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A B S T R A C T

Fibroblast growth factor 21 (FGF21) is an endocrine-member of the FGF family. It is synthesized mainly in the
liver, but it is also expressed in adipose tissue, skeletal muscle, and many other organs. It has a key role in
glucose and lipid metabolism, as well as in energy balance. FGF21 concentration in plasma is increased in
patients with obesity, insulin resistance, and metabolic syndrome. Recent findings suggest that such increment
protects tissue from an increased oxidative stress environment. Different types of physical stress, such as
strenuous exercising, lactation, diabetic nephropathy, cardiovascular disease, and critical illnesses, also increase
FGF21 circulating concentration. FGF21 is now considered a stress-responsive hormone in humans. The
discovery of an essential response element in the FGF21 gene, for the activating transcription factor 4 (ATF4),
involved in the regulation of oxidative stress, and its relation with genes such as NRF2, TBP-2, UCP3, SOD2,
ERK, and p38, places FGF21 as a key regulator of the oxidative stress cell response. Its role in chronic diseases
and its involvement in the treatment and follow-up of these diseases has been recently the target of new studies.
The diminished oxidative stress through FGF21 pathways observed with anti-diabetic therapy is another clue of
the new insights of this hormone.

1. Introduction

Fibroblast growth factor 21 (FGF21) is a 209 amino acid protein in
humans [1]. Its main actions are to regulate glucose and lipid
metabolism, and energy balance [1]. It is synthesized mainly
in the liver [2,3], but it is also expressed in white adipose tissue
(WAT), brown adipose tissue (BAT) [4], pancreas [5], skeletal muscle
[6], cardiac endothelial cells [7], and hypothalamus [8]. The main
actions of circulating FGF21 are to increase glucose uptake in
adipose tissue [5], augment lipolysis, enhance production of ketone
bodies in the liver [9,10], and to regulate energy balance and physical
stress responsiveness in humans [11]. FGF21 plasma concentration
may increase with intense physical activity [12], after growth
hormone treatment [13], during lactation [14], and after cold
exposure [15]. Pathological physical stress conditions like obesity
[16], anorexia nervosa [17], skeletal muscle autophagy deficiency
[18], critical illness [19], hypothermia [20], amino acid deprivation

or undernutrition [21], and nephropathy [22], also induce FGF21
expression (Fig. 1).

Many intracellular disturbances are associated with an increased
expression of FGF21. Mitochondrial disorders that impair the oxidative
phosphorylation (OXPHOS) and cause a diminished production of ATP
[23], induce elevation of FGF21 serum concentration [24], thus it has
been proposed as a serological marker in mitochondrial diseases [24].
Other kinds of intracellular stressors such as autophagy deficiency [18],
disruption of the endoplasmic reticulum (ER) calcium homeostasis,
and alteration of the ER redox balance [25,26] could induce FGF21
expression. Although the mechanisms by which FGF21 responds to
oxidative stress are still subject of research, it is currently considered
an important stress response hormone [9]. This review aims to
summarize the role of FGF21 in the regulation of oxidative cell damage
and the action of proteins and transcription factors involved in these
pathways.
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2. FGF21 and cellular oxidative stress

Oxidative stress is defined as an imbalance between pro-oxidant
and anti-oxidant factors in favor of the former [27,28]. Pro-oxidants,
such as reactive oxygen species (ROS), are chemically reactive mole-
cules containing oxygen, hydroxyl radicals, hydroperoxyl, hydrogen
peroxide, ketoaldehydes, and hydroxynonenal. ROS exert damage to
DNA, proteins, and enzymes [29].

Human cells have defense mechanisms to protect against these
harmful metabolites, for example, enzymes such as catalase and
superoxide dismutase reduce oxygen radicals to H2O2 in the mitochon-
dria [30,31]. In addition, dietary anti-oxidant molecules, like tocopher-
ol or ascorbate, can donate hydrogen atoms to fatty acid radicals,
stabilize cell membranes or change the function of enzymes like occurs
with xanthine oxidase, alleviating oxidative stress [32].

Many chronic diseases are associated with an increased intracel-
lular oxidative stress [33] (Fig. 2).

Recently, FGF21 has been considered a novel regulator of oxidative
stress in humans. In cultured endothelial cells treated with oxidized
low-density lipoproteins (oxLDL), an increased FGF21 mRNA expres-
sion and protein concentration was observed [34]. The FGF21 gene
promoter has specific response elements (amino acid-responsive ele-
ment [AARE1 and AARE2]) that are activated by the activating
transcription factor 4 (ATF4), which is in turn, stimulated by ER stress
produced by aminoacid deprivation or oxidative stress [25].

ER stress and oxidative stress is associated with the pathophysiol-
ogy of metabolic disorders, contributing to insulin resistance, obesity,
and type 2 diabetes mellitus (T2DM) [35–38]. ERS can be prompted by
an increased unfolded protein load, altered calcium homeostasis or
perturbed redox balance. If the homeostasis of the ER is altered, the
unfolded protein response (UPR) is activated and in consequence
FGF21 expression increases. (Fig. 2).

In consequence of ER stress many pathways are activated. Firstly, a
transient protein synthesis arrest is observed; then, the ER increases its
capacity to handle unfolded proteins, and the UPR target genes are
activated [39]. This step restores the translational pathway. When the
UPR is activated, three pathways are switched on: 1) the activating
transcription factor 6 (ATF6), 2) the inositol-requiring enzyme 1
(IRE1), and 3) the protein kinase-like endoplasmic reticulum kinase
(PERK). These ER membrane proteins are sensors of the ER that bind
to the luminal chaperone and then, the immunoglobulin protein (BiP)
GRP78 binds too [39,40] (Fig. 3).

However, when cells are exposed to ER stress, BiP separates from
these sensors leading to their activation [41]. ATF6 increases chaper-
ones and foldases expression as well as unfolded proteins degradation
[42]. As part of the UPR, IRE1 increases ER folding capacity by
detecting misfolded ER proteins and activates the transcription factor,
X-box-binding protein 1 (XBP1). The activation of IRE1 induces site-
specific splicing of XBP1 mRNA. The genes upregulated by XBP1
mRNA improve clearance of unfolded proteins and are associated with
the increase of pro-survival functions, [43] besides, XBP1 binds to the
endoplasmic reticulum stress elements (ERSE), that promote the
expression of FGF21 [44,45]. When all these protective steps are
unable to control the injuring stimulus, intracellular death pathways
are activated [46,47].

PERK works as a protein sensor that mediates translational
inhibition. During ER stress, PERK is activated and promotes the
phosphorylation of serine 51 (Ser 51) of the eukaryotic initiation factor
2 alpha (eIF2 alpha). The eIF2 alpha inactivates protein synthesis in
order to decrease the ER stress load [37,48,49]. Furthermore, eIF2
alpha phosphorylation prompts simultaneous induction of ATF4 [50],
initiating the expression of its target gene, transcription factor C/EBP
homologous protein (CHOP) [51,52].

This association has been demonstrated in CHOP−/− mouse
primary hepatocytes. When exposed to TG-induced ER stress, FGF21
transcriptional activation was impaired. On the other hand, over-
expression of ATF4 and CHOP are related to FGF21 promoter
activation, in a time and dose-dependent manner [26].

ATF4 is a transcription factor that promotes the expression of
FGF21 when ER stress is present [25]. It acts as a regulator of genes
involved in redox homeostasis and amino acid metabolism [53]. ATF4
also up-regulates the expression of beta-Klotho, the co-receptor of
FGF21 [54]. The common endpoint of these pathways is the inhibition
of protein synthesis, increasing the translation of full-length ATF4,
which in turn, regulates expression of DNA damage gene 34
(GADD34).

GADD34 is a subunit of the protein phosphatase complex that
dephosphorylates eIF2 alpha, allowing the resumption of protein
synthesis and translation of the UPR reprogrammed mRNA pool
[55]. This gene is also involved in gene expression and amino acid
metabolism related to antioxidant defense.

These pathways aim to restore protein synthesis, activate kinases
and transcription factors to diminish ROS, NFkappaB action, apopto-
sis, and subsequently oxidative stress. FGF21 helps to diminish
importantly the oxidative stress inducing three antioxidant mechan-
isms:1) activation of the uncoupling protein 3 (UCP3), and superoxide
dismutase-2 (SOD2) that decrease ROS [7], 2) ERK (extracellular
signal-regulated kinase), which induces activation of CREB (cAMP
responsive element binding protein), repressing NFkappaB, that acts as
a pro-inflammatory factor [56], and 3) activation of MAPK and p38,
activates AMPK and decrease the apoptosis [4,57]. This evidence

Fig. 1. Conditions associated with an increased FGF21 expression. FGF21 increases in
four main circumstances: a) Mitochondrial diseases; b) oxidative stress, c) physical stress
situations, such as ketogenic diets, free fatty acids release, lactation, treatment with
exogenous growth hormone, and moderate to vigorous exercising; d) pathological
physical stress such as obesity, anorexia nervosa, skeletal muscle autophagy deficiency,
critical illness, hypothermia, amino acid deprivation, undernutrition, and diabetic
nephropathy.

Fig. 2. FGF21 and its association with oxidative stress. Metabolic diseases, such as
obesity, hyperglycemia, insulin resistance, dyslipidemia, and metabolic syndrome are in
both-ways involved with the presence of endoplasmic reticulum stress and oxidative
stress. Oxidative stress leads to inflammation responses that result in apoptosis and other
pathologies like cardiovascular diseases and cancer. FGF21 inhibits inflammation in
response to oxidative stress.
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strongly indicates that ER stress increases FGF21 synthesis as a
protective event.

3. FGF21 and transcription factors related to oxidative stress
(Table 1)

The hepatic expression of FGF21, induced by protein restriction,
may act as an endocrine signal of low-protein intake. This augmented
expression correlates with a phosphorylation of eIF2 alpha in the liver
[58], which stimulates ATF4 [50]. FGF21 KO mice are fully resistant to
low protein-induced changes in food intake, energy expenditure (EE),
body weight gain, and metabolic gene expression. This has been
confirmed in an experimental study performed for 6 months [59].

Nrf2 (nuclear factor E2-related factor 2) is another transcription
factor related to oxidative stress that promotes diverse antioxidant
genes. Nrf2 is a key redox regulator in many organs and also it has been
involved in cardiovascular diseases [60]. In the pancreatic beta cells it
induces the expression of glutathione-related genes in order to reduce
apoptosis mediated by nitric oxide [61]. Its functions have been
described under basal and stress conditions [62]. Nrf2 is negatively

regulated by an adaptor protein Keap1 (Kelch-like ECH-associated
protein 1) [63].

Nrf2 increases hepatic FGF21 expression and plasma FGF21
concentration in diabetic db/db and high-calorie-diet-induced obesity
mice models [64]. When Keap1 is exposed to oxidative stimuli, Nrf2 is
protected against the proteasome-mediated degradation [65], translo-
cates and accumulates in the nucleus and forms an heterodimer with
small Maf proteins, then it binds to the antioxidat/electrophile
responsive element (ARE/EpRE). This oxidative stress-response sys-
tem is called the Keap1-Nrf2 system [66]. Besides the important
functions of antioxidance and detoxification, the Keap1–Nrf2 system
is involved in the regulation of metabolically stressed conditions [67–
69]. Keap1 knock-out mice show an increase in FGF21 plasma
concentration and FGF21 hepatic expression, by Nrf2 induction. Also
FGF21 increases when Nrf2 is induced by oleanolic triterpenoid 1-[2-
cyano-3,12-dioxooleane-1, 9(11)-dien-28-oyl] imidazole in diabetic
db/db and high-calorie-diet-induced obesity mice models [64]. Thus,
FGF21 is a biomarker of the activation of the Keap1-Nrf2 system [64].

Thioredoxin binding protein-2 (TBP-2), also known as thioredoxin-
interacting protein, is an alpha arrestin protein that binds to thior-

Fig. 3. Activation of FGF21 by the endoplasmic reticulum stress. Three pathways are induced by ER (Endoplasmic reticulum) stress: 1) the activating transcription factor 6 (ATF6), 2)
the inositol-requiring enzyme 1 (IRE1), and 3) the protein kinase-like endoplasmic reticulum kinase (PERK). ATF6 increases the expression of chaperones and foldases promoting the
degradation of unfolded proteins. IRE1 increases ER folding capacity by detecting misfolded ER proteins and inducing the site-specific splicing of X-box-binding protein 1(XBP1).
XBP1 activation up-regulates genes that improve clearance of unfolded proteins and enhance cell survival and binds the endoplasmic reticulum stress element (ERSE) to enhance the
expression of FGF21. The PERK activation leads to the phosphorylation of serine-51 (Ser-51) of eukaryotic initiation factor 2 alpha (EIF2 alpha), a transcription factor that catalyzes the
first step in the beginning of protein synthesis, in order to decrease the ER load. Furthermore, EIF2 alpha phosphorylation prompts simultaneous induction of ATF4 (activating
transcription factor 4), which initiates the expression of its target gene, transcription factor C/EBP homologous protein (CHOP). Three antioxidant mechanisms are activated when
FGF21 is expressed due to ER stress: 1) UCP3 (uncoupling protein 3) and the SOD2 (superoxide dismutase-2), decreasing the action of ROS (reactive oxygen species). 2) ERK
(extracellular signal-regulated kinase) induces the activation of CREB (cAMP responsive element binding protein) repressing NFkappaB that works as a pro-inflammatory factor, and
3) MAPK (mitogen-activated protein kinase) and p38 that activate AMPK (adenosine monophosphate kinase), decreasing the apoptosis. Finally, oxidative stress is diminished.

Table 1
Relationship between FGF21 and key transcription factors associated with oxidative stress.

Transcription factor Association with FGF21 Bibliography

Nrf2 When Nrf2 is induced, FGF21 gene expression and FGF21 plasma concentration increases in db/db diabetic mice [64]
ATF4 It has been linked to the adaptive response to oxidative stress and identified as a clear FGF21 expression inductor [25,26,54]

The promoter region of FGF21 has specific binding sites for ATF4
TBP-2 Mice with liver deletion of Tbp-2 show enhanced insulin sensitivity as well as an increased expression of FGF21 [72]

Nrf2: nuclear factor erythroid-derived 2; ATF4: activating transcription factor 4; TBP2: thioredoxin binding protein-2.
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edoxin, an antioxidant protein involved in redox signaling, essential for
cell growth and survival [70]. The over-expression of TBP-2 causes
impairment of insulin sensitivity and insulin secretion, leading to beta
cell apoptosis [71]. It has also been involved in the regulation of
transcription factors associated with G protein-coupled receptors
involved in metabolic homeostasis and cancer suppression [70].

Mice with liver deletion of TBP-2 showed an enhanced insulin
sensitivity with improvement in glucose-induced insulin secretion
related with higher expression of PPAR alpha target genes such as
FGF21 [72].

Autophagy is a cellular process that transports cytoplasmic con-
stituents to lysosomes for degradation of proteins and recycling of
organelles or nutrients [73]. Autophagy defects have been associated
with altered insulin secretion [74] and insulin resistance [75]. Since
skeletal muscle accounts for 80% of whole-body insulin-mediated
glucose utilization [76], a mice model with skeletal muscle autop-
hagy-deficiency with a deletion of autophagy related 7 (Atg7) tran-
scription factor showed altered mitochondrial function. Interestingly,
induction of FGF21 by the ATF4 pathway was reported, exerting a
decrease in fat mass, improving insulin sensitivity, and showing
resistance to diet-induced obesity [18].

4. FGF21 and diseases with an increased oxidative stress

Mitochondrial DNA mutations cause elevation of FGF21 [24].
Recently, it was shown that preprogeroid polymerase gamma mutator
(POLG) mouse that accumulates point mutations and deletions in their
mitochondrial genome, produced an increment in FGF21. When
challenged with a high fat diet, these mice were resistant to diet-
induced obesity, highlighting a metabolically favorable synergy be-
tween mitochondrial stress and FGF21 [77].

Critical illnesses are also characterized by mitochondrial damage
and FGF21 elevation [24,78]. In a cross-sectional study of 405 critically
ill subjects, serum FGF21 concentration was 8-fold higher than in
control subjects (P < 0.0001). In a rabbit model of critical illness,
hepatic FGF21 expression was correlated with mitochondrial dysfunc-
tion and an integrated stress response (ISR) markers (r2=0.48, p <
0.0006; and r2=0.73, p < 0.0001 respectively) [19]. Also, the correction
of hyperglycemia decreased FGF21 concentrations. Noteworthy, ele-
vated serum FGF21 concentration was higher in the sickest patients
who did not survive (p < 0.006), suggesting that FGF21 is a stress or
cell damage-induced response [19]. As described above, the ISR
activation in critical illness phosphorylates eIF2 alpha which blocks
the activation of protein translation, and promotes the translation of
transcription factor ATF4, regulating FGF21 expression [79].

Diabetic nephropathy is an oxidative-stress related condition [80].
In previous studies with patients with T2DM and diabetic nephropathy,
there was proof of higher serum concentration of FGF21, demonstrat-
ing a negative relationship between FGF21 and glomerular filtration
rate [22]. In addition, FGF21 have shown a positive correlation with
albuminuria [81]. The intraperitoneal administration of FGF21 in
mice, exerted an improvement in albuminuria, reversing mesangial
expansion, and reducing pro-fibrotic molecules such as inhibitor-1
plasminogen activator (PAI-1) and transforming growth factor beta 1
(TGF beta1). Moreover, FGF21 reduced the oxidative stress in the
kidneys inhibiting the pro-inflammatory pathway of nuclear factor
kappa beta (NF-kB) [82]. The association between diabetic nephro-
pathy pathophysiology and FGF21 concentration plays an important
role in the inhibition of oxidative stress and subsequent fibrosis [83], as
well as its action in decreasing lipotoxicity damage and apoptosis.

5. Effect of FGF21 on anti-diabetic drugs and its relationship
with oxidative stress

FGF21 appears to be a mediator of the therapeutic effects of drugs
involved in the treatment of some metabolic diseases [84]. Metformin

reduces the plasma glucose concentration through the inhibition of
glucose absorption in the intestine, suppression of gluconeogenesis in
the liver and the improvement of the insulin action in the periphery
[85]. To suppress liver gluconeogenesis, metformin induces adenosine
monophosphate kinase (AMPK) activation, which in turn inhibits
transcription of hepatic gluconeogenic enzymes [86]. Some studies
have shown increased FGF21 serum concentration after metformin
treatment in hepatocytes in an AMPK activation-dependent manner
[87]. Also, it has been suggested that the FGF21 upregulation by
metformin depends on the elF2 alpha-ATF4 axis [88], which is
involved in the oxidative stress response. Moreover, the increased
expression of FGF21 in the liver may be associated with the gluconeo-
genic gene glucose 6-phosphatase (G6Pase) suppression, and the
increased glucose uptake by GLUT1 [89,90]. Taking together, the
increment of FGF21 serum concentration contributes to the beneficial
metabolic effects of metformin [91].

Other drugs to treat diabetes and also related with increment of
FGF21, are the glucagon like peptide-1 (GLP1) analogs. GLP1 is an
incretin hormone released by L-cells at small intestine that enhances
beta cells insulin release under hyperglycemia, and suppresses gluca-
gon secretion by pancreatic alpha cells. In addition, GLP1 inhibits
gastric emptying contributing to satiety sensation and reduction in food
intake [92]. GLP1 analogs protect cardiomyocytes against apoptosis via
inhibition of endoplasmic reticulum stress [93]. GLP1-derived non-
apeptide GLP1(28-36) protected pancreatic β-cells from glucolipotoxi-
city in increased oxidative stress conditions, independently of the GLP1
receptor [94].

GLP1 analogs are also able to promote FGF21 expression.
Especially, Liraglutide induce FGF21 gene expression in the liver
[95]. The administration of another GLP1 analog, Exendine-4, for 10
weeks augmented hepatic FGF21 gene expression in mice fed with high
fat diet compared to control [96]. However, opposite results were
recently reported, where hepatic expression and FGF21 serum con-
centration were decreased with exedin-4 treatment in mice also fed
with high fat diet for 4 weeks [84]. Therefore, more studies are needed
to clarify FGF21 role using such drugs in patients with diabetes.

Also, the administration of FGF21 analogs in humans have
demonstrated favorable effects on body weight, fasting insulin, and
adiponectin when administered for 28 days in obese T2DM subjects
[97]. Recently, in a phase I study, a long acting FGF21 analog produced
a decrease in triglyceride concentration, as well as a reduction in total
cholesterol and low-density lipoprotein cholesterol, and an increase in
high-density lipoprotein cholesterol observed in the high-dose groups
[98].

6. Conclusions

FGF21 is considered a new novel metabolic hormone related with
glucose and lipid metabolism, insulin resistance, and obesity. Its role as
an important regulator of mitochondrial and oxidative stress has been
consistently demonstrated in experimental studies. Also the multiple
beneficial effects on human disorders and its therapeutic potential by
attenuating apoptosis, ER stress, inflammation, and its consequences
have been studied recently. Therefore, FGF21 is a human stress-
response hormone, synthesized and released in order to decrease cell
damage. Prospective studies are required to address the questions if
supra-physiological concentrations of FGF21 might improve the con-
ditions associated with an increased oxidative stress, and to assess the
effects of an increased oxidative stress in FGF21 knock-out mice.
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