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1  | INTRODUC TION

Pigmented rice can be characterized into groups of black, purple, and 
red rice, distinguished by the color of the pericarp layer of the rice 
grain (Sompong, Siebenhandl-Ehn, Linsberger-Martin, & Berghofer, 
2011). Several bioactive compounds exist in pigmented rice, notably 
phenolic compounds, which possess numerous health benefits, such 
as antioxidant and anti-inflammatory effects, and reduce the risk of 
chronic diseases (Bhawamai, Lin, Hou, & Chen, 2016; Chatthongpisut, 
Schwartz, & Yongsawatdigul, 2015; Zhang et al., 2015).

Phenolic compounds are highly diverse, with over 10,000 known 
phenolic structures, and are generally classified according to the 

number of phenol rings (Thuengtung & Ogawa, 2019). These mole-
cules are secondary metabolites of plants that possess one or more 
aromatic rings connected by one or more hydroxyl groups (Dai & 
Mumper, 2010). Anthocyanins, a group of flavonoids, are the major 
phenolic compounds found in pigmented rice and are located in 
the aleurone layer (Walter & Marchesan, 2011). Anthocyanins are 
water-soluble compounds that can be easily lost during processing 
(Norkaew et al., 2017; Patras, Brunton, O'Donnell, & Tiwari, 2010; 
Siah, Wood, Agboola, Konczak, & Blanchard, 2014). In particular, 
thermal processes, such as cooking, drying, blanching, and pasteur-
ization, have a major impact on the loss of anthocyanins and other 
phenolic compounds (Hiemori, Koh, & Mitchell, 2009; Patras et al., 
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Abstract
The impact of two different cooking processes (microwave and steaming) on cooked rice 
quality (i.e., texture), and changes in the bioactive compounds (total phenolic content 
[TPC] and total anthocyanin content [TAC]) and antioxidant activities (DPPH and FRAP 
assays) of black and red (nonwaxy) and purple (waxy) pigmented rice were investigated. 
No significant difference in the firmness between microwave-cooked rice and steam-
cooked rice was found, except for cooked purple rice. However, microwave cooking 
promoted an increase in the cooked rice adhesiveness, which approximately higher 
2- ~ 3-fold than that of steam cooking with varying among rice cultivars. Microwave 
cooking also exhibited significantly higher TPC (1.2- ~ 2.0-fold), TAC (2.0- ~ 3.2-fold), 
DPPH (1.3- ~ 2.5-fold), and FRAP (1.5- ~ 2.4-fold) than steam cooking for black and 
purple rice cultivars. There was a strong positive correlation among these bioactive 
compounds and the antioxidant activities (p < .01). Our study indicated that the TPC, 
TAC, DPPH, and FRAP of all rice examined were remarkably decreased after cooking, 
and the extent of the decrease depended on the rice cultivar and cooking method.
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2010). Several studies have shown that the high heating tempera-
tures used during cooking influence the degradation of anthocyanins 
and other phenolic compounds in pigmented rice, as well as their 
antioxidant capacities (Bhawamai et al., 2016; Surh & Koh, 2014; 
Zaupa, Calani, Del Rio, Brighenti, & Pellegrini, 2015). Additionally, 
some phenolic compounds could be lost from the food materials 
through the soaking process and then further degraded during cook-
ing (Siah et al., 2014).

Rice is generally consumed as a completely cooked food. The 
cooking process may involve conventional cooking methods (e.g., 
rice cooker, steaming, and boiling) or modern-style techniques (e.g., 
microwave and autoclaving). There were previous studies reported 
that these cooking processes cause the great reduction of bioac-
tive compounds and antioxidant activities in both pigmented and 
nonpigmented rice, comparing to those of uncooked rice (Chmiel, 
Saputro, Kusznierewicz, & Bartoszek, 2018; Surh & Koh, 2014). 
Among these processes, phenolic degradation of steam- and micro-
wave-cooked rice was found moderate extent. Furthermore, Chmiel 
et al. (2018) revealed that applying of microwave could retain higher 
phenolic composition of cooked rice during storage and reheating 
process in comparison with rice cooker and boiling methods.

The type of cooking method not only affects the changes to the 
bioactive compounds and other chemical properties of cooked rice, 
but they also impact on the physical properties as well (Rewthong, 
Soponronnarit, Taechapairoj, Tungtrakul, & Prachayawarakorn, 
2011; Xu et al., 2019). Specifically, texture has been implied as one 
of the predominant parameters used to determine the quality of 
cooked rice and other food materials, due to its relationship with 
eating quality and consumer acceptance (Chen & Opara, 2013; Xu et 
al., 2019). Therefore, this research focused on the texture attribute 
and change in the bioactive compounds and antioxidant activity of 
cooked pigmented rice, comparing between microwave and steam-
ing methods.

2  | MATERIAL S AND METHODS

2.1 | Chemicals

Gallic acid monohydrate (ACS reagent, ≥98.0%), 2,2-diphenyl-1-pic-
rylhydrazyl (DPPH), and 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ) were 
purchased from Sigma-Aldrich. Trolox standard (HPLC grade) and 
Folin–Ciocalteu phenol reagent were purchased from Wako Pure 
Chemical Industries Ltd.

2.2 | Rice sample and preparation

Selected Thai pigmented rice were examined: “Black” pigmented 
nonwaxy rice (cv. Hom Nin) was purchased from Pensook Company, 
Bangkok, Thailand; and “Red” pigmented nonwaxy rice (cv. Red 
Hommali) and “Purple” pigmented waxy rice (cv. Kum Luempua) 
were purchased from Smile Rice Brand, Chaiyaphum, Thailand. All 

pigmented rice cultivars were soaked in the ratio of 1:4.5 (rice:water, 
w/v) at 10°C for 19 hr. Soaked rice was cooked by using two differ-
ent cooking methods; microwave and steaming. In the microwave 
method, rice with soaking water was transferred to a microwave-
able ceramic pot and then placed in a microwave oven (MRO-DF6, 
Hitachi) at 600 W for 12 min. Meanwhile, the soaking water was 
drained from soaked rice before applying the steaming method. 
In this method, rice was steamed using a household closed vessel 
stainless steel steam basket suspended above the amount of boiling 
water, for 25 min (black and red rice cultivars) and 40 min for purple 
rice cultivar, respectively. Both microwave-cooked rice and steam-
cooked rice were compressed between two glass slides. No white 
core contained inside a cooked rice grain can be characterized as 
fully gelatinized and, thus, completely cooked. Completely cooked 
rice was wrapped in plastic film and incubated at 30°C for 30 min to 
equilibrate moisture throughout the grain; however, the incubation 
time was extended to 2 hr for texture analysis.

2.3 | Cooked rice texture determination

After incubation for 2 hr, the 15 grains of cooked pigmented rice 
were analyzed for their firmness and adhesiveness, using a creep 
meter (RE2-3305S, Yamaden Co. Ltd.). Each cooked grain was 
placed on a baseplate of the creep meter and compressed by a 
cylindrical probe (diameter of 30 mm) at a speed of 1 mm/s. The 
condition was set at 90% compression and 0.2 N of trigger force. 
The texture of cooked rice was measured within approximately 
20 min, to avoid erroneous results due to moisture evaporation 
and alteration to the physical properties of the rice grains (Tamura 
et al., 2014).

2.4 | Sample extraction

Cooked rice was freeze-dried by using a freeze dryer (FDU-1100, 
Tokyo Rikakikai Co. Ltd.) before extraction. Furthermore, un-
cooked rice grains and freeze-dried samples were ground and 
passed through a 0.5-mm sieve mesh. Two grams of sample was 
then extracted in 50 ml of 80% (v/v) methanol at ambient tem-
perature for 6 hr under continuous shaking, using a modification 
of the method published by Abdel-Aal, Young, and Rabalski (2006). 
The extracted sample was filtered through filter paper (Whatman 
no.1) to obtain the clear supernatant and then kept at 4°C for fur-
ther analysis.

2.5 | Total phenolic content (TPC)

According to the ISO14502-1 (2005) method, 1 ml of diluted extract 
was mixed with 5 ml of 10% (v/v) Folin–Ciocalteu phenol reagent 
and 4 ml of 7.5% (w/v) Na2CO3, respectively. The mixture was left at 
ambient temperature for 1 hr before the absorbance was measured 
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at 765 nm, using gallic acid monohydrate (ACS reagent, ≥98.0%) as 
a standard. The result was expressed as mg of gallic acid equiva-
lents/100 g of dried sample.

2.6 | Total anthocyanin content (TAC)

Determination of the TAC proceeded using a pH differential tech-
nique, as detailed by Giusti, Rodríguez-Saona, and Wrolstad (1999). 
One part of the sample was mixed with four parts of two buffer rea-
gents, respectively: KCl (0.025 M, pH 1.0) and NaOAc (0.4 M, pH 4.5). 
The mixtures were left to react at ambient temperature for 20 min, 
and then, the absorbance was measured at 520 and 700 nm, respec-
tively, to remove the interference from the background. The result 
was expressed as mg of cyanidin-3-glucoside equivalents/L sample.

2.7 | DPPH radical scavenging activity (DPPH)

This assay was performed by following the method of Molyneux 
(2004). Briefly, the mixture of diluted extract (50 µl) and 60 µM 
DPPH solution (1950 µl) was incubated in the dark for 30 min. The 
absorbance was measured at 517 nm, using methanol and Trolox as 
blank and standard, respectively. The result was expressed as µmol 
of Trolox equivalents/100 g of dried sample.

2.8 | Ferric reducing antioxidant power (FRAP)

FRAP was evaluated using a slightly modified version of the pro-
cedure described by Benzie and Strain (1999). A 1.3-mL aliquot of 
freshly prepared FRAP reagent (300 mM acetate buffer [pH 3.6], 
10 mM TPTZ in 40 mM HCl, and 20 mM FeCl3 at 10:1:1 v/v/v ratio) 
was mixed with 200 µl of diluted extract, incubated at 37°C for 
30 min, and the absorbance was measured at 517 nm, using ferrous 
sulfate (Fe[II]) as the standard. The result was expressed as µmol of 
ferrous sulfate equivalents/100 g of dried sample.

2.9 | Statistical analysis

All data were evaluated by analysis of variance, followed by Duncan's 
multiple range test. The correlation between parameters was ana-
lyzed by Pearson's test (two-tailed). All statistical analyses were per-
formed using SPSS (version 20.0; IBM Corp.).

3  | RESULTS AND DISCUSSION

3.1 | Cooked rice firmness and adhesiveness

According to Figure 1a, firmness of microwave-cooked rice and 
steam-cooked rice was comparable. However, steam-cooked purple 

rice showed higher firmness (p < .05) than microwave-cooked pur-
ple rice, whereas this phenomenon did not occur in cooked black 
and red rice. The reason for the different rice firmness of cooked 
purple rice is not yet clear. The hypothesis is that purple rice cul-
tivar leaches a different amount of amylopectin during cooking 
when compared with the other cultivars. Excess cooking water sur-
rounding the rice grain during the microwave method could have 
facilitated high water absorption into the rice grain; increasing the 
water absorption during cooking and thereby generating the larger 
amount of leached starch (Tamura et al., 2014). This occurrence dif-
fers from the steaming method that required vaporized water for 
cooking. The leached starch composition is generally related to the 
amylose and amylopectin contents; short-chain amylopectin has 
been reported as a major component of leached starch, as com-
pared with long-chain amylopectin and amylose (Ong & Blanshard, 
1995). Furthermore, earlier research also insinuated that increased 
leaching of short-chain amylopectin is responsible for decreasing 
the cooked rice firmness (Ong & Blanshard, 1995). Consequently, 
purple rice cultivar is waxy rice, due to its high proportion of amy-
lopectin (Wani et al., 2012), and this might explain the significant 
decrease in firmness of microwave-cooked purple rice. When com-
paring the cooked rice firmness among rice cultivars, regardless 
of cooking method, cooked red rice presented a higher firmness 

F I G U R E  1   Texture property of cooked pigmented rice by 
microwave and steaming methods; (a) cooked rice firmness and (b) 
cooked rice adhesiveness. Different letters in the graph indicate a 
significant difference (p < .05) among samples (n = 15)
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(22.25–22.59 N) than cooked purple rice (19.27–22.13 N) and 
cooked black rice (18.33–18.62 N), possibly because of the differ-
ent structure and anatomy among cultivars (Ziegler et al., 2018).

Contrary to cooked rice firmness, adhesiveness of steam-cooked 
rice was significantly lower than that of microwave-cooked rice 
(Figure 1b). Differences in adhesiveness (i.e., stickiness) have been 
attributed to different amounts of water absorption into the rice 
grain during cooking; a large amount of water infiltration into rice 
grain results in enhanced adhesiveness (Tamura & Ogawa, 2012). A 
similar phenomenon could be applied to the leached short-chain am-
ylopectin during cooking, mentioned above. Leached amylopectin 
during cooking is believed to accumulate as a viscous coated layer to 
the outer surface of cooked rice, leading to increased adhesiveness 
(Yang et al., 2016). Meanwhile, this phenomenon could not be found 
in high-amylose food materials (Syafutri, Pratama, Syaiful, & Faizal, 
2016), which explains why waxy rice, such as cooked purple rice, 
demonstrated significantly higher adhesiveness than cooked non-
waxy rice (black and red rice), and the variation in the value between 
the microwave method and steaming method.

3.2 | Bioactive compounds and antioxidant 
activities of pigmented rice grain

As seen in Table 1, the TPC and TAC in pigmented rice ranged from 
637.68 to 914.37 mg/100 g dried sample and 0.6–35.61 mg/L sam-
ple, respectively. Purple rice cultivar contained the most TPC and 
TAC, followed by black rice and, lastly, red rice cultivars (p < .05). 
From this result, TAC is associated with TPC. The anthocyanins 
are a subclass of the flavonoids and are recognized as the major 
phenolic compounds in pigmented rice grains (Kushwaha, 2016), 
which exist mainly in dark-colored grains rather than among pale-
colored grains (Yodmanee, Karrila, & Pakdeechanuan, 2011). Their 
color range can be characterized by the degree of hydroxylation 
in the B-ring of their carbon skeleton; recognized as delphinidin-, 
cyanidin- and pelargonidin-glycoside forms by providing blue–pur-
ple, light purplish–red, and orange–red hues, respectively (Glover 
& Martin, 2012). It has already been confirmed that black–purple 
rice contains higher TPC and TAC than red rice, and cyanidin-
3-glucoside was found to be the major anthocyanin detected in 
pigmented rice grains, with varying concentration among black–
purple grains and red grains (Abdel-Aal et al., 2006; Yao, Sang, 

Zhou, & Ren, 2010). Thus, since the purple rice cultivar exhib-
ited dark reddish extract solutions, it could possess significantly 
greater amounts of bioactive compounds than black and red rice 
cultivars that displayed pink and yellowish–brown extract solu-
tions, respectively.

Phenolic compounds, including anthocyanins, are well-recog-
nized as powerful antioxidants that possess free radical scavenging 
activity, providing antioxidant defense and metal chelating proper-
ties (Dai & Mumper, 2010). In this study, the DPPH radical scaveng-
ing activity and FRAP assays, which are based on hydrogen atom 
transfer and electron transfer reactions, respectively, were applied 
for measuring the antioxidant activity, due to their simplicity and 
reproducibility (Dai & Mumper, 2010; Seo et al., 2013; Sompong et 
al., 2011). Purple rice cultivar significantly potent antioxidant DPPH 
and FRAP results (Table 1), which were approximately one- and 1.5-
fold more than those of black and red rice cultivars, respectively 
(p < .05), probably related to the TPC and TAC existing in the rice 
grains. Similarly, Walter et al. (2013) also reported a correlation be-
tween the antioxidant activity and the presence of phenolic com-
pounds in rice extracts. Generally, the phenolic compounds act as a 
free radical acceptor and chain breaker by donating hydrogen atoms 
or electrons from their hydroxyl group to a free radical, as well as 
binding with a ferrous ion to reduce a free radical. The antioxidant 
capacity of the molecule depends on its number of hydroxyl groups 
and its structural characteristics (Dai & Mumper, 2010; Walter & 
Marchesan, 2011). Our result demonstrated a three- to fourfold 
greater FRAP activity than DPPH radical scavenging activity among 
the rice cultivars studied. It might indicate that phenolic compounds 
contained in pigmented rice grains tend to endow antioxidant ef-
fects by electron transfer through ferric complexes.

3.3 | Changes to the bioactive compounds and their 
antioxidant activities in cooked pigmented rice

A dramatic decrease in the levels of the bioactive compounds and 
antioxidant activities of pigmented rice occurred after cooking 
(Table 2) when compared with their uncooked counterparts (Table 1). 
The reduction ratio was in the range of 2.9- to 5.1-fold for TPC, 2.9- 
to 12.0-fold for TAC, 1.6- to 6.0-fold for DPPH antioxidant activity, 
and 2.0- to 8.5-fold for FRAP, with the variation depending on the 
rice cultivars and cooking condition. Thermal processes, like cooking 

TA B L E  1   Bioactive compounds and antioxidant activities of uncooked rice

Rice cultivar

Total phenolic content
(mg GAE/100 g dried 
sample)

Total anthocyanin content 
(mg cyanidin−3-glucoside 
equivalents/L sample)

DPPH radical scavenging 
activity (µmol TE/100 g 
dried sample)

Ferric reducing antioxidant 
power (µmol Fe [II]/100 g 
dried sample)

Black, nonwaxy 807.63 ± 19.02b 12.14 ± 0.11b 3,347.38 ± 310.08b 11,868.71 ± 343.51b

Red, nonwaxy 637.68 ± 12.94c 0.60 ± 0.13c 2,699.92 ± 84.15c 9,005.03 ± 401.77c

Purple, waxy 914.37 ± 18.17a 35.61 ± 1.44a 3,971.70 ± 421.74a 15,933.47 ± 517.12a

Note: Different superscripts in the column indicate a significant difference (p < .05) among samples (mean ± SD; n = 3).
Abbreviations: GAE, gallic acid equivalents; TE, Trolox equivalents.
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(Surh & Koh, 2014), drying (Norkaew et al., 2017), and pasteurization 
(Pérez-Conesa et al., 2009), have been shown to result in deteriora-
tion of phenolic compounds and anthocyanins, which was associated 
with breakdown into other products as well as vaporization during 
heating. Normally, the water temperature is raised to near boiling 
temperature during cooking for complete rice starch gelatinization 
(Bhattacharya, 2011; Yu, Turner, Fitzgerald, Stokes, & Witt, 2017). 
As the temperature increases, the hydroxyl group of phenolic com-
pounds would be destroyed. Then, phenolic compounds with high 
antioxidant activity could transform into smaller molecules or other 
products which may show low antioxidant activity (Saikia, Dutta, 
Saikia, & Mahanta, 2012; Sun, Bai, & Zhuang, 2014). A hydrophilic 
phenolic compound like anthocyanins is mainly found in pigmented 
rice and labile to the thermal process, light, and oxygen exposure 
(Patras et al., 2010; Surh & Koh, 2014). Herein, the high heating 
temperature might cause an opening of the pyrylium ring of antho-
cyanins, leading to cleavage of the glycoside linkage and formation 
of the chalcone structure (colorless form), indicative of the initial 
degradation step of anthocyanins (Patras et al., 2010). According to 
the previous study, anthocyanins could be further degraded by the 
transformation of chalcone structure into coumarin glucoside deriv-
ative with loss of B-ring (Adams, 1973; Patras et al., 2010). Moreover, 
some studies also revealed that anthocyanins could convert into free 
phenolic acids (i.e., protocatechuic acid) during cooking, which was 
one of the major anthocyanin degradation products (Bhawamai et 
al., 2016; Yamuangmorn, Dell, & Prom-u-thai, 2018). In addition to 
anthocyanins, pigmented rice grain also possesses ferulic acid and 
p-coumaric acid, which mostly presented as bound phenolic acids 
that mainly linked to cell walls as glycoside esters (Saikia et al., 2012). 
The cooking process could break down the cell-matrix structure and 
facilitate the releasing of bound phenolics. The liberated bound 
phenolics might transform to free phenolics in which readily decom-
posed under high heating temperature (Saikia et al., 2012; Scaglioni, 
de Souza, Schmidt, & Badiale-Furlong, 2014; Zeng, Liu, Luo, Chen, 
& Gong, 2016), as well as generating some chemical reaction with 
macromolecules or other compounds and led to change in content 
and structure of phenolics (Shahidi & Yeo, 2016). Consequently, 
there is a possibility that these phenolics, particularly hydropho-
bic ones, could form an inclusion complex with starch components, 

especially amylose, during cooking, resulting in the reduction of phe-
nolic compounds (Surh & Koh, 2014). Additionally, a chemical reac-
tion between proteins and phenolics via irreversible covalent bonds 
might induce the formation of nonextractable fractions, causing the 
reduction of phenolic compounds (Ozdal, Capanoglu, & Altay, 2013; 
Shahidi & Yeo, 2016). Nonetheless, the impact of cooking on the 
degradation mechanism of anthocyanins and phenolic acids needs 
to identify and quantify in further study. The reduction of TPC and 
TAC during cooking would also decrease the antioxidant activities of 
cooked pigmented rice. Our result was consistent with the finding of 
Gong et al. (2017) which indicated that phenolic compounds were 
responsible for the antioxidant capacity of rice grain. These observa-
tions confirm that the cooking process is one of the crucial factors 
influencing the degradation of bioactive compounds and antioxidant 
activities in pigmented grains.

Furthermore, the type of cooking process influenced the bioac-
tive compounds and antioxidant activities of cooked pigmented rice. 
The TPC, TAC, DPPH, and FRAP values of steam-cooked rice were 
remarkably degraded relative to microwave-cooked rice (p < .05) 
(Table 2). This outcome could be expected given the observed leach-
ing of hydrophilic phenolic compounds from the aleurone layer of 
the rice grain into the soaking water (Table 3). The leached antho-
cyanins and other water-soluble phenolic compounds in the soak-
ing water accounted for 18%–51% and 6%–22%, respectively, with 
the varying concentrations depending on the pigmented rice cul-
tivar. As a result, the soaking process could be the initial step for 
loss of bioactive components in pigmented grain due to migration 
of soaking water toward embryo regions and then infiltrated into 
the aleurone layer and other internal tissues (Hong et al., 2009). This 
could generate expansion of cell-matrix structure and cracks inside 
soaked rice, resulting in anthocyanins and other hydrophilic phenolic 
substances, those mainly located in aleurone layer, could be easily 
liberated into soaking water (Hong et al., 2009; Yamuangmorn et al., 
2018). Earlier publications have noted a similar finding when inves-
tigating the impact of the soaking process on the leaching of phe-
nolic compounds from legumes and their antioxidant activities (Siah 
et al., 2014; Xu & Chang, 2008). They demonstrated that approxi-
mately 40%–68% of phenolic compounds in legumes were leached 
out to soaking and cooking water, causing a reduction in bioactive 

TA B L E  2   Bioactive compounds and antioxidant activities of cooked rice

Rice cultivar
Cooking 
condition

Total phenolic content
(mg GAE/100 g dried 
sample)

Total anthocyanin content 
(mg cyanidin−3-glucoside 
equivalents/L sample)

DPPH radical scavenging 
activity (µmol TE/100 g 
dried sample)

Ferric reducing 
antioxidant power (µmol 
Fe [II]/100 g dried sample)

Black, nonwaxy Microwave 234.91 ± 6.48b 3.06 ± 0.15c 891.22 ± 15.41b 3,233.36 ± 301.34b

Steaming 185.56 ± 6.20c 1.55 ± 0.04d 678.43 ± 8.54c 2,209.89 ± 102.90c

Red, nonwaxy Microwave 154.43 ± 2.97d 0.08 ± 0.05e 487.10 ± 37.46cd 1,132.35 ± 98.77d

Steaming 124.61 ± 1.30e 0.05 ± 0.01e 446.64 ± 42.12d 1,055.71 ± 18.94d

Purple, waxy Microwave 455.34 ± 27.06a 12.17 ± 0.29a 2,409.46 ± 231.09a 7,972.40 ± 579.82a

Steaming 231.83 ± 21.67b 3.85 ± 0.31b 954.04 ± 154.14b 3,241.23 ± 167.72b

Note: Different superscripts in the column indicate a significant difference (p < .05) among samples (mean ± SD; n = 3).
Abbreviations: GAE, gallic acid equivalents; TE, Trolox equivalents.
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substances and antioxidant capacity of legumes. Typically, soaking 
water is discarded before the steaming process that is standard 
practice across Asian households, indicating that a limited quantity 
of bioactive components in first soaked grain. Likewise, the study of 
Yamuangmorn et al. (2018) affirmed that the presoaking process was 
a notable influence on the deterioration of water-soluble phenolic 
compounds (i.e., anthocyanins) in pigmented rice, which was found 
16%–65% loss after soaking process with varying among rice gen-
otypes. Apart from leaching of bioactive compounds into soaking 
water, higher heating rate and vapor water during the steaming pro-
cess have been indicated to cause rapid evaporation of free water in 
the rice grains as well as generate porous structure (Piyawanitpong, 
Therdthai, & Ratphitagsanti, 2018). This could probably lead to liber-
ate phenolic compounds that linked to the cell-matrix structure and 
subsequently interact with the rice starch component, as mentioned 
above. This might connect to the reduction of bioactive compounds 
concentration and antioxidant activities of steam-cooked rice.

Extending the duration of cooking has also been identified as 
a parameter influencing the loss of bioactive compounds and their 
antioxidant ability (Bhawamai et al., 2016; Chuah et al., 2008). The 
study of Bhawamai et al. (2016) regarding impact of thermal cooking 
on profile of phenolic compounds in black rice revealed that applying 
shorter cooking time could possibly retain high anthocyanin content 
in black rice. In this context, the shorter cooking time of microwave 
cooking method (12 min) might justify more bioactive compounds 
and, consequently a higher antioxidant activity of cooked pigmented 
rice than that of the steam cooking approach (25–40 min of cooking). 
In addition, microwave cooking allows complete absorption of water 
into rice grains, in which this phenomenon has been confirmed to 
retain more phenolic compounds and antioxidant capacity in cooked 
pigmented rice (Zaupa et al., 2015). Nevertheless, we found that 
the type of cultivar and bran color also affected these attributes. 
As a result, the phenolic compounds and their antioxidant activities 
mostly existed in cooked purple rice, followed by cooked black rice 
and, lastly, cooked red rice (p < .05).

3.4 | Correlation of TPC, TAC, DPPH, and FRAP

Pearson's correlation analysis (Table 4) evidenced a strong positive 
correlation between TPC and TAC, confirming that anthocyanins 
were the predominant phenolic compound contained in pigmented 

rice grain. This result corroborated with an earlier study, as well (Surh 
& Koh, 2014). Additionally, the bioactive compounds (TPC and TAC) 
had a high positive correlation with the DPPH and FRAP antioxidant 
activities, with the FRAP value showing a slightly higher positive re-
lationship with TPC and TAC. This suggested that the phenolic com-
pounds contributed to most of the antioxidant potential and might 
preferentially act as reducing agents rather than radical scavengers.

4  | CONCLUSION

Texture is a key parameter determining the cooked rice quality. Our 
result showed that the firmness of microwave-cooked rice was com-
parable to steam-cooked rice, despite microwave cooking promoting 
a higher adhesiveness. This study also affirmed the cooking process 
as a critical factor affecting the deterioration of TPC and TAC and, 
consequently, it was responsible for decreasing the antioxidant ac-
tivities (DPPH and FRAP) of cooked pigmented rice. Shorter cooking 
time and cooking pattern of microwave could better maintain the bi-
oactive compounds and the antioxidant ability of cooked pigmented 
rice rather than the steaming method. Hence, microwave cooking 
can be considered a recommended cooking method for consumers 
and manufacturers for preserving the antioxidant components in 
cooked rice and reducing the cooking time. Further studies are re-
quired to identify the optimal microwave conditions.
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TA B L E  3   Bioactive compounds and antioxidant activities of rice's soaking water

Rice cultivar

Total phenolic content
(mg GAE/100 g dried 
sample)

Total anthocyanin content 
(mg cyanidin−3-glucoside 
equivalents/L sample)

DPPH radical scavenging 
activity (µmol TE/100 g dried 
sample)

Ferric reducing antioxidant 
power (µmol Fe [II]/100 g 
dried sample)

Black, nonwaxy 93.36 ± 3.28b 3.43 ± 0.84b 330.31 ± 35.74b 1,366.54 ± 100.40b

Red, nonwaxy 36.18 ± 2.86c 0.11 ± 0.04c 179.00 ± 13.61c 564.29 ± 29.74c

Purple, waxy 199.46 ± 1.46a 18.19 ± 1.43a 1,219.40 ± 78.98a 4,358.32 ± 347.29a

Note: Different superscripts in the column indicate a significant difference (p < .05) among samples (mean ± SD; n = 3).
Abbreviations: GAE, gallic acid equivalents; TE, Trolox equivalents.

TA B L E  4   Pearson correlation between total phenolic content 
(TPC), total anthocyanin content (TAC), DPPH radical scavenging 
activity (DPPH), and ferric reducing antioxidant power (FRAP) of all 
pigmented rice cultivars

 TPC TAC DPPH FRAP

TPC 1.000 0.772* 0.984* 0.987*

TAC  1.000 0.782* 0.846*

DPPH   1.000 0.983*

FRAP    1.000

*Correlation is significant at p < .01 (two-tailed). 
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