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Abstract 

Background:  Malaria is one of the most serious vector-borne diseases in the world. Vector control is an important 
measure for malaria prevention and elimination. However, this strategy is under threat as disease vectors are develop-
ing resistance to insecticides. Therefore, it is important to monitor mechanisms responsible for insecticide resistance. 
In this study, the presence of G119S mutation in the acetyl cholinesterase-encoding gene (ace-1) was investigated in 
nine Anopheles sinensis populations sampled across Guangxi Zhuang Autonomous Region China.

Methods:  PCR–RFLP (polymerase chain reaction-restriction fragment length polymorphism) method was used to 
genotype each individual adult of An. sinensis. Direct sequencing of PCR products was performed to verify the accu-
racy of PCR–RFLP genotyping result. Population genetics analysis was conducted using Genepop programme.

Results:  The frequencies of susceptible homozygotes, heterozygotes and resistant homozygotes in the nine popula-
tions ranged between 0–0.296, 0.143–0.500 and 0.333–0.857, respectively. Overall, a high frequency (0.519–0.929) of 
mutant 119S allele was observed and the genotype frequency of the ace-1 gene of An. sinensis was at Hardy–Wein-
berg equilibrium in each of the nine examined populations.

Conclusion:  The G119S mutation has become fixed and is widespread in An. sinensis field populations in Guangxi, 
China. These findings are useful in helping design strategies for An. sinensis control.
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Background
Malaria is one of the most serious vector-borne dis-
eases, representing a major threat to global public health 
[1]. Vector control has been proven to be an important 
component in malaria prevention and elimination pro-
grammes. The use of different classes of insecticides has 
played an essential role in controlling mosquitoes, but 
also has resulted in the development of insecticide resist-
ance [1, 2]. Insecticide resistance is well regarded as a 
major obstacle in vector control, thus resistance monitor-
ing is critical for establishing smart vector management 
strategies [1].

Organophosphates (OP) and carbamates (CM) have 
been used for agriculturally important pest and disease-
vector control. The primary molecular target of OP and 
CM is the acetylcholinesterase (AchE, EC 3.1.1.7). Inhi-
bition of insect AchE leads to the accumulation of ace-
tylcholine, thus terminates nerve impulses in cholinergic 
synapses and eventually causes death [3]. Previous stud-
ies have demonstrated that point mutations in AchE are 
associated with insecticide resistance against OP and 
CM [3]. For example, a point mutation leading to a sin-
gle amino acid substitution of glycine to serine at posi-
tion 119 (G119S, Torpedo californica numbering) in the 
AchE1 [4], is associated with OP and CM resistance in 
several important mosquito species [4–16]. This resist-
ance-associated mutation provides a molecular marker 
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for detecting or monitoring CM and OP resistance in 
these mosquitoes.

Guangxi Zhuang Autonomous Region was once a 
malaria-endemic region. Since the launch of the National 
Malaria Control Programme in 1955 in China, the 
malaria morbidity rate in Guangxi reduced from 296.67 
per 10,000 people in 1954 to below 1 per 100,000 people 
during 2000 to 2011 [17]. Although indigenous malaria 
has been basically eliminated in Guangxi, many imported 
cases of malaria have been identified in returning work-
ers from Africa and southern Asia [17]. In addition, 
increased population migration (especially cross-border 
migration) and the possible change of vectorial capacity 
may enhance the risk of malaria re-emergence [18]. This 
situation underlines the necessity of malaria prevention 
through effective vector control.

In Guangxi, the major vector for transmitting malaria 
is Anopheles sinensis [17]. Guangxi is located in the 
southern part of China (Fig. 1), where there are a lot of 
rice fields providing a sound environment for An. sinen-
sis breeding. Wild An. sinensis populations continue to 
be exposed to various insecticides used in surrounding 
rice paddies, thus insecticide resistance is expected to 
be selected. However, until recently, the status of insec-
ticide resistance and its associated genetic mutations in 
An. sinensis field populations in Guangxi is less under-
stood. Therefore, there is an urgent need to detect pos-
sible insecticide resistance in An. sinensis populations to 
avoid failure in the effort of vector control. In this study, 
evidence on the presence and the frequency of the G119S 
mutation of ace-1 gene conferring organophosphate (OP) 
and carbamate (CM) resistance in Guangxi was provided.

Methods
Anopheles sinensis collection
Anopheles sinensis adults used in the study were caught 
by light (wave length 365 nm) trap from July to Septem-
ber in 2014, around farmers’ houses in Nanning, Yulin, 
Hezhou, Baise, Wuzhou, Liuzhou, Guilin, Hechi, and 

Guigang of Guangxi (Fig. 1). Individual mosquitoes were 
morphologically identified and the confirmed An. sinen-
sis adults with a high level of confidence were put into 
100-μl Eppendorf tubes containing 100  % ethanol solu-
tion, and kept at 4  °C until use. Ten randomly selected 
adults from each population were further identified using 
the rDNA-ITS2 method [19]. The identities of the molec-
ularly identified specimens matched perfectly to their 
morphological identifications.

Genomic DNA extraction
Genomic DNA of individual mosquitoes was prepared 
according to the method of Rinkevich [20]. Genomic 
DNA samples were stored at −20 °C.

Ace‑1 genotyping
PCR–RFLP was conducted for genotyping the ace-1 gene 
at codon 119. Primers As-ace-F and As-ace-R [6] (com-
mercially synthesized by Invitrogen, China Service) were 
used to amplify a fragment encompassing codon 119 of 
the ace-1 gene of An. sinensis. Reaction system contained 
10  ×  Buffer 3  μl, dNTP 3  μl, rTaq DNA polymerase 
(Takara) 0.3 μl, DNA template 5 μl, As-ace-F 0.6 μl, As-
ace-R 0.6 μl, ddH2O 17.5 μl. PCR parameters were set as 
95 °C for 5 min, 36 cycles of 95 °C for 30 s, 52 °C for 30 s 
and 72 °C for 40 s, followed by 72 °C for 10 min and 4 °C 
forever. PCR products were detected on a 1.2 % agarose 
gel.

Restriction endonuclease AluI (New England Bio-
labs) was used for genotyping. This enzyme can cut the 
119S-type (mutant) PCR product into two bands, but 
cannot cut the G119-type (wild) PCR product due to 
its specific recognition site (AGCT). The digestion reac-
tion consisted of PCR product 10  μl, Cutsmart buffer 
2  μl, AluI (10 unit/L) 0.4  μl, ddH2O 8  μl in a total vol-
ume of 20 μl. After reaction for 4 h at 37C°, the digestion 
products were detected on a 1.2  % agarose gel. Direct 
sequencing was performed for confirming the reliability 
of PCR–RFLP in genotyping by GBI tech (Beijing Service, 
China).

Data analysis
Bioinformatics analysis was conducted using online pro-
grammes. Population genetic parameters were calculated 
using Genepop 3.4, and Chi-test was performed by SAS 
9.2.

Results
All the possible three genotypes were identified in a total 
of 312 individuals sampled from nine locations across 
Guangxi (Fig. 1), i.e., wild-type (susceptible) homozygote 
GG, heterozygote GS and mutant (resistant) homozy-
gote SS, which corresponded to one band (193  bp), Fig. 1  Sampling sites of Anopheles sinensis in Guangxi, China



Page 3 of 5Feng et al. Malar J  (2015) 14:470 

three bands (193 bp +  118 bp +  75 bp) and two bands 
(118 bp + 75 bp) in the PCR–RFLP profile, respectively 
(Fig.  2). The accuracy of genotype was confirmed by 
direct DNA sequencing of corresponding purified PCR 
products, i.e., the expected mutation (G to A) at the first 
locus of codon 119 was identified in heterozygotes (GS) 
and resistant homozygotes (SS) (Fig. 3).

Wild-type homozygote had a low frequency that ranged 
between 0 and 0.296 (Table  1). Notably, no wild-type 
homozygote was detected in the samples from five loca-
tions (Nanning, Hezhou, Wuzhou, Hechi, and Guigang). 
The frequencies of heterozygotes and resistant homozy-
gotes ranged between 0.143–0.500 and 0.333–0.857, 
respectively. Overall, high frequencies (0.519–0.929) of 
the mutant allele were observed in all the nine enrolled 
populations (Table 1).

No heterozygote excess or heterozygote deficiency was 
observed in all the nine populations (Table  1). Chi-test 

indicated that there was no significant difference between 
observed number and expected number of individu-
als of each genotype in each population (Table 1). These 
parameters suggested that all the nine populations of An. 
sinensis in Guangxi were at Hardy–Weinberg equilibrium 
(HWE).

Discussion
Genotyping results reveal that there was a high frequency 
of 119S resistance allele in each of the nine field popula-
tions of An. sinensis collected across Guangxi (Table 1). 
Notably, the average frequency of resistance allele was 
close to 0.8, and an even higher mutation frequency 
(higher than 0.9) was observed in Wuzhou and Hechi 
populations. These observations clearly demonstrate that 
the G119S mutation is prevalent throughout Guangxi. 
Also in China, modest to high (0.45–0.75) frequency of 
resistance allele was observed in An. sinensis popula-
tions from Hainan Island [16], and Yunnan (0.385) and 
Anhui (0.589) provinces [6]. Similar to results obtained in 
this study, the frequency of the 119S (mutant) allele was 
determined to range from 0.744 to 0.972 in ten local field 
populations of An. sinensis in Korea [15]. These results 
indicate that the G119S mutation is widely distributed in 
Asia.

The amino acid substitution of glycine with serine at posi-
tion 119 (G119S) is able to reduce the sensitivity of AchE1 
to OP and CM [3]. Previous studies have elucidated that the 
G119S mutation of the ace-1 gene in Anopheles and Culex 
mosquitoes is associated with insect resistance against OP 
and CM [4–16]. For example, the Ace-1R allele is strongly 
associated with survival of An. gambiae mosquitoes from 
Côte d’Ivoire after exposure to bendiocarb and fenitrothion 
[21], and G119S in An. gambiae from Accra (Ghana) is 
strongly associated with resistance [10]. In addition, it is 
known that the strength of resistance is expressed in a 
partially dominant manner in An. gambiae [22]. Sequence 
alignment (Fig. 4) reveals a very high identity of amino acid 
sequence between the deduced An. sinensis AchE1 and An. 
gambiae AchE1 (96.6 % in the total 536 amino acids of the 
mature protein), and no difference was observed in amino 
acids determining catalytic function of cholinesterase [23]. 
It is logical to think that AchE1 in these two species has 
similar biochemical properties, and the conserved G119S 
mutation will confer similar resistance profiles to OP and 
CM [23]. The high frequency of the resistance allele and 
high ratio of mutant homozygotes in all the tested An. sin-
ensis populations strongly suggest that G119S resistance 
mechanism against OP and CM is widespread in Guangxi, 
hence vector control strategies based on these two classes 
of insecticides may not be effective as a consequence. How-
ever, given that the resistance level may largely vary depend-
ing on insecticides even for a given resistance mechanism 

Fig. 2  Electrophoresis detection of restriction endonuclease 
digestion product. The first lane is DNA marker, and the other lanes 
represent individual fly samples. The lanes showing two DNA bands 
(118 and 75 bp) define resistant homozygotes (SS); the lanes showing 
three bands (193, 118 and 75 bp) define the hyterozygotes (GS); the 
lanes showing single band (193 bp) defines susceptible homozy-
gotes (GG)

Fig. 3  The example of nucleotide sequence chromatograms (codon 
119 of ace-1 gene) of three genotypes identified in Anopheles 
sinensis. At the first locus, the resistant homozygote (SS) has a single 
nucleotide (A) peak, the susceptible homozygote (GG) has a single 
nucleotide (G) peak, and the heterozygote (G/S) has double nucleo-
tide (A and G) peaks
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[22], the relationship between the frequency of mutant allele 
and the strength of resistance to specific insecticides in 
these populations could not be exactly established because 
the susceptibility data is not available for the samples used 
in this study. In addition, considering that mosquitoes can 
express multiple insecticide-resistance mechanisms in the 
field [10, 21], other factors such as over-expression of met-
abolic genes may be attributable to OP and CM resistance 
in An. sinensis populations of Guangxi. Further studies are 
required to clarify a causal role for G119S mutation in ace-1 
in OP and CM resistance, and to characterize other possible 
involved mechanisms.

In contrast to the study in West Africa observing a 
significant departure from Hardy–Weinberg equilib-
rium (HWE) in some field samples of An. gambiae [24], 
population genetics analysis shows that the genotype fre-
quency at codon 119 of the ace-1 gene was at HWE in 
all the nine examined populations of An. sinensis from 
Guangxi, with no heterozygote excess or heterozygote 
deficiency being observed (Table  1). These parameters 
indicate that mosquitoes carrying G119S mutation may 
suffer no fitness cost under current natural conditions. If 
this is the case, actions to eliminate resistant individuals 
and limit the spread of the resistant population should be 

Table 1  Allele frequency of ace-1 in Anopheles sinensis populations sampled across Guangxi, China

Locations Size SS GS GG 119S  
frequency

Genotype  
χ2-test (p value)

Heterozygote  
excess (p-value)

Heterozygote  
deficiency (p-value)

Nanning 36 23 13 0 0.819 0.450 0.268 1.000

Yulin 52 25 23 4 0.702 0.943 0.499 0.750

Hezhou 19 12 7 0 0.816 0.666 0.514 1.000

Baise 56 35 17 4 0.777 0.602 0.917 0.258

Wuzhou 26 22 4 0 0.923 0.936 0.880 1.000

Liuzhou 27 9 10 8 0.519 0.355 0.967 0.148

Guilin 32 14 16 2 0.688 0.702 0.338 0.901

Hechi 49 42 7 0 0.929 0.878 0.790 1.000

Guigang 15 9 6 0 0.800 0.684 0.542 1.000

Fig. 4  Alignment of AChE1 mature protein sequence of susceptible An. gambiae (AG, Kisumu [23]) and An. sinensis (AS, this study). AS sequence 
was obtained by directly sequencing PCR product using cDNA templates prepared from RNA of ten adults of a susceptible strain of An. sinensis [25], 
and the PCR primers were designed based on the whole genome shotgun sequences (KE524393 and KE524938).The Glycine 119 residue is marked 
with a triangle. The three residues (S200, E327, H440) forming the catalytic triad were marked with arrows
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taken. Whether G119S genotype expresses fitness cost in 
An. sinensis remains to be characterized.

Conclusions
This study demonstrates that G119S mutation has 
become fixed, and is widespread in An. sinensis field pop-
ulations across Guangxi, China. The high frequency of 
G119S mutation and high ratio of mutant homozygotes 
may allow these mosquito populations to be resistant to 
OP and CM. These findings emphasize the need to moni-
tor insecticide resistance and to establish efficient resist-
ance management tactics before implementing malaria 
control programmes in Guangxi region.
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