and sequential targeting
may be required for eliminating the cytokine storm (178). A
combined regimen with circulating supports by ECMO and
eliminating cytokines by CRRT (156, 157, 162) may be beneficial.

(4) Targeting intracellular signal pathways. Hyperactivation
of MAPK pathway and CK2 (casein kinase 2)-phosphorylation
have been associated with SARS-CoV-1 and SARS-CoV-2
infections (97, 137), and inhibition of p38 activation or CK2
activation has been shown to decrease viral replication and
cytokine induction (137, 174).

(5) Homeostasis of host milieu. The abnormal virus-host
interactions for fulminant inflammation on emerging infections
may not only depend on viral mutation and host genetic variants,
but also host milieu: interior environment, such as imbalances of
vitamins and microbiota, and external environment, such as
temperature, humidity and protection equipment. For instance,
Frontiers in Immunology | www.frontiersin.org 13
maintenance of host interior homeostasis on vitamins (e.g.
vitamin D, retinoids, vitamin K2) and metabolites of
microbiota, which provide anti-virus properties and/or better
Treg responses for anti-inflammatory reactions (179–184), may
regulate immunity and reduce mortality of an emerging infection.
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54. de Oliveira SV, Faccini-Martıńez ÁA. Hantavirus Infection and the Renal
Syndrom. In: G Bezerra da Silva Junior, E De Francesco Daher and E Barros,
editors. Tropical Nephrology (2020) 175–92. doi: 10.1007/978-3-030-44500-
3_14

55. Clement J, LeDuc JW, Lloyd G, Reynes JM, McElhinney L, Van Ranst M,
et al. Wild Rats, Laboratory Rats, Pet Rats: Global Seoul Hantavirus Disease
Revisited. Viruses (2019) 11:652. doi: 10.3390/v11070652
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145. Carvelli J, Demaria O, Vély F, Batista L, Chouaki Benmansour N, Fares J,
et al. Association of COVID-19 Inflammation With Activation of the C5a-
C5aR1 Axis. Nature (2020) 588:146–50. doi: 10.1038/s41586-020-2600-6

146 . Morimoto A, Nakazawa Y, Ish i i E . 016 . Hemophagocyt ic
Lymphohistiocytosis: Pathogenesis, Diagnosis, and Management. Pediatr
Int 58:817–25. doi: 10.1111/ped.13064

147. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines
Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage
Activation Syndrome-Like Disease. Autoimmun Rev (2020) 19:102537.
doi: 10.1016/j.autrev.2020.102537

148. Boisen ML, Hartnett JN, Shaffer JG, Goba A, MomohM, Sandi JD, et al. Field
Validation of Recombinant Antigen Immunoassays for Diagnosis of Lassa
Fever. Sci Rep (2018) 8:5939. doi: 10.1038/s41598-018-24246-w

149. Takah NF, Brangel P, Shrestha P, Peeling R. Sensitivity and Specificity of
Diagnostic Tests for Lassa Fever: A Systematic Review. BMC Infect Dis
(2019) 19:647. doi: 10.1186/s12879-019-4242-6

150. McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM,
et al. Lassa Fever. Effective Therapy With Ribavirin. N Engl J Med (1986)
314:20–6. doi: 10.1056/NEJM198601023140104

151. Frame JD, Verbrugge GP, Gill RG, Pinneo L. The Use of Lassa Fever
Convalescent Plasma in Nigeria. Trans R Soc Trop Med Hyg 78:319–24.
doi: 10.1016/0035-9203(84)90107-x

152. Jacob ST, Crozier I, Fischer WA 2nd, Hewlett A, Kraft CS, Vega MA, et al.
Ebola Virus Disease. Nat Rev Dis Primers (2020) 6:13. doi: 10.1038/s41572-
020-0147-3

153. Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ,
Egger M, et al. Efficacy and Effectiveness of an rVSV-Vectored Vaccine in
Preventing Ebola Virus Disease: Final Results From the Guinea Ring
Vaccination, Open-Label, Cluster-Randomised Trial (Ebola Ça Suffi)!
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