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A B S T R A C T   

The firing maps of grid cells in the entorhinal cortex are thought to provide an efficient metric system capable of 
supporting spatial inference in all environments. However, whether spatial representations of grid cells are 
determined by local environment cues or are organized into globally coherent patterns remains undetermined. 
We propose a navigation model containing a path integration system in the entorhinal cortex and a cognitive 
map system in the hippocampus. In the path integration system, grid cell network and head direction (HD) cell 
network integrate movement and visual information, and form attractor states to represent the positions and 
head directions of the animal. In the cognitive map system, a topological map is constructed capturing the 
attractor states of the path integration system as nodes and the transitions between attractor states as links. On 
loop closure, when the animal revisits a familiar place, the topological map is calibrated to minimize odometry 
errors. The change of the topological map is mapped back to the path integration system, to correct the states of 
the grid cells and the HD cells. The proposed model was tested on iRat, a rat-like miniature robot, in a realistic 
maze. Experimental results showed that, after familiarization of the environment, both grid cells and HD cells 
develop globally coherent firing maps by map calibration and activity correction. These results demonstrate that 
the hippocampus and the entorhinal cortex work together to form globally coherent metric representations of the 
environment. The underlying mechanisms of the hippocampal-entorhinal circuit in capturing the structure of the 
environment from sequences of experience are critical for understanding episodic memory.   

1. Introduction 

The cognitive map, a map-like internal representation of the spatial 
environment, allows an animal to navigate efficiently in the space 
(Tolman, 1948). Grid cells in the medial entorhinal cortex (MEC) of 
mammalian brains form regular grid-like firing patterns spanning the 
whole explored environment (Hafting et al., 2005; Yartsev et al., 2011). 
The periodicity of grid maps allows highly effective multi-resolutional 
spatial representations of large environments (Sreenivasan and Fiete, 
2011; Mathis et al., 2012; Vágó and Ujfalussy, 2018). Grid cells are 
thought to be the core of an intrinsic positioning system for mammals 
performing spatial navigation tasks in the environments (McNaughton 
et al., 2006; Fiete et al., 2008; Buzsáki and Moser, 2013). Grid cell ac-
tivity is likely to provide a universal spatial metric system across all 

environments (Fyhn et al., 2007; Moser et al., 2014; Bush et al., 2015; 
Yan et al., 2016). 

Recent experimental investigations however discovered that grid 
firing patterns are distorted and fragmented by various environmental 
features, revealing a more complex picture deviating from the ideal 
notion of rigid metric representation. Grid cell firing patterns rescale in 
response to the shrink or stretch of the environment (Barry et al., 2007). 
The hexagonal firing patterns of grid cells are rotated and deformed by 
the salient geometric borders of the environment (Stensola et al., 2015). 
Environmental geometry strongly alters the symmetry, scale, and ho-
mogeneity of grid firing in highly polarized environments, such as 
trapezoids (Krupic et al., 2015). In addition, complex environments are 
not represented holistically by one global map in the hippocampus and 
entorhinal cortex, but rather by multiple submaps that are anchored to 
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the environment’s local space (Derdikman et al., 2009). These experi-
mental results indicate that grid firing patterns represent spatial envi-
ronment by local submaps that are elastic and adaptive to local sensory 
cues (Rosay et al., 2019). 

Regular and global coherent grid firing patterns support spatial 
navigation (Bush et al., 2015), as demonstrated by robot experiments 
(Yuan et al., 2015; Zeng and Si, 2017; Yu et al., 2019). A question 
needed to be addressed is how to form globally coherent grid maps in 
order to provide accurate and universal metrics uniformly covering the 
entire environment explored. 

Recent exciting experiments show that grid patterns self-correct with 
exploration experience (Carpenter et al., 2015). Local sensory cues in 
multiple compartments of the environment initially dominated grid 
firing patterns, and after sufficient familiarization of local space, the 
distortions and discontinuities in grid firing patterns were reduced, 
resulting in globally continuous grids (Carpenter et al., 2015). If the 
partition between the multiple compartments was removed, the spatial 
periodicity of grids was established quickly (Wernle et al., 2018). These 
results imply that the formation of globally coherent grid pattern is 
contingent on the traverse of the environment in long-scale trajectories. 

A globally coherent representation is necessary to establish the dis-
tance relationship between locations in the environment. The transition 
from a local to a global representation has not been computationally 
addressed by previous models (McNaughton et al., 2006; Fuhs and 
Touretzky, 2006; Yoram Burak and Ila R Fiete, 2009). Some computa-
tional models of grid cells however showed that the learning of spatial 
firing rate map from sensory-motor inputs during exploration contrib-
utes to the formation of coherent grid maps (Si and Treves, 2013; Mulas 
et al., 2016). 

Stable grid codes in MEC require the inputs from the hippocampus 
(Bonnevie et al., 2013). In general, the hippocampal outflow is necessary 
for maintaining spatial representations in a wide range of neocortical 
regions, including retrosplenial cortex and posterior parietal cortex 
(Esteves et al., 2021). Anatomical studies have shown that the hippo-
campus projects strongly to the entorhinal cortex (Rozov et al., 2020). 
The feedback projection from the hippocampus as well as the inter-
laminar connections within the entorhinal cortex are critical links to 
mediate information from the hippocampus to grid cells in MEC 

(Kloosterman et al., 2003; Si and Treves, 2013). The feedback infor-
mation from the hippocampus could be relayed to the entorhinal cortex 
through oscillations such like sharp wave ripples (SPW-Rs) (Chrobak 
and Buzsáki, 1996; Leonard et al., 2015; Zheng et al., 2021). Yet it re-
mains an open question how the hippocampal feedback supports the 
formation of globally coherent grid codes in MEC. 

In this paper, we address the question of forming globally coherent 
patterns to represent spatial metrics for navigation. We propose that the 
feedback from hippocampus plays an important role in the formation of 
globally coherent firing maps. The feedback is in the form of map cali-
bration error, and possibly realized by the firing activity correction 
mechanism from the hippocampus to the entorhinal cortex. We 
demonstrated, by map learning task in an unfamiliar realistic environ-
ment, that globally coherent firing maps of grid cells and HD cells 
develop during long-term exploration using the map calibration error 
propagated from the hippocampus (Fig. 1). Previous models without the 
feedback mechanism from hippocampus however express locally 
anchored firing maps (Fig. 4B vs. C). During the formation of globally 
coherent maps, sensory cues play an important role in calibrating local 
representations, especially during loop closures where motion cues and 
visual cues are combined to minimize the mismatch. Our model there-
fore predicts that loop closure or revisit of familiar places are important 
for spatial learning. 

We tested our model based on our previous simultaneous localization 
and mapping (SLAM) system (Zeng et al., 2020) on an iRat rodent-sized 
robot platform in a naturalistic maze (iRat 2011 Australia dataset) (Ball 
et al., 2010, 2013). In our robot experiments, grid and HD firing patterns 
anchor to local sensory cues before loop closure optimization. After 
correction with experience, periodic grid patterns tile two-dimensional 
environment coherently, and the neural codes of HD cells converge to 
their respective directions across the explored space. Our experimental 
results provide a viable explanation to global coherent representations 
of grid cells and HD cells for navigation in complex spatial environments 
(Carpenter et al., 2015). 

In summary, the major contributions of this work are in the 
following. First, we proposed a model both for grid cells and HD cells 
that integrate local representations initially anchored to local environ-
mental cues into globally coherent firing patterns. The globally coherent 

Fig. 1. Globally coherent encoding of space requires long-term exploration. (A) Spatial representations in a complex maze. Initially, the grid cell firing pattern 
is determined by local sensory cues (bottom left). After experience-dependent correction during the traverse of the environment, the grid cell firing pattern becomes 
globally coherent (bottom right). (B) Spatial representations on a road. Before loop closure by revisiting familiar places, the grid pattern is locally anchored due to 
path integration errors (bottom left). After loop closures, globally coherent pattern is formed (bottom right). 
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representations encode geometry metrics of spatial locations or head- 
direction angles. Second, we implemented the model on a SLAM sys-
tem, and demonstrated, in robot navigation experiments, that global 
representations of grid cells and HD cells emerge after longer-term 
exploration. The study in this paper provides theoretical supports that 
globally coherent patterns of grid cells and HD cells can emerge through 
exploration experience to function as an accurate and universal metric 
required by large-scale and long-term spatial navigation (Carpenter 
et al., 2015; Wernle et al., 2018). 

2. Methods 

In our model, the positions and head directions of an animal are 
represented by neural activities of Bayesian attractor neural networks. 
The metric relationships of spatial locations and head directions are 
mapped into the corresponding neural space. The discrepancy of the 
metric relationship between locations and head directions is minimized 
by solving a non-linear least-squares problem. 

2.1. Bayesian attractor neural network model 

The Bayesian attractor neural network model takes the form of 
probabilistic distributions to encode head directions or spatial locations 
(Zeng et al., 2020). The model includes integrator cells and calibration 
cells, which integrate vestibular inputs and visual inputs respectively. 
The conflicts between vestibular cues and visual cues are solved by 
mutual inhibition between integrator cells and calibration cells. The 
activities of the two populations are stabilized by global inhibition. 

2.1.1. Head direction cell model 
HD cell model represents the rotation of the animal, whose velocity 

input is the angular velocity of the animal in the physical environment. 
The neural activity of the HD cell model is updated by attractor dy-
namics, vestibular cues integration, and visual cues calibration. 

2.1.1.1. Attractor dynamics. The head direction of the animal is repre-
sented by a normal distribution on a ring manifold [0, 2π). The firing 
rates of integrator cells and calibration cells in the head direction 
network are concisely described by the respective means and variances 
of the distributions 

f (θ) =
1

σ
̅̅̅̅̅
2π

√ e− |θ− μθ |
2/2σ2

, (1)  

where θ is the coordinate of a HD cell in the ring manifold, and |⋅| 
computes the distance between two angles on a circle. μθ, the mean of 
the probability distribution, represents the center of the firing activity 
profile of the HD cells. The Normal distribution in Eq. (1) has the bump 
shape as the attractor states in continuous attractor networks (Tsodyks 
and Sejnowski, 1995; Zhang, 1996). 

The attractor dynamics of the head direction network are achieved 
by global inhibition and mutual inhibition between the integrator cell 
and calibration cell. 

The global inhibition is defined by a normalization mechanism 
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energy. 

The mutual inhibition is modeled by 

1
σt

inte
2 =

1
σt− 1

inte
2 − Δinte

1
σt− 1

cali
2

1
σt

cali
2 =

1
σt− 1

cali
2 − Δcali

1
σt− 1

inte
2,

(3)  

where Δinte and Δcali are the inhibition intensities. The confidence of 
each population is guarded by a lower bound U, allowing the weak 
population to recover at the time when reliable cues are available. 

2.1.1.2. Vestibular cues integration. Path integration is performed by 
shifting the mean of the normal distribution without bump deformation. 
The integrator cells integrate vestibular cues, and drive the calibration 
cells to update the bump activity as well 

μt
inte = mod (μt− 1

inte + νtΔt, 2π),
μt

cali = mod (μt− 1
cali + νtΔt, 2π),

(4)  

where μt
inte and μt

cali are the centers of the bump attractors of the inte-
grator cells and the calibration cells, νt is the rotation velocity, Δt is the 
time interval between time steps t and t − 1. mod (x, L) is the modulus 
operation in the domain of real number, and returns the remainder in 
the range [0, L). 

2.1.1.3. Visual cues calibration. The neural activity of HD cells is cali-
brated by familiar sensory cues. When a new view is perceived, this new 
view is associated with a new local view cell corresponding to the cur-
rent HD activity pattern by a strong link. When a familiar view is 
encountered, the local view cell is reactivated by template matching 
mechanism. Energy is injected into HD cells network through the 
learned link in a Bayesian fashion 
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where 1
σt

inject
2 is the confidence of the injected energy, μt

inject is the injected 

location on the one dimensional neural manifold of HD cells. 

2.1.1.4. Cue combination. The activities of the integrator cells and the 
calibration cells are combined according to the Bayesian rule, resulting 
in the combined confidence and HD phase 
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(6) 

If the combined HD phase is similar to the HD phase of the calibra-
tion cells, i.e. |μt

cc − μt
cali| is smaller than a threshold δ, the decision that 

the animal revisits a familiar place is made, and the calibration cells 
inherit the combined distribution of HD phase. Otherwise, the calibra-
tion cells keep their own estimation and neglect the distribution cali-
brated by visual cues. 

2.1.2. Grid cell model 
To model grid cells, we expand the ring manifold of the HD cell 

model to the torus manifold. The grid cell model adopts the same 
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mechanism as the HD cell model to encode positions in two-dimensional 
environments. The firing activities of integrator cells and calibration 
cells in the torus manifold are described by 

f
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)
=
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2
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, (7)  

where (θx, θy) is the coordinate of a cell in the torus neural manifold, 
with θx, θy ∈ [0, 2π). (μx, μy) is the center of the bump attractor of the 
grid cell network. 

To model the modular organization of grid cells along the dorsal 
ventral axis, the grid cells in different modules integrate vestibular cues 
with different parameters 

μt
inte = mod (μt− 1

inte + ρR(α)νtΔt, 2π),
μt

cali = mod (μt− 1
cali + ρR(α)νtΔt, 2π),

(8)  

where μt
inte and μt

cali are two dimensional vectors representing the cen-
ters of the bump activities of the integrator cells and the calibration cells. 
νt is the running velocity. R(α) is the rotation matrix to offset the 
movement direction by α. ρ > 0 is a gain factor scaling the shift speed of 
the bump in neural space. 

The grid cell model uses the same mechanisms, including attractor 
dynamics, visual cues calibration, and cue combination, like those of the 
HD cell model to integrate linear velocity and sensory cues. We will not 
go further into the details here. 

2.2. Map calibration by odometry error minimization 

Mammals are able to explore long distances for forage, and rightly 

return to their home nests. The familiar views near their home nests can 
calibrate the cognitive maps in their brains to form globally coherent 
maps to ensure that they do not get lost. 

In our model, local view cells are used to encode distinct visual views 
in the environment. When a novel view is perceived, a new local view 
cell is recruited and the visual features of the view are associated with 
this new local view cell. At the same time, the new local view cell is 
linked to the activity states of the grid cells and the HD cells at that 
moment. A topological map is constructed to represent the experience of 
the animal. An experience is defined as the activated local view cell, and 
the linked neural activity states of the grid cells and the HD cells. Each 
experience is added to the graph as a node. The spatial constraint be-
tween two nodes is modeled as a link. During exploration, new links can 
be easily added to the graph to impose new spatial constraints. 

During loop closure, the animal sees a familiar view again. The 
matched view cell activates, and injects energy into the grid cells and the 
HD cells through the excitatory link. Given that each view is associated 
with a different discrete local view cell, for the long sequence of familiar 
views, the familiar views are successively recalled in correct order 
(Rolls, 2017), and the firing sequences of the grid cells and the HD cells 
are retrieved over time in the neural space. The retrieval of firing states 
from experiences brings mismatch as compared to the current firing 
states of the grid cells and the HD cells. 

To minimize the mismatch in the firing activities, a robust con-
strained non-linear least squares approach is employed to calibrate the 
map representation by optimizing the consistency of the experiences in 
the topological map (Agarwal and Mierle, 2012; Zeng and Si, 2021). The 
consistency of the map is optimized by finding a solution to the 
following problem using the Ceres solver (Agarwal and Mierle, 2012) 

Fig. 2. The software architecture of the SLAM system. Images and odometry information are provided by the sensor/bagfile node. Whether the current view is 
familiar or not is determined by the local view cells node. The grid cell model and the HD cell model are implemented in the Bayesian attractor network node, which 
performs path integration and makes decisions of loop closures. The experience map node achieves the global graph optimization of the experience map. 
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where e is the set of nodes. Each node ei = (xi, yi, θi) contains the spatial 
phase of the grid cell network and the HD phase of the HD network. eij =
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residual block, where fi (⋅) is a cost function and ‖ ⋅‖ is the L2 norm. ρi is a 
loss function, and here Huber Loss is used due to its insensitive to the 
influence of outliers in the optimization of the topological map. More 
specifically, cost function fi (⋅) for a pair of vertices ei and ej connected by 
an edge eij is computed by 
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s.t. 0 ≤ θi < 2π,
0 ≤ θj < 2π, (11)  

where dij is the distance between ei and ej. θrelative is the relative angle 
between matched visual templates and current visual scenes (Ball et al., 

2013). θi and θj are in the range [0, 2π). 

2.3. Firing activity correction by experience 

The firing activities of the grid cells and the HD cells are corrected by 
the change of the topological map during the map optimization. This is 
achieved by mapping the changes in the physical space back to the 
neural manifold. 

2.3.1. Head direction cells 
In the ring attractor network of HD cells, as the neural manifold of 

head directions has the same scale as the directional space in the 
physical environment, the corrected HD phase can be directly calculated 
from head direction changes during map optimization in the physical 
space. The corrected HD phase is given by 

μθ = μ′

θ + mod (θ − θ
′

, 2π), (11)  

where θ′ and θ are the head directions in the physical space before and 
after optimization, respectively. μ′

θ is the HD phase before correction. μθ 
is the HD phase after correction. 

2.3.2. Grid cells 
In the torus attractor network of grid cells, the wrapping of network 

edges allows the representation of infinite large environments by peri-
odic firing activities. Usually, the neural space of the grid cell network 

Fig. 3. Screenshots of SLAM system for iRat Australia dataset. (A) Neural activities of HD cells; (B) Overhead image; (C) Input visual scene (top); the local view 
template and the matched template (bottom); (D) Neural activities of grid cells; (E) Experience map. 
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has a different coordinate system from the reference frame in the 
physical environment. The spatial wavelength of grid fields expressed by 
grid cells is determined by the gain of the velocity input (McNaughton 
et al., 2006). The position changes before and after optimization in the 
physical environment are used to update the grid cells network in the 
neural space. The corrected spatial phase of grid cells is given by 
[

μx

μy

]

=

[ cos(φ) − sin(φ)
sin(φ) cos(φ)

]
⎡

⎣
μ′

x

μ′

y

⎤

⎦

+ mod (

[
x − x′

y − y′

]

vscale, 2π),

(12)  

where (x′, y′) and (x, y) are the positions of the animal before and after 
optimization, respectively. vscale is the gain of velocity input. φ is the 
angle of the rotation transformation from the reference frame in the 
environment to the coordinate system of the neural space. (μ′

x, μ
′

y) is the 
phase of the grid cell network before correction. (μx, μy) is the corrected 
phase of grid cells. This equation also shows the connection between 
physical distance and grid phase distance. 

2.4. Implementation of SLAM system 

We implemented a SLAM system based on the proposed model in 
Robot Operating System (ROS) Indigo on Ubuntu 14.04 LTS (Trusty) 
using C++ language. The software architecture of the SLAM system is 
organized into four nodes as shown in Fig. 2. We reuse the local view 

matching algorithm in OpenRatSLAM system (Ball et al., 2013). 
Visual images and odometry information are provided to our SLAM 

system as inputs by the sensor/bagfile node. The local view cell node 
compares the current image with view templates to determine whether 
the current view is familiar or not. If a familiar view is detected, the local 
view cell node injects calibration currents to the Bayesian attractor 
network node. The Bayesian attractor network node integrates the 
movement and sensory information by simulating the responses of grid 
cell network and the HD cell network. This node also makes decisions 
about the creation of new nodes and links in the experience map. The 
experience map node builds the topological map and optimizes this map 
by graph-based non-linear least-squares approaches. 

2.5. Robot experiment setup 

We tested our method on a publicly available open-source dataset, 
iRat Australia dataset (Ball et al., 2013). The data was collected by a 
miniature mobile robot, called Intelligent Rat animat technology (iRat), 
a tool to investigate spatial navigation and cognition for interdisci-
plinary robotics and neuroscience studies. iRat is similar to a rat in size 
and shape. The dataset was obtained while the iRat robot explored a 
maze of Australian geography that contains prominent Australian 
landmarks. The views from the webcam on the iRat robot were captured 
into a sequence of images (Fig. 3c). The robot explored for approxi-
mately sixteen minutes, and traversed the paths of the maze several 
times. The proposed model gets the image sequence as visual inputs, 
localizes the robot in the maze, and constructs a map of the maze. 

Fig. 4. Map calibration in hippocampus and activity correction in MEC during loop closures are necessary for the formation of globally coherent firing 
maps. (A) Inconsistent representations without map calibration. Top: The summed firing map of the HD cells with north or south preference in the ring manifold. 
Bottom: The firing map of an example grid cell at (0,0) in the torus manifold. (B) Locally anchored representations. Top: Without firing activity correction, the 
summed firing rate map of the HD cells at 0 and π in the ring manifold anchors to local space, preferring particular directions at different part of the environment. 
Bottom: The firing map of the grid cell at (0, 0) in the torus manifold has multiple firing fields, which are anchored to a local region on a rectangular grid. (C) Globally 
coherent representations. Top: With firing activity correction, the summed firing rate map of the HD cells at 0 and π in the ring manifold has strong activity along the 
trajectories orienting towards east and west, showing global coherency across the environment. Bottom: The globally coherent grid pattern of the grid cell at (0,0) in 
the torus manifold has regularly spaced firing field across the whole environment. In each panel, firing rate is plotted at the locations in the experience map. The 
colorbar shown to the right of each panel color-codes peak firing rate with red and silent activity with blue. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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3. Results 

To investigate the role of the hippocampal feedback in the formation 
of globally coherent spatial representations in MEC, we propose a nav-
igation model in which the changes of the hippocampal representation 
during map learning is mapped back to the path integration system in 
MEC. In the path integration system, grid cells and HD cells are modeled 
by Bayesian attractor networks which integrate multisensory motion 
and vision cues by Bayesian inference. The cells in the grid cell network 
and HD network form attractor states to represent the positions and head 
directions of the animal. In the hippocampal cognitive map system, a 
topological map is constructed capturing the attractor states of the path 
integration system as nodes and the transitions between attractor states 
as links. When the animal revisits a familiar place, the detection of the 

familiar scene by view cells allows the establishment of a link to a 
previous node in the map and thus the minimization of the odometry 
errors accumulated along the loop just explored. The change of the to-
pological map is mapped back to the path integration system in MEC and 
corrects the activities of the grid cells and HD cells therein. 

3.1. Disruption of consistent map without map calibration 

On loop closure, the topological map is calibrated to reduce the 
odometry error accumulated during exploration (ref. Section 2.2). 
However, if the map calibration is switched off, the constructed topo-
logical map will not be consistent with the structure of the environment 
(Fig. 4A vs. B). Without map calibration, the nodes in the map are not 
correctly registered relative to each other. The map, therefore, expands 

Fig. 5. HD cells show globally coherent directional selectivity with firing activity correction. (A) Without firing activity correction, the distributions of the HD 
cell activity are not localized. Two cells with opposite preferred directions are shown in columns. Top row depicts firing rate as a function of HD. Bottom row plots 
firing rate histograms. (B) Within each quarter of the exploration time, The activity of the HD cell at 0 concentrates on multiple clusters. Each panel shows one fourth 
of the total firing activity. Red color encodes peak activity and blue encodes zero activity. Some clusters can be fitted by Gaussian functions (red solid lines). (C) With 
firing activity correction, the distributions of the HD cell activity follow bell-shaped distributions during the whole exploration (top). The firing rate histograms in 
polar coordinates reveal strong directional selectivity (bottom). (D) Within each quarter of the exploration time, the HD cell at 0 keeps its preferred direction stable. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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in space since the spatial relationship between the nodes could not be 
bounded in time. To give a quantitative comparison, we calculate the 
size of the experience maps by counting the number of pixels occupied 
by the maps. Without loop closure, the experience map occupied 19.72 
square meters. As a comparison, the map learned with map calibration 
was of 5.23 square meters. Without map calibration, the map was 3.77 
times as the size of the map with calibration during loop closures. 
Although the topological map is not consistent, the firing fields of HD 
cells are globally coherent (Fig. 4A top). The grid cells show coherent 
square grid maps, with firing fields regularly spaced (Fig. 4A bottom). 
Without map calibration, the topological map is not stable due to the 
missing establishment of spatial relationship from the experience. 
Although grid cells and HD cells are able to maintain attractor states, the 
attractor states are subject to odometry errors in new experience until 
the correction from local view cells during loop closures. Map calibra-
tion therefore is critical in the formation of map representations that 
match the topology of the environment. 

3.2. Firing activity correction leads to globally coherent HD maps and grid 
maps 

To investigate the effect of firing activity correction (ref. Section 
2.3), we compare the firing maps of HD cells and grid cells with the maps 
formed when the firing activity correction is switched off with intact 
map calibration (Fig. 4B vs. C). 

Without firing activity correction, HD cells are selective to different 
orientations at different parts of the environment. As shown in the top 
panel of Fig. 4B, the single firing field is continuously expressed in one 
direction until the trajectory is oriented towards different directions. 
However, at the global level, the preferred firing directions of HD cells 
drift, showing different firing directions in different areas (top panel in 
Fig. 4B, central region vs. northeast and southwest regions). As a result, 
the peak firing activities of HD cells scatter in a wide distribution 

(Fig. 5A top). During the whole exploration, HD cells do not show 
selectivity to particular directions (Fig. 5A bottom). Within short time 
windows, however, the peak firing activities are concentrated in a few 
clusters, demonstrating that the anchoring of HD cell activity is only 
locally stable instead of globally coherent (Fig. 5B). 

The local anchoring of the firing pattern can also be observed in the 
firing maps of grid cells when firing activity correction is inactivated 
(Fig. 4B bottom). In local areas, grid cells show multiple firing fields that 
are arranged with respect to each other in a rectangular grid, a structure 
determined by the periodic boundary conditions of the torus manifold of 
grid cells. In each field of the grid map, the firing rate always increases 
first and then decreases gradually. On a global scale, grid fields are 
scattered in the experience map, and do not align into a coherent grid. 
The local anchoring of grid patterns is determined by local sensory cues. 

As a contrast, HD cells and grid cells develop globally coherent firing 
maps with the help of firing activity correction during map calibration 
(Section 2.3). HD cells that are selective to east or west fire along all 
trajectories that are oriented in horizontal directions, thus showing 
globally coherent HD tuning (Fig. 4C top). Grid cells maintain periodic 
square grid across the whole environment. Each firing field is spaced by 
about 0.5 m, the grid-scale determined by the gain of velocity input 
(Fig. 4C bottom). Note that the spacing of grid patterns is preserved 
during firing activity correction (Fig. 4C bottom). The firing activity of 
HD cells follows bell-shaped distributions, showing strong directional 
selectivity. The difference between the distribution centers matches the 
difference between the preferred directions of the cells (Fig. 5C). The 
firing rate maps do not change during exploration, therefore with firing 
activity correction HD cells maintain their directional selectivity stably 
(Fig. 5D). 

To quantify the degree of global coherence of grid maps in space, we 
follow the method in Sargolini et al. (2006) and define rectangular 
gridness score to measure the four-fold symmetry in the autocorrelo-
grams of the grid maps. Rate maps are first binned into two-dimensional 

Fig. 6. Globally coherent grid maps have high degree of symmetry. (A) Firing rate maps; (B) Autocorrelograms of the firing maps; (C) Rectangular gridness score 
estimation. Each row shows the computation of gridness score for grid maps without map calibration (top), without activity correction (middle) and with activity 
correction (bottom). 
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matrixes (Fig. 6A), and then shifted with respect to themselves to 
compute the autocorrelograms in 2D (Fig. 6B). The total correlation 
value along the radial directions in a ring region covering the peaks close 
to the center are computed (Fig. 6C). The 90-degree periodicity in the 
radial correlation value is defined as the rectangular gridness score. 
Without map calibration, the grid firing map has high gridness score 
(Fig. 6 top). This is determined by the attractor dynamics of the grid cell 
network. Without activity correction, the gridness score of firing map is 
low, demonstrating the loss of periodic arrangement of grid fields (Fig. 6 
middle). With activity correction, the grid map shows high gridness 
score, demonstrating global coherence in firing map (Fig. 6 bottom). To 
quantify the degree of global coherence of grid maps in time, we split the 
trajectory into two halves and compute the crosscorrelograms between 
the firing maps of the first half and the second half (Fig. 7). The central 
peak of the crosscorrelogram is evident and strong only with firing ac-
tivity correction, manifesting stable and global coherence of grid maps. 
The process of firing activity correction, therefore, shoves the state of 
grid cells and HD cells in the attractor network to match the topology of 
the environment. 

Map calibration could be a possible computation performed by the 
replay of the hippocampal activity (Gupta et al., 2010; Roux et al., 
2017). During replay, the activity of place cells is rehearsed in a faster 
time scale, and the structural relationship between the place cells could 
be reinforced to reduce the mismatch accumulated during long explo-
ration. Firing activity correction could be achieved by the feedback 
connections from CA1 of the hippocampus to the layer V of MEC, where 
grid cells and HD cells coexist (Witter et al., 2017; Rozov et al., 2020). 
With this feedback input, the attractor states of the MEC network could 
be modified (Agmon and Burak, 2020). Firing activity correction 

constitutes a mechanism to eliminate incoherence of spatial represen-
tations in grid cells and HD cells. It requires reorganizing the repre-
sentation of past experience. Therefore, the formation of globally 
coherent firing maps of grid cells entails the traverse of the whole 
environment, as observed experimentally (Carpenter et al., 2015). 

3.3. Development of grid maps 

Grid cells in the network express firing fields quickly. In each firing 
field, the activity of the cell increases first and then decreases while the 
animal enters and leaves the field (Fig. 8). After loop closure, large 
localization errors are abased by the mechanism of firing activity 
correction, and periodic grid structure is evident in the firing map 
(Fig. 8A). It takes time to traverse the whole environment, but for each 
interval of one-quarter of the dataset, the coherence in grid maps is 
maintained globally across the whole environment (Fig. 8A–D). The 
final experience map (Fig. 8D) captured the spatial layout of the maze 
(Fig. 3B), demonstrating the correct representation of the spatial rela-
tionship between the locations in the environment. 

3.4. Coverage of space with globally coherent firing maps 

The HD cells in the HD cell network fire in different directions 
depending on their preferred HDs (Fig. 9A). The firing fields of each HD 
cell are coherently laid down along the same direction in the environ-
ment, demonstrating globally coherent HD tuning in the environment. 
The differences between the firing directions of the HD cells match the 
relationship between the preferred directions of the cells. The example 
HD cells, shown from top to bottom in Fig. 9A, express firing fields 

Fig. 7. With firing activity correction, grid cells maintain globally coherent grid maps. Each row shows one example grid cell for the three conditions 
respectively. Left column: firing rate maps of the example grid cells during the first half of exploration. Middle column: firing rate maps of the example grid cells 
shown in the left during the second half of exploration. Right column: the crosscorrelograms between the firing rate maps of the first half and the second half of each 
cell. With firing activity correction (bottom row), the crosscorrelogram of the example grid cell has peek in the center and high degree of spatial symmetry, con-
firming stable grid codes over time. Without loop closure or firing activity correction (two rows on the top), the central peaks of the crosscorrelograms are weak, 
demonstating the loss of stable or globally coherent grid patterns. 
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orienting towards east, north, west, and south respectively. The 
increasing firing directions in steps of 90◦ are in accordance with the 
increasing coordinates, i.e. 0, π

2, π, and 3π
2 , of the cells in the ring 

manifold. 
We also select four different grid cells in the torus manifold, i.e. (0, 

0), (π
2,

π
2), (

3π
2 ,π), and (2π,3π

2 ), and show their firing maps in Fig. 9B. Grid 
cells in the network have different firing locations, forming a full 
coverage of the environment. The firing maps of the example grid cells 
share the same spacing and orientation, since they are in the same 
module. The grid cells in the model encode the environment with 
various phases, which is consistent with experimental results (Hafting 
et al., 2005; Stensola et al., 2012). 

3.5. Multiscale representation of space with globally coherent grid maps 

In addition to various spatial phases (Fig. 9), grid cells in the model 
show different grid spacings if the gain of velocity inputs are chosen 
differently (ρ in Eq. (8)). The firing rate maps of three example grid cells 
from different modules are shown in Fig. 10. As the gain parameters ρ 
decreases, the spacings of the grid maps increase from 0.5m to 1.5m, 
covering the range of typical grid-scale observed in experiments (Brun 
et al., 2008; Stensola et al., 2012). 

4. Discussion 

We proposed a navigation model in which grid cells and HD cells 
form globally coherent representations of space. The firing maps of grid 

cells and HD cells are easily anchored to visual features in the local space 
of the environment on the first visit. During the revisit of a place, the 
familiar visual features provide error correction inputs to calibrate the 
activity states of grid cells and HD cells by Bayesian integration through 
loop closures in the cognitive map. A topological map, containing the 
phases of network activities as nodes and the transition between phases 
as links, is constructed and calibrated by minimizing the odometry er-
rors. Globally coherent spatial firing maps require the correction of ac-
tivity state by matching the changes in map calibration. The globally 
coherent spatial codes serve as an accurate spatial metric for navigation. 
We tested the model on a rat-like miniature robot exploring a natural-
istic environment (iRat 2011 Australia dataset) (Ball et al., 2013). Our 
results demonstrated that to form universal metric representations in 
complex environments, grid cells and HD cells require revisits of 
explored places. While revisiting the explored places, visual cues could 
minimize odometry errors of mental cognitive map and the network 
states of the model could be corrected to form globally coherent firing 
maps. 

Due to de design of the maze, the movement of the robot was 
restricted in paths that connect the landmarks. Within the restricted 
paths explored by the robot, grid cells in the model show regular grid 
patterns. The setup of the robot experiment mimics the initial explora-
tion patterns of mice in environments near their ecological habitants. In 
free exploration, mice often repeat familiar paths to the frontiers of 
exploration and start to acquaint unknow territory (Dong et al., 2021). 
After sufficient exploration, the trajectories of the agent cover the whole 
environment. With the mechanisms of map calibration and firing 

Fig. 8. Development of the firing map of a grid cell.. (A), (B), (C) and (D) show the firing map of one example grid cell for each interval of one quarter of the 
exploration. During exploration, the grid map develops and is maintained coherent globally by correcting localization through the feedback from cognitive map. 
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Fig. 9. Global coherent representations with various phases. (A) Global coherent HD representations. The firing maps of four example HD cells are shown. The 
cells are at 0, π2, π, and 3π

2 in the ring manifold from top to bottom. (B) Global coherent grid representations. Each panel shows the firing map of one example grid cells. 
From top to bottom, the grid cells are at (0, 0), (π

2,
π
2), (

3π
2 , π), and (2π, 3π

2 ) in the manifold. 
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activity correction, grid cells and HD cells in the model are still able to 
anchor attractor states to external landmarks resulting in global 
coherent firing maps. 

4.1. Related works 

The computational mechanism underlying spatial navigation is an 
intriguing research topic both in neuroscience and machine intelligence 
(Widloski and Fiete, 2014). Kalman filters are widely used in artificial 

agents to estimate the positions of the agent and the landmarks it 
observed in the environment (Dissanayake et al., 2001; Aulinas et al., 
2008). By assuming a joint Gaussian distribution of the positions, Kal-
man filter recursively update the mean of the distribution as the state of 
the system, as well as the covariance matrix of the state (Huang and 
Dissanayake, 2007). Our model is a neural approximation of Kalman 
filter, with the essential components of sate transition, uncertainty 
representation and error correction. Different from the Kalman filter 
framework, our model decouples the state of the agent and the state of 
the landmark. The state of the agent is tracked in MEC by grid cells and 
HD cells. The landmarks are processed in visual areas by local view cells. 
The relationship between the locations is updated in the hippocampus 
resulting in a topological map. Our model focuses on cognitive map 
learning in spatial navigation tasks. Recently, a more general model, the 
Tolman-Eichenbaum Machine, was proposed to learn relational maps 
both in spatial domains and in abstract conceptual spaces (Whittington 
et al., 2020). In this model, the computational mechanisms of the 
hippocampal-entorhinal system could efficiently extract the structural 
knowledge across environments and bind with environment-specific 
sensory information. The hippocampal-entorhinal system therefore 
supports the understanding of the environment by learning the transi-
tional relationship between entities therein. 

4.2. Hippocampal-entorhinal interaction 

Vestibular inputs are prone to noise and would result in accumulated 
errors. Visual and boundary features provide strong anchoring cues for 
grid cells and HD cells, and would distort their firing maps (Barry et al., 
2007; Derdikman et al., 2009; Knight et al., 2012; Krupic et al., 2015; 
Stensola et al., 2015). Previous models suggest the integration of 
vestibular cues (McNaughton et al., 2006; Fuhs and Touretzky, 2006; 
Yoram Burak and Ila R Fiete, 2009; Si et al., 2014) and visual cues 
(Franzius et al., 2007; Raudies et al., 2012) as an important mechanism 
of stable grid cell firing activity. In this study, we show that the interplay 
between the path integration system and the cognitive map system is 
important in forming globally coherent spatial representations (Fig. 11). 
The interaction between these two systems affects the dynamics of 
spatial representations, and could be one critical driving force for the 
update of the spatial codes (Carpenter et al., 2015; Ziv et al., 2013; 
Rubin et al., 2015). On the one hand, the firing patterns of grid cells and 
HD cells are stabilized by sensory cues in the environment. On the other 
hand, the firing activity of grid cells and HD cells is corrected by the 
changes of the cognitive map during the revisit of familiar places. The 
corrected HD and grid firing activities are consistently anchored to 
external reference frames. These globally coherent patterns provide 
necessary information for mammals to identify the relative positions of 
the places in the environment. The experience-dependent interaction is 
implemented by the recurrent circuit between the hippocampus and 
entorhinal cortex, and should be viewed as a whole system while we 
investigate the mechanisms of spatial memory, which is likely to be 
critical in understanding spatial memory, even episodic memory (Barry 
et al., 2007). 

To pin down the role of the interaction between the cognitive map 
system and the path integration system, we inactivated the map cali-
bration mechanism (Section 2.2) and the activity correction mechanism 
(Section 2.3) selectively. If the map calibration was switched off, the 
activities of grid cells and HD cells drifted, and the cells did not show 
stable firing fields (Fig. 4). This explains the fact that grid codes require 
hippocampus (Bonnevie et al., 2013), functioning as associative 
anchoring codes (Mulas et al., 2016). If the activity correction was 
inactivated, grid cells and HD cells lost global coherence in their firing 
maps (Fig. 4), resulting in locally anchored representations. In our 
model, globally coherent firing maps develop very quickly (Fig. 8) as 
compared with the gradual and continuous build-up process found in 
rats (Carpenter et al., 2015). This might due to the fact that the envi-
ronment in our experiments is composed of restricted paths on a 

Fig. 10. Global coherent grid maps with various spacings. (A), (B), and (C) 
show firing maps of three grid cells from three grid modules, with grid spacing 
0.5m, 1.0m, and 1.5m, respectively. 
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two-dimensional plane. In open field environments, it would take a 
longer time for the model to form globally coherent firing maps. 

4.3. Neural correlates of spatial learning 

Our model is consistent with recent anatomical and neurophysio-
logical findings. Hippocampus sends feedback projections to layer V of 
MEC, where grid cells and HD cells are abundant (Witter et al., 2017; 
Rozov et al., 2020). Hippocampal activity such as from spatial view cells 
in the CA3 region of the hippocampus (Rolls, 2017) may be relayed by 
this projection to MEC, and functions as activity correction signals for 
grid cells and HD cells. The replay of the hippocampal activity during 
exploration could support map calibration (Gupta et al., 2010). 

In our model, map calibration happens when the animal detects a 
loop closure. Map calibration is naively modeled by optimizing the 
consistency of the spatial relationships between the nodes in the topo-
logical map. It could be implemented by more biological models (Evans 
and Burgess, 2019; Fukushima et al., 2021). Animals often explore en-
vironments with intermittent locomotion, which allows them to inves-
tigate environment features and possibly mental adjustment of internal 
representations in an offline manner (Monaco et al., 2014). Map cali-
bration may correspond to SPW-Rs of the hippocampus when the animal 
is in awake rest. Experimental studies have shown that in spatial 
learning tasks longer-duration waking SPW-Rs occur more frequently in 
novel environments than in familiar environments (Fernández-Ruiz 
et al., 2019). In addition, artificial prolongation of ripples improves 
memory performance. It is very likely that waking SPW-R is an impor-
tant mechanism to rehearse past experiences in order to reduce error in 
map learning and facilitate action planning in reinforcement learning. 
The activity correction mechanism in the model might correspond to the 
propagation of SPW-Rs to MEC. There are accumulating evidences 
showing that deep layers of MEC show coordinated oscillations triggered 
by hippocampal SPW-Rs (Chrobak and Buzsáki, 1996; Staresina et al., 
2019). This feedback oscillatory inputs may play functional role in 
changing the population activities in MEC. 

The cognitive map in the model is based on graph representation for 
simplicity. To better model the learning of cognitive map, neural net-
works of place cells should be adopted (Wagatsuma and Yamaguchi, 

2007; Zhao et al., 2020, 2021). Place cells integrate spatial inputs from 
multiple grid cell modules as well as contextual inputs from lateral en-
torhinal cortex. Through the feedback connections from the hippo-
campus to the entorhinal cortex, place codes in the hippocampus 
provide modulatory inputs to shift the attractor states of grid cells 
gradually and continuously, so that globally coherent representations of 
the environment is reached. 

The proposed model only considers path integration system in the 
MEC. Besides the inputs from MEC, the hippocampus also receives 
substantial inputs from subcortical structures, such as nucleus reuniens 
and anterior claustrum. These inputs contribute to the formation of 
cognitive map in hippocampus. In the maze composed of parallel com-
partments where salient local visual cues are missing, hippocampal cells 
form similar place fields in each of the parallel compartments due to the 
reliable inputs from boundary-encoding cells in the nucleus reuniens 
and anterior claustrum (Grieves et al., 2016; Harland et al., 2017). If the 
HD cell network is disrupted, MEC may not provide stable attractor 
states for hippocampus, and leads the hippocampal place cells to repeat 
stereotypical place fields in each compartment, even when the com-
partments are arranged radially (Harland et al., 2017). 

5. Conclusion 

The ability of determining the distance between places in any envi-
ronment is critical for navigation. Grid cells in the entorhinal cortex fire 
at multiple locations that are regularly spaced on triangular grids in 
open fields. The firing maps of grid cells are anchored in environments 
coherently, keeping the relative spatial relationship of each grid map 
fixed. The population activity of grid cells may provide a universal 
metric for spatial navigation in large-scale space. Recent experimental 
results show that grid maps in complex environments are anchored to 
local space before they are transformed to globally coherent firing maps 
with long exploration. In this work, we propose a navigation model to 
underscore the mechanisms underlying the transformation from locally 
anchored maps to globally coherent representations. Our model suggests 
that the experience-dependent interactions between the entorhinal 
cortex and the hippocampus play a critical role in setting up the globally 
coherent firing maps in the entorhinal cortex. Grid cells indeed are able 

Fig. 11. The interaction between the path integration system in the entorhinal cortex and the cognitive map system in the hippocampus.  
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to provide a universal spatial metric for mammalian spatial navigation 
in complex environments, after familiarization of the environment. 
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