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Abstract: Fine airborne particulate matter (PM2.5) has adverse effects on human health. 

Assessing the long-term effects of PM2.5 exposure on human health and ecology is often 

limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not 

systematically measured until August, 2005. Due to the popularity of geographic 

information systems (GIS), the landuse regression method has been widely used in the 

spatial estimation of PM concentrations. This method accounts for the potential 

contributing factors of the local environment, such as traffic volume. Geostatistical 

methods, on other hand, account for the spatiotemporal dependence among the 

observations of ambient pollutants. This study assesses the performance of the landuse 

regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, 

this study integrates the landuse regression model with the geostatistical approach within 

the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic 

framework can assimilate knowledge bases including: (a) empirical-based spatial trends of 

PM concentration based on landuse regression, (b) the spatio-temporal dependence among 

PM observation information, and (c) site-specific PM observations. The proposed approach 

performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan)  

from 2005–2007. 
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1. Introduction 

Numerous studies over the last two decades indicate that the air quality measure of fine PM 

particles (PM2.5, particulate matter particles with an aerodynamic diameter ≤2.5 µm) can be more 

indicative of potential threats to human health than the commonly and long-used air quality measures 

of coarse particles, i.e., PM10 (particulate matter particles with an aerodynamic diameter ≤10 µm) and 

total suspended particles (TSP). An increase in long-term exposure to PM2.5 is closely associated with 

increased mortality and diseases, such as lung cancer and cardiopulmonary disease [1-4]. Despite the 

long history of air quality monitoring throughout the entire island of Taiwan from 1983, and much like 

many other countries, its PM2.5 monitoring network did not begin to operate systematically and 

regularly until August 2005. The lack of long-term PM2.5 measurements prevents epidemiologists from 

assessing the chronic health effects of long-term exposure to PM2.5. Geostatistical techniques have 

been applied to estimate the spatiotemporal distributions of PM2.5 before the establishment of PM2.5 

monitoring networks [5-8]. The ratio of PM2.5/PM10 is often used as an important indicator to 

characterize the underlying atmospheric processes within the local environment [7,8]. However, 

PM2.5/PM10 ratios can vary with time and space, depending on the landuse and emission patterns of the 

space-time location. For example, these ratios are approximately 0.69 and 0.52, respectively, in the 

urban and suburb areas of Shanghai (China) [9], about 0.45 among five different Asian regions 

(Australia, Hong Kong, Korea, Philippines, Vietnam, and Japan) [10], and range from 0.39 to 0.69 in 

urban and semi-rural areas of the United States [11]. Previous research provides a summary of 

PM2.5/PM10 ratios in megacities around the world [12]. Intra-urban ratios change significantly in Taipei, 

with a PM2.5/PM10 ratio of approximately 0.82 around the Bei-tou incinerator [13], 0.68 in high traffic 

areas, and 0.57 in downtown areas [14]. 

The spatial and temporal variation of PM2.5, PM10, and other air quality levels in Taiwan are 

generally high due to their high association with local emission patterns and meteorological conditions. 

Recent developments have been focusing on quantifying the levels of PM2.5, PM10, and other air 

quality observations using the surrogates of local emissions [15,16]. The landuse regression technique 

(LUR) has been widely applied to determine the linear relationship between air quality measures and 

landuse information and generate air quality maps with high spatial resolution [17-21]. In general, 

LUR air quality maps can delineate the significant contributions of certain geographical objects, such 

as highways. However, due to changes in meteorological conditions and limited landuse information, 

the quantitative results of air quality levels by LUR can vary from time to time. Therefore, the LUR is 

generally used to quantify the long-term average air quality levels in space [20-23]. Studies show that 

landuse information also plays an important role in the variation of the PM2.5/PM10 levels due to traffic 

and road emissions [24,25]. This is because the influence degree to PM2.5 and PM10 varies across 

different local landuse patterns. In addition, the temporal variations of PM2.5/PM10 resulting from the 

change of meteorological conditions can be less significant than the direct observations of PM2.5 and 

PM10. These characteristics make the PM2.5/PM10 ratio a proper surrogate of air quality patterns, which 

quantify the contributions of spatial variations in landuse patterns. However, relatively few studies 
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investigate the relationship between the PM2.5/PM10 ratios and landuse information. 

This study investigates the spatiotemporal distribution of PM2.5 across the Taipei area from  

2005–2007 by integrating the information of PM10 and landuse information. This study uses LUR to 

establish a quantitative relationship between PM2.5/PM10 and landuse information. The Bayesian 

maximum entropy (BME) method is then used to assimilate the PM2.5 and the secondary information 

from the LUR analysis. The comparison is made by assessing the improvement of PM2.5 prediction 

accuracy with the incorporation of the secondary information, i.e., geostatistical estimation by (1) only 

PM2.5, (2) both PM2.5 and PM10 and (3) PM2.5, PM10 and landuse information. 

2. Materials 

2.1. Study Area 

Taipei, including Taipei city and Taipei county, is the largest metropolitan area in Taiwan, and has 

a vehicle density as high as 6,000 vehicles per km
2
. In addition to traffic emissions, three incineration 

plants are major sources of pollutants in the area [26].  

The Taipei area is bounded by mountains, i.e., Yangming Mountains to the north, Linkou mesa to 

the west, and a ridge of the Snow Mountains to the southeast. These mountains form the second largest 

basin of the island (Figure 1). This basin topography increases the concentration level of ambient 

pollutants and creates a high contrast between the urbanization of the basin floor in Taipei and the 

surrounding mountain areas. 

2.2. Ambient Pollutant Data 

An island-wide monitoring network operated by Taiwan Environmental Protection Agency 

(TWEPA) regularly records ambient pollutants, i.e., criteria pollutants such as PM, ozone, NOx, CO, 

SO2 [27], and meteorological variables. There are 18 TWEPA stations within the Taipei metropolitan 

area, and these stations recorded both PM2.5 and PM10 from 2005–2007. Table 1 summarizes the PM2.5 

and PM10 statistics.  

Table 1. Summary of statistics of hourly PM10 and PM2.5 observations from 2005–2007 

(unit: µg/m
3
). 

Pollutants Average Standard deviation Median Minimum Maximum 

PM2.5 28.92 8.48 28.29 9.31 81.60 

PM10 54.24 33.26 47.04 0.83 598.25 

In addition, the Department of Environmental Protection and the local governments of Taipei city 

and Taipei county (TPEDEP) have independently collected PM data since 1970 and 1990, respectively. 

However, only the Taipei city government records PM10 on a daily basis at its eight stations. This 

study uses the PM2.5 and PM10 data from both central and local governments to estimate the monthly 

PM2.5/PM10 ratios at every PM station (Figure 2). This study aggregates the PM2.5 and PM10 data into 

monthly data following the procedure suggested by USEPA [28]. The monthly PM2.5 levels at the 

TPEDEP stations were estimated by the BME method as discussed below with only PM2.5 
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observations. The estimated monthly PM2.5 and PM10 were then used to obtain the spatiotemporal 

distribution of PM2.5/PM10 ratios for all stations from 2005–2007. The other observed ambient 

pollutants, i.e., CO, NO2, SO2, and O3, were used as the emission indicators, as discussed below. 

Figure 1. The highways, rivers, and topography in the Taipei metropolitan area. 
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2.3. Landuse Data 

The National Land Surveying and Mapping Center (Taiwan) conducted a comprehensive landuse 

surveying of the entire Taipei area in 2007. This survey includes nine major classes of land usage, 

including agriculture, forest, traffic, water, buildings, utilities, recreation areas, mining areas, and 

others, i.e., transportation data discussed below. Each of the major landuse categories mentioned above 

includes more detailed classifications [29] This study analyzes the potential major or minor landuse 

classes that may have positive or negative effects on the air quality levels. The selection criteria 

include significant variables identified in previous studies, e.g., roads, and insights from local  

experts [30], e.g., motorcycles. The selected landuse classes include the areas of farms, forests, railroad, 

freeway, highway, roads, ports, government institutions, school, commerce, residence, industry, 

hospital, social welfare facilities, public utilities, and parks.  

Figure 2. Spatial distribution of PM10 and PM2.5 monitoring stations in Taipei. 
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Figure 3. Spatial distribution of landuse patterns in Taipei area. 
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Figure 3 shows the spatial distribution of some landuse classes in Taipei. This figure clearly shows 

that city development is concentrated in the plains of the Taipei basin floor. In addition, this study 

generates spatiotemporal traffic information by uniformly assigning the recorded number of various 

registered vehicles [31,32] to the study area based on the road areas identified by the landuse data. The 

vehicle types of this analysis include motorcycle, bus, passenger car, and truck.  

3. Methods 

This study uses a landuse regression method to determine the relationship between PM2.5/PM10 and 

local emission-related information. The emission-related information in this study includes non-PM 

ambient pollutants and landuse data. Local emission-related data are derived by GIS functions which 

estimate this size or area of selected indicators within the specified spatial buffers. Various spatial 

ranges of buffers are used for landuse information surrounding the PM2.5/PM10 data (i.e., 0–50 m,  

50–100 m, 100–300 m, 300–500 m, and 500–1,000 m) to determine the different ranges of transport 

processes produced by different types of emissions. The relationship between the sizes/proximity of 

local emission-related data and PM2.5/PM10 ratios is assumed to be homogeneous over the entire study 

area, and can therefore be formulated in a linear form. Multivariate stepwise regression analysis was 

performed to select the most significant regressors and estimate their associated parameters. Due to the 

high linear dependencies among the selected emission-related variables in the landuse regression 

model, this study uses the variance inflation factor (VIF) to identify multicolinearity among the 

regressors and avoid potentially dubious results from the analysis [33]. This study uses SPSS software 

for landuse regression analysis.  

The BME method mathematically represents air pollution attributes (i.e., PM measurements and 

ratios) in terms of spatiotemporal random fields (S/TRF; [34]). Let tXX ,sp   denote a S/TRF of an air 

pollution attribute, where the vector ),( tsp   denotes a spatiotemporal point ( s  is the geographical 

location and t  is the time). The S/TRF model is a collection of all physically possible realizations of 

the attribute to be represented mathematically. The S/TRF model is fully characterized by its 

probability density function (pdf), 
KBf , where the subscript KB denotes the ‘knowledge base’ used to 

construct the pdf. In particular, BME considers a distinction between: (a) the general KB, denoted by 

G-KB, and (b) the site-specific KB, S-KB. The total KB is denoted as SGK  , i.e., it includes both 

the general and the site-specific KB. The fundamental BME equations are as follows (for technical 

details, see [35,36]): 
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where g  is a vector of g -functions ( ,...2,1 ) that stochastically represents the G-KB under 

consideration (the bar denotes statistical expectation), μ  is a vector of  -coefficients that depends on 

the space-time coordinates and is associated with g  (i.e.,   expresses the relative significance of 

each g -function in the composite solution sought), Sξ  represents the S-KB available, A  is a 

normalization parameter, and 
Kf  is the pollutant pdf at each space-time point (the subscript K means 

that 
Kf  is based on the blending of the core and site-specific KB). The terms g  and Sξ  the inputs in 

Equation (1), whereas the unknowns are the μ  and 
Kf  across space-time.  
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The G-KB refers to the entire p -domain of interest, which consists of the space-time point vector 

kp , where attribute estimates are sought, and the point vector datap , where site-specific information is 

available. The G-KB may include theoretical space-time dependence models (mean, covariance, 

variogram, generalized covariance, multiple-point statistics, and continuity orders) of the air pollution 

attribute pX  [37,38]. The S -KB includes physical data dataχ  obtained at points ip  ( mi ,...,2,1 ) of 

the specified geographical area, i.e., the various kinds of PM measurements or ratios are considered 

part of the S -KB and are expressed by ),,...), 1softharddata mS ((  χχχ : where the ),...,( 1hard hmχ  

denote hard data at points ip  ( hmi ,...,2,1 ) that are exact PM measurements (i.e., the hardχ  occur with 

probability one); and the ),...,( 1soft mmh
 χ  denote soft data at points  

ip  ( mmi h ,...,1 ) that may include uncertain evidence and secondary information. This study 

represents the soft PM data from landuse regression model in the interval, SI , i.e., 

 mmiulI hiiii ,...,1],,[:soft χ ; For other examples of soft data, see [39,40]. 

This study characterizes both PM2.5, tsX ,  and PM10, tsY , , concentrations by S/TRF. The PM2.5/PM10 

ratio can be represented as tststs YXr ,,,  , where t  is the time in months during the period 2005–2007. 

The values of tsr ,  can be estimated monthly at each PM monitor station based on the recorded or 

estimated PM data. The monthly tsr ,  of PM2.5/PM10 ratios were calculated at the monitoring stations 

where daily PM2.5 and PM10 data are both available and the eight PM10 stations operated by TPEDEP 

where only daily PM10 data was observed. During the study period, the pr -values at the stations were 

assumed to be an empirical function of the emission-related indicators by LUR. The spatiotemporal 

distribution of the ratios across the study area is estimated based on this empirical relationship and the 

citywide emission information obtained using ArcGIS 9.2. Note that the uncertainty is prevalent in the 

estimation of spatiotemporal distribution of the ratios. The ratios at each space-time location are 

assumed to be uniform-distributed with intervals of  )ˆ(ˆ),ˆ(ˆ
,,,, tstststs rSDrrSDr  , where tsr ,

ˆ  and 

)ˆ( ,tsrSD  represent the ratio estimation and its standard deviation from LUR, respectively. The 

multiplication of PM2.5/PM10 ratios and PM10 generates an uncertain spatiotemporal trend of PM2.5. To 

account for the uncertainty in the ratio estimation and subsequent trend estimation in space and time, 

this study uses the BME method for the spatiotemporal estimation of the PM2.5 with the  

uniform-distributed PM2.5 residuals which upper and lower bounds are derived from the intervals of 

trend estimations and the PM2.5 observations. In summary, this study applies the two-stage approach to 

integrate landuse regression and BME methods for spatiotemporal PM2.5 estimations, in which landuse 

regression is used to characterize the spatial variability of PM2.5, i.e., ratios, and BME performs later 

by assimilating the uncertainty by landuse regression and the spatiotemporal dependence for the 

modeling of spatiotemporal PM2.5 distribution. 

4. Results 

Table 2 lists the selected variables from the emission-related dataset in LUR model by the stepwise 

regression method. This table lists variables by the rank of their significance to the variation of 

PM2.5/PM10 ratios. Most of the selected variables can elevate the level of PM2.5/PM10 ratios. The road, 

forest, industrial area, and park landuse patterns has the greatest effect on increasing the PM2.5/PM10 

ratios. Most selected ranges of the variables are 500 m–1,000 m.  
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Table 2. Coefficients of selected variables of LUR model. 

Variable (m
2
) Spatial Buffer (meters) Coefficient (10

−7
) 

Road 500–1,000 6.608 

Forest 500–1,000 2.552 

Industry 300–500 33.11 

Park 500–1,000 8.745 

Railroad 0–50 10,000 

Government institutions 100–300 117.2 

Park 300–500 −21.13 

Public Equipment 100–300 493.3 

Bus 0–50 20,000 

Public Equipment 0–50 815.4 

Port 500–1,000 48.45 

This implies that the level of PM2.5/PM10 represents the general air quality patterns of the area 

surrounding the monitoring stations rather than the direct emission impact from the short distances. The 

only selected variable that shows the ability to reduce PM2.5/PM10 values is the park landuse pattern, 

which ranges between 300 m and 500 m. Note that most traffic information is not included in the model 

due to multicollinearity with the spatial distribution of road area. The exception is the bus volume, which 

can increase the local ratio level within.  

The spatiotemporal distribution of monthly PM2.5 can be obtained by multiplying the empirical 

functional of landuse information, i.e., the LUR model and PM10 variation in space and time. However, 

the spatiotemporal dependence among the PM2.5 is not considered. This study integrates the BME 

method with LUR to model the high frequency part of the PM2.5 variation in space and time, i.e., the 

unexplained PM2.5 noise in the LUR model. The high frequency part of spatiotemporal variation of 

PM2.5 is characterized by the stationary nested covariance shown below (see Figure 4):  

)
3

exp()
3

exp()
3

exp()
3

exp(),(
22

1

11

0

trtr aa

h
c

aa

h
chc


     (2) 

where [c0,c1]=[10.5, 3.729], [ar1,ar2]=[11.092 km, 50 km] and [at1,at2]=[3 month, 50 month]. The BME 

method integrates the probabilistic data of PM2.5 residuals and spatiotemporal covariance model in 

Equation (2) to generate the monthly spatiotemporal distributions of PM2.5 from 2005–2007.  

This study compares the modeling of spatiotemporal PM2.5 distribution using the kriging method, 

LUR method, and the integration of LUR and BME methods, respectively (Table 3). The kriging 

estimation is based upon the modeling of PM2.5 observations directly, and ignores their  

uncertainty [35]. Leave-one cross-validation results show that the LUR model outperforms the kriging 

method in PM2.5 estimations. Furthermore, the BME method can improve the accuracy of PM2.5 

estimation in this study. Figure 5 and Figure 6 show the spatial distribution of estimation performance 

at each PM2.5 observation location by the LUR model and BME method, respectively. 
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Figure 4. Spatiotemporal covariance of PM2.5 (top) pure spatial covariance (bottom) pure 

temporal covariance. 

 

Table 3. Results of cross validation. 

Method 
Mean 

error 

Standard 

Deviation 
Median 

Max value 

of error 

Min value 

of error 

Landuse + BME 2.1560 2.0584 0.0889 8.4393 −15.390 

Landuse 2.7865 2.5685 −0.1035 10.8316 −16.6528 

kriging 3.1816 2.7798 −0.006 14.3380 −15.7980 

 

Figure 7 shows the temporal variation of monthly PM2.5 observations and their estimations by 

BME method at the four selected locations, i.e., Yungho, Cailiao, Sijhih, and Yangming. The selected 

locations represent different parts of Taipei area. 
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Figure 5. Spatial distribution of relative error of PM2.5 estimations by LUR model. 

 

Figure 6. Spatial distribution of relative error of PM2.5 estimations by the integration of 

LUR and BME methods. 
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Figure 7. A comparison of PM2.5 observations and estimations at four PM2.5 stations:  

(A) Yungho station, (B) Cailiao station, (C) Sijhih station, and (D) Yangming station. 

 



Int. J. Environ. Res. Public Health 2011, 8         

 

 

2165 

5. Discussion 

This study uses the BME method to integrate the LUR model in the prediction (estimation) of fine 

particulate matter concentrations across space-time in the Taipei metropolitan area. This 

implementation of BME theory allows this study to determine attribute distributions in a composite 

space-time domain without restrictive or unrealistic assumptions (such as linearity, normality, 

independency etc.). The general knowledge base of the BME method used to characterize the general 

pattern of PM2.5 is based on the empirical relationship between landuse information and the LUR 

model. Many studies [18,20,41] show that the LUR is able to produce high-resolution air quality maps 

and address the effects of each landuse pattern. However, updating a landuse database often requires 

tremendous efforts, making it difficult to update the information of landuse changes over time. To 

characterize the general pattern of PM2.5 in space and time, the emission-related database in this study 

includes the variables of non-PM ambient pollutants and traffic information, which change over time 

and are considered to be highly associated with the level of PM2.5. As a useful indicator of local 

emission patterns [7,8], this study determines PM2.5/PM10 ratios based on landuse distribution and 

some LUR model emission information mentioned above. As expected, most of the significant 

variables in the LUR model of ratios are pure spatial information, i.e., certain landuse patterns within 

the certain distances from the observation locations. This implies that the spatial variation of 

PM2.5/PM10 ratios exceeds its temporal variation, i.e., the effects of landuse data to PM2.5/PM10 ratios 

in Taipei are more important than other temporal factors, such as meteorological and seasonal effects. 

In addition, the monthly ratios mostly characterize the general emission pattern. Therefore, the ranges 

with greatest size of area at each neighborhood appear most frequently in this study. The factors 

included in this study are mostly variables which can increase the level of ratios. Some of the potential 

variable can significant reduce the level of ratios are selected, e.g., forest and park. Among them, the 

contradiction of the park effect from different ranges may be due to the common spatial distribution of 

the urban setting in Taipei, in which major parks are commonly located near high-density urbanized 

areas. Thus, only locations immediately next to parks can enjoy have the advantages of the park’s 

ability to improve air quality. As for areas situated further from the parks, the air quality levels can 

easily be elevated by other contributing factors. This is partially responsible for the high variability of 

PM2.5 levels, which can increase significantly based on local emissions and decrease significantly 

when emission sources are removed. 

Covariance analysis shows that the PM2.5 exhibits two spatiotemporal interactions with different 

space-time ranges. These interactions represent the local and long-term transport patterns of fine 

particulate matter over the Taipei area with the two distinct space-time ranges: [11 km, 3 months]  

and [50 km, 50 months]. The dominant process of PM2.5 distribution is the local transport with spatial 

and temporal extents of 11 km and 3 months. The spatial extent considers the size of highly-urbanized 

areas, while the temporal range shows how seasonal effects play an important role in the concentration 

level of PM2.5. The variability of long-term process can result from the mass dispersion over the 

continents, such as dust storms, due to certain meteorological conditions [42-45].  

Figure 4 and Figure 5 show the spatial distributions of performance assessment for the LUR and 

BME methods. Results show that both analyses obtain similar spatial patterns of accuracy distribution, 

and can perform relatively better in areas with better PM observations. The analysis of the LUR model 
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assumes a homogenous relationship between landuse information and PM observations across space 

and time. However, the heterogeneity of the statistical relationship between the landuse and PM 

concentration may vary from location to location due to distinct causality between analysis attributes. 

This spatial unbalance of information support causes the homogeneous relationship address the area of 

abundant information better. This results in distinct performance differences between the central and 

boundary areas in spatial distribution of cross-validation results of the LUR and BME methods, 

especially in Figure 4. Though the BME method shares the same spatiotemporal patterns as the LUR 

model, the inclusion of spatiotemporal dependence in the BME method reduces the effects of 

unbalance information and improves the estimation accuracy, as Figure 5 shows. 

Table 3 shows the advantages of integrating landuse information in spatiotemporal estimation in 

PM2.5. Cross-validation comparison shows that the LUR model offers greater improvement than the 

kriging method, i.e., the most-widely used geostatistical method. The LUR and kriging methods only 

consider landuse information and spatiotempral dependence among PM2.5, respectively. Table 3 shows 

that the BME method achieves the smallest mean square error, standard deviation, and other statistics 

in PM2.5 estimation errors. Figure 6 compares the temporal distribution of PM2.5 observations and 

BME estimations for four selected locations. The four locations were selected to represent the East, 

South, West, and North parts of the city, respectively. Results show that, for all locations, the BME 

estimations generally achieved good agreement with the PM2.5 observations.  

6. Conclusions 

This study discusses the application of spatiotemporal statistics to science-based PM2.5 mapping in 

Taipei. The main goals of the BME method are to generate PM2.5 maps in a composite space-time 

domain, in which the core knowledge in the form of empirical laws by LUR model with the 

informative secondary information derived from landuse data. Results show that incorporation of  

multi-sourced soft and hard information through BME analysis and mapping can effectively improve 

the accuracy of PM2.5 estimation across space-time. This analysis demonstrates the most influential 

landuse patterns elevating PM2.5 levels. In addition, the two dominant space-time mechanisms 

underlying PM2.5 space-time distributions in Taipei include local and long-term transport processes. 
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