
fgene-11-00917 August 5, 2020 Time: 18:39 # 1

ORIGINAL RESEARCH
published: 07 August 2020

doi: 10.3389/fgene.2020.00917

Edited by:
Daniela Besozzi,

University of Milano-Bicocca, Italy

Reviewed by:
Matteo Re,

University of Milan, Italy
Claudia Cava,

Institute of Bioimaging and Molecular
Physiology, National Research

Council, Italy
Mattia Pelizzola,

Italian Institute of Technology (IIT), Italy

*Correspondence:
Yongcui Wang

ycwang@nwipb.cas.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 18 April 2020
Accepted: 23 July 2020

Published: 07 August 2020

Citation:
Yuan R, Chen S and Wang Y

(2020) Computational Prediction
of Drug Responses in Cancer Cell

Lines From Cancer Omics
and Detection of Drug Effectiveness

Related Methylation Sites.
Front. Genet. 11:917.

doi: 10.3389/fgene.2020.00917

Computational Prediction of Drug
Responses in Cancer Cell Lines
From Cancer Omics and Detection of
Drug Effectiveness Related
Methylation Sites
Rui Yuan1,2, Shilong Chen1,3 and Yongcui Wang1,4*

1 Key Laboratory of Plateau Biological Adaptation and Evolution, Northwest Institute of Plateau Biology, Chinese Academy
of Sciences, Xining, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Institute of Sanjiangyuan National
Park, Chinese Academy of Sciences, Xining, China, 4 Qinghai Provincial Key Laboratory of Crop Molecular Breeding,
Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China

Accurately predicting the response of a cancer patient to a therapeutic agent remains
an important challenge in precision medicine. With the rise of data science, researchers
have applied computational models to study the drug inhibition effects on cancers based
on cancer genomics and transcriptomics. Moreover, a common epigenetic modification,
DNA methylation, has been related to the occurrence and development of cancer, as
well as drug effectiveness. Therefore, it is helpful for improvement of drug response
prediction through exploring the relationship between DNA methylation and drug
effectiveness. Here, we proposed a computational model to predict drug responses
in cancers through integration of cancer genomics, transcriptomics, epigenomics, and
compound chemical properties. Meanwhile, we applied a regularized regression model
(Least Absolute Shrinkage and Selection Operator, lasso) to detect the methylation sites
that were closely related to drug effectiveness. The prediction models were trained on a
well-known pharmacogenomics data resource, Genomics of Drug Sensitivity in Cancer
(GDSC). The cross-validation indicates that the performance of the prediction model
using DNA methylation is comparable to that of using other cancer omics, including
oncogene mutation and gene expression data. It indicates the important role of DNA
methylation in prediction of drug responses. Encyclopedia of DNA Elements (ENCODE)
and Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining
(TRRUST2) database analyses suggest that the methylation sites associated with drug
effectiveness are mainly located in the transcription factor (TF) binding region. Therefore,
we hypothesized that the sensitivity of cancer cells to drugs could be regulated by
changing the methylation modification of TF binding region. In conclusion, we confirmed
the important role of DNA methylation in prediction of drug responses, and provided
some methylation sites that closely related to the drug effectiveness, which may be a
great regulatory target for improvement of drug treatment effects on cancer patients.

Keywords: cancer omics, DNA methylation, drug response, GDSC database, drug effectiveness related
methylation sites
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INTRODUCTION

Precision medicine is a medical concept based on personalized
medicine, which develops with the rapid progress of genome
sequencing technology and the cross-application of biological
information and big data science (Hodson, 2016). It is the
ultimate goal of personalized therapy to systematically transform
cancer omics into oncobiology knowledge and treatment
(Barretina et al., 2012; Stetson et al., 2014; Dong et al., 2015).
Accurately predicting the sensitivity of cancer cells to drug
treatment is a key challenge in precision medicine.

In previous work, researchers have made significant
contributions to improve drug response prediction by using
large-scale pharmacogenomics data. All these works could be
basically divided into two types. One of these is learning the drug
responses based only on cancer omics. For instance, Costello
et al. (2014) applied the multiple kernel learning algorithm to
improve drug response prediction from genomic, proteomic,
and epigenomic profiling data in breast cancer cell lines; Huang
C. et al. (2018), Huang H.H. et al. (2018) established drug
response prediction model based on the gene expression profile
(RNA-seq or microarray) data of patients’ tumors. Venkatesan
et al. (2010) developed a scalable and extensible prediction model
by integrating genome-scale mRNA expression, copy number
change, and mutation profiles. The other type is to predict the
drug responses by integrating both cancer omics and chemical
properties. For instance, a systematic method was proposed to
determine the chemotherapy responses of cancer cell lines by
integration of cancer omics and the chemical and therapeutic
characteristics of compounds (Menden et al., 2013; Wang et al.,
2016) integrated genomic features of cell lines (mutation, copy
number, and microsatellite instability) and chemical properties
of drugs to represent each cell line–drug pair and applied a
neural network to predict drug responses; Zhang et al. (2015)
constructed a dual-layer network model for predicting drug
reactions using the proximal information of the drug and cancer
cell line networks. Both two types of works have introduced the
machine learning algorithms to implement the learning task,
including logistic regression (LR) (Geeleher et al., 2014; Huang
et al., 2020), random forest (RF) (Gregory et al., 2011; Raziur
et al., 2017), support vector machine (SVM) (Burbidge et al.,
2001; Ben-Hur, 2008; Wang et al., 2016), and deep learning (DL)
(LeCun et al., 2015; Yoosup et al., 2018; Chiu et al., 2019).

As research deepens, epigenetic modifications have been
found to be directly or indirectly linked to cancer (Jones and
Baylin, 2002; Kanwal and Gupta, 2012; Mohammad et al., 2019;
Zhao and Shilatifard, 2019). DNA methylation is one of the
most common epigenetic modifications. Under the premise of
unchanged DNA sequences, methylation occurs on the cytosine
bases of CpG sequence, which will affect the transcription of
downstream genes (Jones, 2012; Jones et al., 2015; Edwards
et al., 2017; Andrews et al., 2018). As one of the major
epigenetic modifications in biological processes or diseases, DNA
methylation has been well studied in many aspects, such as
functions and regulatory mechanism (Bird, 1986; Moore et al.,
2013), disease or phenotype (Robertson, 2005; Baccarelli et al.,
2010; Zelin and Yun, 2018), evolutionary analysis (Zemach

et al., 2010), X-chromosome inactivation (Singer-Sam and Riggs,
1993), DNA methylation-related cell differentiation (Mirang and
Joseph, 2017), and drug inhibition effects on cancer patients
(Priebsch et al., 2006; Ye et al., 2018; Lai et al., 2019).

The emergence of high-throughput drug screening technology
enables us to test hundreds of drugs at the same time. The
curated databases deposit the responses of thousands of cancer
cells to hundreds of anti-cancer drugs, such as Genomics of Drug
Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia
(CCLE). The GDSC project provides a large-scale collection of
cancer genomic data for therapeutic biomarker discovery (Yang
et al., 2013). It includes mutations for 19,100 genes across 1,001
cancer cell lines, DNA copy number variations for 46,221 genes
across 996 cancer cell lines, DNA methylation (β-value) for
14,725 CpG islands across 1,029 cancer cell lines, and expression
for 17,737 mRNAs across 1,018 cancer cell lines (Yang et al.,
2013; Iorio et al., 2016). The CCLE project, which aims to
accurately characterize the genetic characteristics of cancer cell
lines, includes mutation status for 25 oncogenes across 486 cancer
cell lines, DNA copy number variations for 23,316 genes across
1,043 cancer cell lines, and mRNA expressions for 54,675 mRNAs
across 127 cancer cell lines (Barretina et al., 2012). In 2019,
the CCLE database received a major update, including newly
released DNA methylation data, whole genome sequencing data,
and RNA-seq data (Ghandi et al., 2019).

Inspired by above observations, here, we assessed the
contribution of DNA methylation in prediction of drug
responses by comparing with that of other cancer omics via three
machine learning algorithms and identified the methylation
sites that were closely related to drug effectiveness through
a Least Absolute Shrinkage and Selection Operator (lasso)
regression model, which performs both variable selection and
regularization to improve the prediction accuracy and enhance
the interpretability of the statistical model (Fadil and William,
1986; Tibshirani, 1996; Yvan et al., 2007; Lockhart et al., 2014).
Specifically, to integrate the heterogeneous cancer omics and
compound chemical properties, the kernel-based similarity
matrices were constructed to represent cancer cell lines and
anti-cancer drugs, respectively. To simultaneously consider all
available drugs across all cancer cell lines, a bipartite graph was
introduced based on experimental drug screening results, to
represent the relationships between cancer cell lines and small
molecules. Here, instead of estimating the continuous response
value, we categorized the response value into three classes –
sensitive, resistant, and unclear – and introduced a “categorical”
classifier to detect whether a given cancer cell was sensitive
or resistant to a specific anti-cancer therapy. Three machine
learning algorithms (LR, RF, and SVM) were introduced to
train a binary classification model based on the concatenation of
cancer cell and drug similarity matrix. It is worth mentioning that
the data scale of this study is not suitable for DL, which depends
on large-scale data size to learning the huge number of model
parameters. Thus, we will not introduce the DL in this article.
After testing our models on the GDSC dataset, the importance
of DNA methylation in drug response prediction was suggested.
Then we applied DNA methylation data to the CCLE database
as an independent dataset to further assess the contribution of
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DNA methylation in drug response prediction. Furthermore,
to detect the drug effectiveness related methylation sites, the
methylation level of CpG islands were related to drug response
value by lasso regression model. Encyclopedia of DNA Elements
(ENCODE) and Transcriptional Regulatory Relationships
Unraveled by Sentence-based Text mining (TRRUST2) database
analyses suggest that the methylation sites associated with drug
effectiveness are mainly located in the transcription factor
(TF) binding region.

DATA RESOURCES AND METHODS

Cancer Cell Similarity
Here, we used a similar matrix to replace the original data, the
purpose of which was to keep the scale of the feature and that
of sample same, thereby attempting to overcome overfitting.
The DNA methylation, Mutation, DNA copy number, and
mRNA expression were introduced to construct the cancer cell
similarity matrix.

Mutation
GDSC provides 19,100 gene mutations in 1,001 cancer cell
lines. By converting both files into a gene-by-sample matrix of
binary values (1-mutation and 0-wild type), a similarity matrix
was generated:

SMut(ci, cj) = exp(−(HD(ci, cj)),

where ci, cj are the binary mutation profile of the i-th and j-th
cancer cell lines, respectively, and HD(ci,cj) is the Hamming
distance between binary profile ci and cj. The download link
for the mutation is https://www.cancerrxgene.org/gdsc1000/
GDSC1000_WebResources//Data/suppData/TableS2C.xlsx.

DNA Copy Number
We downloaded the “cnv_20191101” zip file from GDSC. This
document offered copy numbers for 24,502 gene across 986
cancer cells. We defined the cell similarity matrix based on copy
number as follows:

Scopy(ci, cj) = exp(−α||ci − cj||2),

where ci, cj are the copy number profile of the i-th and j-th cancer
cell lines, respectively, and α is a pre-defined parameter (set as
0.001 here). The download link for the copy number is https://
cog.sanger.ac.uk/cmp/download/cnv_20191101.zip.

mRNA Expression
GDSC provides expressions for 37,279 gene across a total of 1,047
cell lines. Through the equation SGE(ci, cj) = exp(−α||ci − cj||

2),
where ci, cj are the expression profile of the i-th and j-th cancer
cell lines, respectively, and α is a pre-defined parameter (set as
0.0001 here), the similarity between ci and cj was calculated. The
download link for the mRNA expression is https://cog.sanger.ac.
uk/cmp/download/rnaseq_20191101.zip.

DNA Methylation
We downloaded the “METH_CELL_DATA.txt” zip file from
GDSC and the “CCLE_RRBS_cgi_CpG_clusters_20181119”
txt file from CCLE. The former includes β values of 14,726
islands in across 1,029 cancer cells. The latter contains 81,038
CpG islands from 843 cancer cell lines. Subsequently, we
constructed the similarity matrix SMethy based on these DNA
methylation data: SMethy(ci, cj) = exp(−α||ci − cj||

2), where ci,
cj are the expression profile of the i-th and j-th cancer cell lines,
respectively, and α is a pre-defined parameter (set as 0.0001 here).
The download links for the DNA methylation are https://www.
cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/pr
eprocessed/methylation/METH_CELL_DATA.txt.zip and https:
//data.broadinstitute.org/ccle/CCLE_RRBS_cgi_CpG_clusters_2
0181119.txt.gz.

Drug Similarity
GDSC provides a total of 265 anti-cancer drug sensitivity
data. Using QuaSAR-Descriptor in the Molecular Operating
Environment (MOE v. 2011.10), we calculated the compound
chemical properties for each anti-cancer drug. Specifically, the
MOE descriptor created 35 features for 209 compounds, which
included 2D descriptors and 3D descriptors. The chemical
similarities among drugs were calculated as follows:

Simdrug(d,d′) = exp(−α||d − d′||2)

where d, d′ are the MOE descriptors of drug d and d′,
respectively, and α is a pre-defined parameter (set as
0.001 here). Meanwhile, we applied the same method to
construct the drug similarity matrix for CCLE 24 drugs. The
download links for the drug responses are https://www.cancerr
xgene.org/gdsc1000/GDSC1000_WebResources/Data/suppData/
TableS4B.xlsx and https://data.broadinstitute.org/ccle_legacy_
data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_
2015.02.24.csv.

Classification Model
Three classical classification models (SVM, RF, and LR) were
introduced to build the “categorical” classifier.

The similarity matrix of cancer cell lines was constructed
based on multiple cancer omics data sources (Figure 1A), and the
similarity matrix of drugs was constructed based on the chemical
properties of small molecules (Figure 1B). The input vector X
for SVM training was defined by the concatenation of cancer cell
and drug similarity matrix, that is, X= [Simcell, Simdrug] (Simcell
could be one of SMut, SGE, Scopy, SMethy). The dimension of
inputs is 990, 944, 943, and 897 for mutation, expression, copy
number, and methylation data, respectively. We used a vector
space integration (VSI) where each row of the cancer cell lines
similarity matrix (Simcell) was concatenated with corresponding
row of the anti-cancer drugs similarity matrix (Simdrug). VSI is
suitable for data integration independently from the structure of
the involved dataset and has the advantage of simplicity (Noble
and Ben-Hur, 2007). The output Y for classification model was
a binary vector, that was obtained based on the distribution
of drug screening experimental results. In our experiment, the

Frontiers in Genetics | www.frontiersin.org 3 August 2020 | Volume 11 | Article 917

https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/suppData/TableS2C.xlsx
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/suppData/TableS2C.xlsx
https://cog.sanger.ac.uk/cmp/download/cnv_20191101.zip
https://cog.sanger.ac.uk/cmp/download/cnv_20191101.zip
https://cog.sanger.ac.uk/cmp/download/rnaseq_20191101.zip
https://cog.sanger.ac.uk/cmp/download/rnaseq_20191101.zip
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/preprocessed/methylation/METH_CELL_DATA.txt.zip
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/preprocessed/methylation/METH_CELL_DATA.txt.zip
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources//Data/preprocessed/methylation/METH_CELL_DATA.txt.zip
https://data.broadinstitute.org/ccle/CCLE_RRBS_cgi_CpG_clusters_20181119.txt.gz
https://data.broadinstitute.org/ccle/CCLE_RRBS_cgi_CpG_clusters_20181119.txt.gz
https://data.broadinstitute.org/ccle/CCLE_RRBS_cgi_CpG_clusters_20181119.txt.gz
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data/suppData/TableS4B.xlsx
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data/suppData/TableS4B.xlsx
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Data/suppData/TableS4B.xlsx
https://data.broadinstitute.org/ccle_legacy_data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_2015.02.24.csv
https://data.broadinstitute.org/ccle_legacy_data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_2015.02.24.csv
https://data.broadinstitute.org/ccle_legacy_data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_2015.02.24.csv
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00917 August 5, 2020 Time: 18:39 # 4

Yuan et al. Drug Effectiveness Related Methylation Sites

FIGURE 1 | Machine learning flowchart. (A) Pharmacogenomic data, including mutation, DNA copy number, mRNA expression, DNA methylation, and drug sensitive
data, were introduced. These data were from GDSC database. (B) The cell similarity and drug similarity were calculated using cancer omics and drug chemical
structure, respectively. (C) The histogram showing the distribution of experimentally tested drug screening data: area under the dose-response curve (AUCDR). The
distribution of AUCDR indicates three classes of relationships between cells and drugs, sensitive, resistant, and unclear. (D) Representing the known relationship
between cells and drugs as a standard in the bipartite graph. (E) Using SVM, RF, and LR algorithms to predict the relationship between novel cells and drugs.
(F) Using the Lasso model to predict methylation sites related to drug sensitivity.

area under the dose–response curve (AUCDR∈[0,1]) in GDSC
was used to quantify the drug response in cell lines. Figure 1C
shows the distribution of AUCDR of 209 drugs in 990 cell lines.
According to the AUCDR distribution, we divided the response
values into three categories: sensitivity, resistance, and unclear.
In order to keep training positive and negative in a same scale,
we defined sensitivity with AUCDR less than 0.2, and resistance
with AUCDR larger than 0.991. As a result, 4,491 resistant and
3,376 sensitive pairs of cancer cell lines and drugs were achieved.
In this article, we only focused on extreme cases, that is, we will
not consider the cell-drug pairs classified as unclear. In particular,
we constructed a bipartite map of cancer cells with known drug
reactions. The nodes in these two bipartite graphs represent
drugs and cell lines, respectively. The edges between cells and
drugs represent their relationship, defined either as sensitivity
or resistance (Figure 1D). The relationship between the cell
line and the drug was represented by a bipartite graph, which
was to transform the learning problem from a general binary
classification task to an interaction prediction task. Its goal was to
learn the drug response on a large scale, that is, learn the cancer
sensitivity across lots of drugs simultaneously, in one model. The
three classification models (SVM, RF, and LR), were implemented
based on above input and output vectors (Figure 1E). Specifically,
SVM, which is motivated by statistical learning theory (Cortes
and Vapnik, 1995; Vapnik, 1999; Evgeniou et al., 2000; Vaidya
et al., 2008), was implemented via “e107” R package, and
the parameters were optimized by a grid search (cost = 10,
RBF kernel parameter gamma = 0.01); an integrated algorithm
composed of decision trees, the RF classification model (Breiman,
2001; Goldstein et al., 2011), was implemented through R

“randomForest” package with default parameters; LR model,
which is used to express the possibility of something happening
(Liang et al., 2013; Zhao and Tang, 2018), was implemented by
the R “glmnet” package with default parameters.

To evaluate the performance of the classification algorithms,
the fivefold cross-validation was performed. That is, each dataset
was randomly divided into five parts. Four parts were selected as
the training set each time, and the remaining 1 part was applied as
the test set. After five rounds, the area under the Precision Recall
(PR) curve (AUPR) (Saito and Rehmsmeier, 2017) was applied to
evaluate the performance of above three classification models.

Prediction of Methylation Sites Related
to Drug Responses Based on Lasso
Model
To predict the methylation sites that were closely related to
drug responses, the lasso regression model was introduced. The
input and output for lasso were the GpG island β values across
cancer cell lines and a given drug response in these cancer
cell lines, respectively. Lasso regression achieved a more refined
model by constructing a regularized term that compresses the
regression coefficients:

Min

( m∑
i=1

(yi −WTX)2
+ λ||W||1

)

where yi is the AUCDR value of i-th drug, X is the β value of
methylation sites across cancer cell lines, λ is the regularization
parameter, and ||W|| 1 is the L1-norm, the sum of the elements of
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the vector (Figure 1F). The lasso model was implemented via a
“glmnet” R package, and the best lambda was determined by grid
search. The lasso model was implemented on each given drug,
respectively. The Pearson Correlation Coefficient (PCC) was
calculated between experimentally tested results and predicted
values, and drugs with PCC greater than 0.7 were kept for further
analysis. According to the regression coefficient given by the
lasso regression model, we selected the top 100 CpG islands as
methylation sites related to drug effectiveness. The ENCODE
database, which provides a wealth of data and clarifies the role
of functional elements in the human genome (Ecker et al., 2012),
was applied to check whether the identified methylation sites
were located in the promoter region, enhancer region or TF
binding region. Furthermore, the TRRUST2 database, the most
comprehensive public database for literature-curated TF-target
interactions in humans (Han et al., 2018), was introduced to test
whether the methylation sites share loci with downstream gene’s
TF binding region.

RESULTS

Evaluation of the Contribution of DNA
Methylation in Prediction of Drug
Responses
We firstly assessed the contribution of DNA methylation in
prediction of drug responses and compared it with other cancer
omics data resources. The AUPR was calculated through fivefold
cross-validation based on each cancer omics data resource and is
shown as the barplot in Figure 2. As we can see in Figure 2A,
the SVM model using DNA methylation data performs best
in SVM prediction model. As for RF and LR models, the
best performance is achieved by using mutation data. Overall,
no matter which classification model is used, we can see the
predictive performance of DNA methylation is comparable to
those of other cancer omics data. Figure 2B shows the PR
curve of three prediction models based on methylation data,
respectively. It can be concluded that the SVM outperforms
RF and LR by achieving best AUPR. We also provided the
AUC (Lobo, 2007) obtained on different data resources and
different classification models in Supplementary Material. The
methylation data achieved AUC of 0.94 ± 0.0017, 0.99 ± 0.0004,

and 0.84± 0.0003 for SVM, RF, and LR, respectively, which were
comparable with other data resources (Supplementary Table 1).
These results together indicate the important role of DNA
methylation in prediction of drug responses. In Supplementary
Material, we provided P values obtained by different predictive
models based on different data resources. Most of these P-
values are less than 0.01, except for methylation versus copy
number in the RF model and methylation versus RNA-seq in
the LR model (Supplementary Table 2). Therefore, we conclude
that DNA methylation data could be used as an effective
data resource to predict the responses of cancer cell lines to
anticancer drugs.

Validation of the Effectiveness of DNA
Methylation Through an Independent
Test
To verify the contribution of DNA methylation in drug
response prediction, we introduced DNA methylation data and
experimental drug screening results from the CCLE database
and applied them as the independent test data. Specifically, we
trained the drug response model through the GDSC methylation
data and experimental drug screening results and applied that
model to predict the cell-drug relationships in CCLE based
on methylation data. The active area value (the area over the
dose-response curve) was introduced to quantify drug sensitivity
(Supplementary Figure 1). We presented the RF prediction
results in Supplementary Material (Supplementary Figure 2).
The PCC between RF prediction scores and experimental results
is 0.558, and the predictive score for the sensitive group and the
resistance group are significantly different (P < 2.2e-16). These
results suggest the great generalization ability of prediction model
based on DNA methylation data.

Discussion of the Mechanism of DNA
Methylation in Regulation of Drug
Effectiveness
Then, we would like to discuss the mechanism of DNA
methylation in regulation of drug effectiveness. To this end,
we introduced a lasso regression model that performs both
variable selection and regularization for improving the prediction
accuracy and enhancing the interpretability of the statistical

FIGURE 2 | The AUPRs and PR curve on various data source. (A) AUPRs obtained by three classification algorithms (SVM, RF, and LR) based on different cancer
omics data resources. (B) The PR curves obtained by three prediction models (SVM, RF, and LR) based on DNA methylation.
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model (Fadil and William, 1986). By taking methylation level
of CpG islands as the regulators, and drug effectiveness
(AUCDR) as the responses, the methylation sites that were
closely related to drug effectiveness in a given drug were
detected by lasso. The PCCs between experimentally tested
results and predictive results for 209 drugs were shown in
Figure 3. Figure 3A shows the distribution of PCCs in 209
drugs, which is mainly concentrated in the range of 0.3–0.5
and 0.5–0.7. Figure 3B shows the PCCs of 12 drugs with
PCCs greater than 0.7, and the exact PCCs for these 12
drugs can be seen in Table 1. Therefore, the methylation sites

related tp responses from these 12 drugs were discussed in the
following subsection.

According to the regression coefficient of lasso model, the
methylation sites closely related to these 12 drugs were screened
out, and the top 100 CpG islands remained for further analysis.
To discuss the regulatory roles of these methylation sites in drug
effectiveness, ENCODE database was introduced to query the
location information of them. After checking the TF binding
sites (TFBS) information from the ENCODE database, we find
that most of the selected methylation sites share the loci with
TF binding region (Table 2). For example, the 100 methylation

FIGURE 3 | Correlation coefficients of experimentally tested results and predicted values for 209 drugs. (A) The violin diagram shows the PCCs between
experimental results and the predictions. The PCCs in the five groups of “<0.1,” “0.1–0.3,” “0.3–0.5,” “0.5–0.7,” and “>0.7” are shown. (B) The barplot shows the
PCCs for 12 drugs with PCCs greater than 0.7. The PCCs values for different types of inhibitors, including Proteasome inhibitor, Bcr-Abl inhibitor, Src inhibitor, CDK4
inhibitor, VEGFR inhibitor, and Raf inhibitor, are shown with different colors.

Frontiers in Genetics | www.frontiersin.org 6 August 2020 | Volume 11 | Article 917

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00917 August 5, 2020 Time: 18:39 # 7

Yuan et al. Drug Effectiveness Related Methylation Sites

TABLE 1 | PCCs values of 12 drugs.

Drug name PCCs

Sunitinib 0.720

FK866 0.749

Z-LLNle-CHO 0.729

S-Trityl-L-cysteine 0.715

GNF-2 0.738

CMK 0.738

AZD-0530 0.725

WH-4-023 0.729

CGP-082996 0.727

CGP-606474 0.726

AZ628 0.703

Dasatinib 0.714

sites associated with Sunitinib response are located in the binding
regions of 100 TFs. We performed the TFBS enrichment analysis
on these methylation sites. Specifically, we randomly selected 100
fragments with average length of CpG Islands (about 2,000 bp)
from non-coding region of the whole human genome. Then, we
checked how many of these 100 fragments were located in TF
binding region. We compared the frequency of predicted CpG
Islands located in TFBS with this distribution function simulated
by 1,000 repeats and calculated the P-value. As a result, P-values
are smaller than 1e-26 for all 12 drugs. All these results indicate
that the methylation sites closely related to drug effectiveness are
enriched in the TFBS.

The TRRUST2 database was further introduced to explore
regulatory relationships between TFs and their target genes.
As a result, among 100 methylation sites, 92 methylation sites
share loci with TFBS, which have a regulatory target gene
in TRRUST2. These results together indicate that methylation
sites related to drug effectiveness share the loci with TFBS,
and the variation in these methylation sites may interrupt
the transcription regulated by corresponding TFs. That is, the
variation in DNA methylation may block the normal binding
of TFs, thus affect the normal transcription of their target genes
that linked to drug effectiveness. Through a literature search, we
found that the MUC1 gene is related to the sensitivity of drug
Sunitinib. It has been proved by experiments that the expression
level of gene MUC1 in renal cell carcinoma cell lines correlated
to resistance to Sunitinib (Chen et al., 2018). Here, the lasso
model for drug Sunitinib reveals the drug effectiveness related
methylation site of chr1: 110880394-110880624. After database
searching, it was found that this methylation site is located in
the TF STAT3 binding region, while the TF STAT3 regulates the
transcription of MUC1 gene (Figure 4).

From the above analysis, we attempted to provide a
possible mechanism of DNA methylation in regulation of
drug effectiveness. Then, we checked the relationship between
DNA methylation and downstream gene expression. Pearson
correlation analysis was performed based on β values of
methylation sites associated with drug response and expression
values of downstream gene (Supplementary Figure 3). The
good correlation relationship between DNA methylation and

TABLE 2 | The percentage of methylation sites located in TFBS and have
corresponding TF target gene available in TRRUST2 database.

Drug name No. of methylation
sites (%)

No. of TF (%) Supplementary
table

Sunitinib 100 92 3, 4

FK866 100 96 5, 6

Z-LLNle-CHO 99 91 7, 8

S-Trityl-L-cysteine 99 91 9, 10

GNF-2 99 92 11, 12

CMK 99 92 13, 14

AZD-0530 99 90 15, 16

WH-4-023 99 93 17, 18

CGP-082996 99 92 19, 20

CGP-606474 99 94 21, 22

AZ628 98 91 23, 24

Dasatinib 98 87 25, 26

FIGURE 4 | The relationship between methylation and gene expression.
Under normal condition (subfigure A), TF STAT3 binds the promoter region of
MUC1 gene that was proven to be sensitive to Sunitinib, and make it
transcribed. However, when TF STAT3 binding region was methylated
(subfigure B), STAT3 could not bind as usual, which might lead to MUC1 gene
silencing, thus affecting the sensitivity of Sunitinib.

downstream gene expression is suggested. For instance, for
drug “Dasatinib,” among 100 pairs of methylation sites and
corresponding downstream gene, there are seven pairs of
methylation sites and their downstream genes with PCCs
larger than 0.5 and 42 pairs with PCCs larger than 0.3 and
smaller than 0.5.

DISCUSSION

A systematic study of the relationship between cancer cells
and anticancer therapies could inform early clinical trials of
many new compounds. A series of efforts were adopted to
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improve the accuracy of prediction in our study. First, by
assigning response value into three classes: sensitive, resistant,
and unclear, and the “categorical” classifiers were introduced
to detect whether a given cancer cell was sensitive or resistant
to a specific anti-cancer therapy. Second, to overcome the
heterogeneity of pharmacogenomic data, the similarity matrices
were constructed to represent cancer cell lines and anti-cancer
drugs. The purpose of replacing the original data with similarity
matrix is to keep the samples number and feature number
at the same scale, so as to attempt to avoid the overfitting.
Third, three common classical classification models, namely
SVM, RF, and LR, were introduced to assess the contribution
of DNA methylation in prediction of drug responses. The
results suggest that DNA methylation data performs best in
the SVM model, and for RF and LR models, the prediction
performance of DNA methylation is comparable to that of
other data resources. In the previous work, a lot of research
has been done on establishing drug response prediction using
machine learning, mostly based on gene expression data. For
example, Wang et al. (2016) used an SVM model to predict the
drug response of mutation data, copy number and expression
number from CCLE database, and found that the prediction
value of mutation data was the best; Riddick et al. (2011)
used an RF model to fit the drug IC50 with underlying gene
expression and has been shown to successfully predict drug
response, outperformed other methods based on differential gene
expression. We are committed to optimize and strengthen the
models in drug responses, mainly because the cost of drug design
and time consuming clinical trials are the major costs of cancer
treatment, while the application of machine learning can greatly
reduce the cost.

In this paper, we also attempted to validate the role of DNA
methylation in prediction of drug response by an independent
data test. The RF model based on DNA methylation data indicates
that the predicted results correlate well with the experimental
ones (PCC = 0.556).

This suggests that DNA methylation can be used as an
informative data resource to predict drug response.

Here, methylation sites associated with sensitivity or resistance
to anticancer drugs are predicted based on the lasso regression
model. A total of 12 drugs are found to have good correlations
between predictions and experimental drug screening results.
The database search indicates that almost all the methylation
sites associated with the drug effectiveness are located in the
TFBS (Table 2). The further enrichment analysis indicates that
the methylation sites closely related to drug effectiveness are
enriched in TFBS (p-value less than 1e-26). Therefore, we
hypothesize that DNA methylation may affect the normal binding
of TF, and then change the expression level of their target
genes that are linked with drug responses. In the prediction
of methylation sites related to Sunitinib, the binding region
of TF STAT3 is found to contain the methylation site (chr1:
110880394-110880624) that related to drug effectiveness, and
TF STAT3 target gene MUC1 is related to drug Sunitinib
response. These results suggest the possible regulation role
of methylation site in drug effectiveness, that is, methylation
may interrupt the normal binding of TF to its target gene

that are related to drug response. Therefore, our future work
will be designed to discover more genes that have been
experimentally verified to be related to drug response and to
further verify our hypothesis.

In addition, we performed correlation analysis between the
selected methylation sites and their downstream genes, and the
results show 42% pairs of methylation sites and their downstream
genes have PCCs larger than 0.3. Furthermore, the previous
studies suggested the correlation between CpG Islands shores
and downstream genes (Irizarry et al., 2009). Thus, we also did
a correlation analysis between methylation of the CpG Islands
shores and the expression of downstream genes. Here, we find
a total of 159 pairs of CpG Islands shores and downstream genes
with both methylation β value and expression available, and the
results show that 18 pairs of them has PCCs larger than 0.3.

In summary, this study indicates the important role of
DNA methylation in prediction of drug response, and reveals
methylation sites related to drug effectiveness. The database
and literature searches on those methylation sites offers a
possible mechanism of DNA methylation in regulation of
drug effectiveness. This information is helpful for people
to further understand the regulation mechanism of drug
responses to cancers.
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