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Assumptions on the allocation of attention during reading are crucial for theoretical
models of eye guidance. The zoom lens model of attention postulates that attentional
deployment can vary from a sharp focus to a broad window. The model is closely
related to the foveal load hypothesis, i.e., the assumption that the perceptual span is
modulated by the difficulty of the fixated word. However, these important theoretical
concepts for cognitive research have not been tested quantitatively in eye movement
models. Here we show that the zoom lens model, implemented in the SWIFT model
of saccade generation, captures many important patterns of eye movements. We
compared the model’s performance to experimental data from normal and shuffled
text reading. Our results demonstrate that the zoom lens of attention might be an
important concept for eye movement control in reading.
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How is attention allocated to the text during reading? This is one of the crucial

questions driving experimental as well as theoretical research on eye movement

control. Two classes of cognitive models can be distinguished based on the

theory of attentional deployment that they incorporate. Serial attention shift

models (SAS; e.g., E-Z Reader: Reichle, 2011; Reichle, Pollatsek, Fisher, &

Rayner, 1998; Reichle, Rayner, & Pollatsek, 2003; see also Engbert & Kliegl,

2001) assume that an attention spotlight (Eriksen & Hoffman, 1972; LaBerge,
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1983; Posner, 1980) focuses on a single word at a time (Inhoff, Pollatsek,

Posner, & Rayner, 1989). In SAS models, the attentional spotlight shifts serially

from one word to the next to move a reader’s eyes through the text (for a recent

overview see Reichle, 2011). Processing gradient models (PG; e.g., SWIFT:

Engbert, Longtin, & Kliegl, 2002; Engbert, Nuthmann, Richter, & Kliegl,
2005; Glenmore: Reilly & Radach, 2006) propose that attention is allocated to

a spatially extended region of the text to support parallel processing of several

words at a time. In these models, the attentional gradient continuously drops off

towards the visual periphery, where processing of visual stimuli is slowed (cf.

Downing & Pinker, 1985; Shulman, Wilson, & Sheehy, 1985).

Both SAS and PG models of attentional deployment in reading can be

combined with a prominent concept of selective visual attention formulated in

the zoom lens model (Eriksen & St. James, 1986; LaBerge & Brown, 1989;
Müller, Bartelt, Donner, Villringer, & Brandt, 2003). According to this model,

the focus of visual attention can change in size, between sharply focusing on a

narrow area and being widely distributed over a large part of the visual field.

In reading, the zoom lens of attention is supported by the foveal load theory

(Henderson & Ferreira, 1990), which postulates that the perceptual span

(McConkie & Rayner, 1975; Rayner, 1975) is modulated by foveal processing

difficulty. A key motivation for the development of a zoom lens model for

reading is related to its prediction on effects of word frequency and word
length on fixation durations. A modulation of the attentional span in a

computational model can potentially decrease or even reverse these effects,

since a broad span during a fixation on a high frequency word should slow

foveal processing rate. Interestingly, such decreased and reversed effects of

word frequency and word length have been found in a shuffled text reading

paradigm (Schad, Nuthmann, & Engbert, 2010).

The perceptual span is the region of effective vision during reading and

extends 3�4 letters to the left and about 14�15 letters to the right of fixation
(McConkie & Rayner, 1975; Rayner, 1998). It has been studied in the moving

window paradigm (McConkie & Rayner, 1975), where only the fixated part of the

text is visible to the reader, while the remaining text is covered with a mask that

moves with the eyes. The foveal load hypothesis postulates that the size of the

perceptual span is modulated by foveal load or the processing difficulty of

the fixated word (Henderson & Ferreira, 1990). If foveal load is low, then the

perceptual span is wide and text processing during one fixation extends over

several neighbouring words. In the case of high foveal load, the perceptual span
is small and only the fixated word is processed during a fixation. Support for the

foveal load hypothesis comes from studies using the boundary paradigm (Rayner,

1975), where effects of target-word preview were observed only when processing

the preboundary word was easy, but not when it was difficult (Henderson &

Ferreira, 1990; Kennison & Clifton, 1995; Schroyens, Vitu, Brysbaert, &

d’Ydewalle, 1999; White, Rayner, & Liversedge, 2005). Foveal load effects can be
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explained based on zoom lens model of attention (Eriksen & St. James, 1986;

LaBerge & Brown, 1989; Schad et al., 2010). Applying the model to reading, the

assumption is that foveal processing controls the focus of the zoom lens.

First, we will review the main results from the recent study on shuffled text

reading (Schad et al., 2010). In particular, Schad et al. (2010) discussed specific
hypotheses about how a zoom lens model could account for differences in eye

movement control between reading of shuffled and normal text. Second, we

developed an advanced version of the SWIFT model (Engbert et al., 2002,

2005) incorporating a dynamically-modulated processing span (SWIFT 3).

Third, the model is applied to experimental data during reading of shuffled and

normal text. Finally, we will carry out further explorative simulations of the

model to investigate its predictions on experimental data.

SHUFFLED VERSUS NORMAL TEXT READING

Schad et al. (2010) investigated eye movements during reading of normal

and of shuffled text. To create shuffled text, words from the German

Potsdam Sentence Corpus (PSC; Kliegl, Grabner, Rolfs, & Engbert, 2004;

Kliegl, Nuthmann, & Engbert, 2006) were randomly shuffled. For each word

list, words were drawn from the PSC without replacement such that different

words in a list would normally stem from different original sentences in the

PSC. This procedure was designed to reduce all local relations between

words to chance level, e.g.,

Affen Vorschlag Armen schmale Giebel Kanzler dem besser.

Monkeys suggestion poor/arms narrow gable chancellor the better.

Jede ihrer Förster im Jahr Hunde meisten Gräfin Bauern.

Each [of her/their] foresters [in the] year dogs most countess countrymen.

To ensure that participants would read the words in the lists, they were

occasionally given recognition probes for the words that had been contained

in the last list.

Statistical analyses of eye movements revealed several interesting

similarities and differences between normal and shuffled text reading.

First, Schad et al. (2010) found reliable effects of spatially distributed word

processing during reading of both normal and shuffled text. Specifically,
word frequency and length of the upcoming word N�1 as well as of the

preceding word N�1 affected fixation durations on the fixated word

N, replicating successor- (word N�1) and lag- (word N�1) effects

from normal text reading (Kliegl, 2007; Kliegl et al., 2006). Different

from corpus analyses of normal text reading, in shuffled texts word

neighbourhood is randomized. Therefore, effects of distributed word
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processing in shuffled text are of experimental nature and are not

confounded with characteristics of the fixated region (Rayner, Pollatsek,

Drieghe, Slattery, & Reichle, 2007; Schad et al., 2010).

Eye movements during shuffled and normal text reading also showed

pronounced differences. As mentioned earlier, standard effects of current-

word frequency and length were reversed during reading of shuffled text.

During normal sentence reading, fixations are longer on long words than on

short words (Just & Carpenter, 1980; Rayner, Sereno, & Raney, 1996).

Likewise, readers usually look longer at low frequency than at high

frequency words (Inhoff & Rayner, 1986; Just & Carpenter, 1980; Rayner

& Duffy, 1986). For shuffled text, however, both of these standard effects

were absent and even reversed. Surprisingly, fixation durations were longer

for short words as compared to long words, and readers looked longer at

high frequency words than at low frequency words. These effects are

intriguing, as effects of word frequency belong to the most reliable and

widely found effects in psycholinguistic and eye movement research (Rayner,

1998, 2009). Schad et al. (2010) did not have a good explanation for reversed

effects of word length. Concerning word frequency effects, we discussed the

hypothesis that word frequency might be reduced during shuffled text

reading, because the signal to move the eyes is less affected by lexical word

processing (cf. Rayner & Fischer, 1996). However, lexical influences were

reliable as we found expected effects of word frequency, e.g., for the previous

word N�1 (lag-frequency effects) and the upcoming word N�1 (successor-

frequency effects), which suggested that lexical processing of these words

affected eye movements. Moreover, word frequency effects were reversed in

some conditions. Alternatively, Schad et al. argued that the new effects in

shuffled text reading could be explained parsimoniously by a foveal load or

zoom lens model: Based on analyses of statistical models, we derived the

hypothesis that the perceptual span is more strongly dynamically modulated

by foveal load for readers of shuffled text than for readers of normal text.

SWIFT 3: THE ZOOM LENS OF ATTENTION IN THE
SWIFT MODEL

In the SWIFT model (Engbert et al., 2002; Engbert et al., 2005), a set of

word-based activations controls saccade target selection, and commands to

program saccades are generated by a random process. To adjust the

processing time to the difficulty of the fixated word, an inhibitory control

process, called foveal inhibition, was implemented (see also Engbert &

Kliegl, 2011; Richter, Engbert, & Kliegl, 2006).
A key motivation to develop an activation-based model for the control of

eye movements in reading was to derive an integrative framework for all
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types of saccades (i.e., forward, skipping, refixation saccades, and regres-

sions). In close analogy to the dynamic field theory (Erlhagen & Schöner,

2002), the activation field determines probabilities for target selection at any

point in time. This concept guarantees the existence of movement targets

independent of the timing of upcoming saccade programs. Such a framework
is essential for building models that implement the partial independence of

spatial (‘‘where’’ to move the eyes) and temporal (‘‘when’’ to move the eyes)

decisions on saccadic eye movements, conceptually required from models of

the oculomotor physiology (Findlay & Walker, 1999).

For the simulation studies on the zoom lens of attention, we modified the

processing span of the model. We assume that a letter-based processing rate is

an inverse-parabolic function with two parameters that determine the

extension of the processing span to the left and to the right. The processing
span extends to �dL on the left and to dR on the right of the fixation point at

the origin. Moreover, we assume that the asymmetry of the processing span is

generated by a dynamical adjustment of the extension to the right, i.e.,

dR ¼ d0 1þ d1 1� ak tð Þ
A

� �� �
;

dL ¼ d0

(1)

where ak(t) denotes the time-dependent activation of word k at time t; A is

the maximum of the activation reflecting the maximum possible word

difficulty in the model. For the simulations, it turned out that an inverse-

parabolic form of the processing span was necessary to constrain its spatial

extent by experimental data during the simulations. Using such a functional

form, the letter-based processing rate at an eccentricity o was given by

k eð Þ ¼ k0

0 : eB�dL

1� e2=d2
L : �dL � eB0

1� e2=d2
R : 0 � e � dR

0 : dRBe

;

8>><
>>:

(2)

where a normalization constant l0�3/(2(dL�dR)) is necessary to scale the

total processing rate to one (independent of the values of dL and dR).
For the simulations, we implemented a fully stochastic framework

proposed recently by Trukenbrod and Engbert (2011). In this framework,

all dynamical variables are realized by independent, parallel discrete random

walk processes (Figure 1).

A typical numerical output of a single reading trajectory of the SWIFT

model is displayed in Figure 1, by plotting the time evolution of several
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model states and processes along the vertical axis. In the main panel of

Figure 1, vertical lines below each word represent the set of lexical

activations {an(t)} and the thick dashed vertical line shows the fixation

location k(t). The sequence of words fixated in this example is

{1, 3, 3, 2, 4, 5, 6, 7, 9}.

The blue and the green lines indicate the extension of the perceptual span to

the right of fixation. The green line marks the extension of the perceptual span

for nonlexical preprocessing of words, which has been estimated as extending

15 letters to the right of fixation (McConkie & Rayner, 1975; Rayner, 1998).

The blue line represents the rightward extension of the lexical word processing

span. During preprocessing of foveal words, that is, in the increasing phase of

the lexical word activation, the word processing span is at a fixed minimum.

After preprocessing of the foveal word is completed, however, then the lexical

processing span is dynamically modulated by the lexical activation of the

fixated word (Equation 1). Highly activated foveal words cause the processing

span to be narrow in size. If foveal lexical word activation is reduced, however,

then the span size dynamically increases up to its estimated maximum size.

The three lines in the left panel of Figure 1 display the states of

sequentially coupled, directed random walk processes, which evolve over

0

Figure 1. Simulated trajectory of the SWIFT model with attentional zoom lens. To view this figure in

colour, please see the online issue of the Journal.
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time. From the left to the right, the first random walk process displays the

evolution of the random saccade timer and shows how evidence for a new

saccade program accumulates over time. Note that the random oculomotor

timer is subject to inhibition from foveal lexical word activations. Foveal

activation temporarily inhibits the progression of the random walk and

delays the onset of the next saccade program. Second, when the random

oculomotor saccade timer reaches its threshold, a labile saccade program is

triggered. At the end of the labile saccade program, a saccade target is

determined and saccade programming enters into its stabile phase (red bars

in the main panel of Figure 1 indicate the selected saccade target and their

length represents the duration of the labile programming stage). Finally, a

saccade is executed, during which visual input from the retina is suppressed

(see Figure 1, the horizontal grey bars).

Additional new parameters were related to (1) a global inhibition (ppf)

that slowed processing of words to the right as long as nonvanishing

activations were to the left of the word considered (iota), (2) a partial reset

of activation during the increasing part of processing during a saccade, and

(3) a reduction of the processing rate by a constant factor (f) during

postlexical processing, i.e., the decreasing part of the activation.

PREDICTIONS FOR SHUFFLED TEXT READING

Schad et al. (2010) proposed specific hypotheses about how eye movement

control differs between shuffled and normal text reading. Here, we will test

these qualitative predictions on a fully quantitative basis by estimating

parameters of the SWIFT 3 model separately for normal and for shuffled text

reading. Schad et al. (2010) hypothesized that the control of eye movements

may be less affected by ongoing lexical processing when reading shuffled text.

In the SWIFT model, the b parameter determines how strongly lexical

processing (i.e., word frequency) influences word activations. We therefore

predict that the b parameter should be reduced in the shuffled-SWIFT model

as compared to the SWIFT model for normal text reading. Moreover, in the

SWIFT model processing of foveal words influences eye movements via

foveal inhibition of the autonomous saccade timer and we predict that this

influence (captured in model parameter h) is reduced for shuffled-SWIFT.

Moreover, we suggested that the perceptual span is more strongly modulated

by foveal load during reading of shuffled text as compared to reading of

normal text. In the SWIFT 3 model, the d1 parameter determines how

strongly the processing span is modulated. We predicted that the d1

parameter should be larger for shuffled-SWIFT than for normal-SWIFT.

To test hypotheses, we defined a procedure and a set of criteria designed to

avoid potential pitfalls associated with model fitting (see Appendix), including
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a split-half procedure to guard against overfitting, where independent data sets

are used to (1) optimize model parameters (on a training set) and to (2)

evaluate model predictions (on a test set).

RESULTS FROM PARAMETER ESTIMATION

When fitting the shuffled-SWIFT model to the training set, we defined

measures of fixation times and probabilities separately for each subject (see

Engbert et al., 2005, for the key principles of our procedure). Experimen-

tally, the text had been randomly shuffled separately for each of the 30
subjects (Schad et al., 2010). For each subject, we thus computed word-

based measures of fixation durations and probabilities for 850 words of the

subject-specific version of the shuffled corpus (all words except for the first

and the last word per list). This procedure represents eye movements at the

level of individual fixations and saccades. The model produced averages

over 20 model runs of single, first, second, and total fixation durations as

well as probabilities for skipping, two fixations, three or more fixations,

and the number of regressions for each word and for each subject
separately. These simulations demonstrate that it is possible to fit a

cognitive model of eye movement control (SWIFT 3) to data at the level of

individual eye movements. This is an advantage compared to earlier

simulation studies (e.g., Engbert et al., 2005).

Estimated parameter values from the training set for the normal-SWIFT

and the shuffled-SWIFT model (see Figure 2 and Table 1) corresponded to

our qualitative predictions. The lexical parameter b was smaller for shuffled-

SWIFT than for normal-SWIFT. The b parameter approached zero for
shuffled-SWIFT, indicating that lexical influences on word activities were

strongly reduced for shuffled text readers. In addition, foveal inhibition was

reduced for shuffled-SWIFT (smaller h parameter). Taken together, these

results are compatible with the view that the influence of cognition on eye

movements is reduced in shuffled text reading. Second, the d1 parameter was

larger for shuffled-SWIFT than for the normal-SWIFT model. This

indicates that the dynamical modulation of the processing span was stronger

for shuffled than for normal text reading. In its current formulation (see
Equation 1), the dynamical modulation of the processing span depends on

the size of both, the d0 parameter and the d1 parameter. To get an estimate of

how strongly the span differs between its focused and its defocused state,

independent of the overall size of the span, we derived a new parameter

d1additive. This parameter was calculated from the estimated values for the

span-parameters d1 and d0, via

d1additive ¼ d1d0: (3)
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Substituting d1additive for d1 in Equation 1 yields,

dR ¼ d0 þ d1 1� ak tð Þ
A

� �
: (4)

The results showed that the zoom-lens response was much stronger in

shuffled-SWIFT than in normal-SWIFT, even when controlling for task-

differences in the (focused) size of the perceptual span. We also found a
larger global inhibition in the shuffled-SWIFT model (larger ppf parameter).

This result is highly plausible because words in a list are unrelated, and this

should cause strong interference when multiple words are simultaneously

processed. This stronger global inhibition may also cause stronger foveal

load effects in shuffled text reading (Schad et al., 2010), as foveal processing

difficulties inhibit processing of upcoming words.

We also obtained the following parameter differences between the

shuffled-SWIFT and the normal-SWIFT model: For shuffled-SWIFT, the
processing span was estimated to have an overall larger size, as reflected in a

larger d0 parameter. Also, the average rate of the autonomous oculomotor

timer, tsac, was estimated to be larger in the shuffled-SWIFT model

compared to normal-SWIFT. This effect is clearly related to the slower

speed at which shuffled text is read, either due to a mindless eye movement

control (Reichle, Reineberg, & Schooler, 2010; Vitu, O’Regan, Inhoff, &

Figure 2. Results from the estimation of model parameters for the normal-SWIFT (triangles) and

the shuffled-SWIFT (points) models. A genetic algorithm running for 13,000 generations was used to

estimate individual sets of model parameters. This was repeated 10 times with random starting values

for normal-SWIFT and for shuffled-SWIFT. Points/triangles show results from individual estimation

runs; midlines indicate the average of the parameter estimates across 10 estimation runs; error bars

indicate 95% confidence intervals.
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Topolski, 1995), because words cannot be predicted from the preceding

context, or due to postlexical processing (e.g., memory encoding) of shuffled

text. The latter interpretation is also supported by a smaller f parameter in

shuffled-SWIFT, indicating that postlexical processing is slowed relative to

lexical word processing. Thus, estimates for SWIFT parameters indicated

that readers did engage in postlexical word processing when reading shuffled

texts. Lastly, the ı parameter was increased during shuffled text reading,

suggesting that early visual representations were better transferred across

saccades. It may be that this higher stability in visual input for shuffled texts

results from the stronger global inhibition in this task. If processing of

upcoming words succeeds against competing representations from other

words, then the resulting representations may be more stable compared to

normal reading, where global inhibition is small. Finally, the u parameter

determines influences of word predictability on eye movement control. We

set the u parameter to zero for the shuffled-SWIFT model because words

cannot be predicted from their preceding context in shuffled text. The

estimated value of u for the normal-SWIFT model was consistent with

estimates based on previous model versions.

SIMULATION RESULTS

To evaluate model performance, we compared model predictions to

empirical data from the test set. The summary results are computed from

300 runs of the models. For normal text, we simulated 300 runs of the model

for the Potsdam Sentence Corpus. The shuffled text corpus was randomly

shuffled for each subject separately, such that each subject read a different

corpus of shuffled text. The corpus of each single subject in the test sample

was simulated with 20 runs of the model, yielding a total of 300 model

simulations for 15 different versions of the shuffled corpus.

First, we investigated predictions of the SWIFT 3 model for normal and

for shuffled text with respect to distributions of (1) fixation durations, (2)

saccade lengths, and (3) within-word landing positions (effects on the

preferred viewing location, PVL), and effects of within-word landing

position on (4) refixation probabilities (optimal viewing position effect,

OVP), and (5) fixation durations (inverted optimal viewing position effect,

IOVP). Details of analyses and results are provided as Supplementary

Information (available at http://read.psych.uni-potsdam.de/pmr2/). Overall,

predictions of the SWIFT and the shuffled-SWIFT models were successful in

reproducing standard effects on eye movements in normal and shuffled text

reading, respectively. For distributions of fixation durations, model simula-

tions were in good agreement with experimental results. The shuffled-

SWIFT model captured the increase in mean and variance of fixation
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duration distributions during shuffled text reading. Likewise, distributions of

forward- and backward-oriented saccade lengths were well reproduced by

the SWIFT 3 model. For shuffled text reading, forward-directed saccades

were clearly shortened for the experimental data and this effect was

reproduced qualitatively by the shuffled-SWIFT model. The SWIFT 3

model also reproduced landing position distributions (including a leftward-

shift in the preferred viewing location, PVL, for shuffled text), and the OVP

effect on refixations. Moreover, SWIFT 3 successfully predicted stronger

IOVP effects in shuffled text reading for single and first of multiple fixation

durations, and these predictions are parameter free and arise from the model

architecture.

WORD-BASED MEASURES: EFFECTS OF WORD LENGTH
AND WORD FREQUENCY

We focused on summary statistics of how current word length and frequency

affect diverse eye movement measures during normal and shuffled text

reading (see Figure 3). We were interested to investigate whether simulations

of the SWIFT model reproduce reversed effects of word length and

frequency on fixation durations during shuffled text reading. Figure 3

demonstrates that the model simulations qualitatively reproduced task

differences in measures of fixation durations and probabilities, as well as

in effects of word length and frequency.
Readers of shuffled text exhibit prolonged fixation durations on all

measures, including single fixation durations, first of multiple fixation

durations, and second fixation durations. The simulations of the model

reproduced all of these differences. Moreover, SWIFT captured the

influences of word frequency and length on fixation durations during

normal text reading. As is usually found in reading studies, fixation

durations in normal text were longer on long compared to short words

and they were longer on low frequency words compared to high frequency

words. These standard results were also present in the model simulations for

all fixation duration measures. In experimental data on shuffled text reading,

effects of word length and frequency were reversed for all measures of

fixation durations. Readers looked longer at high frequency words than at

low frequency words, and similarly, readers spent more time fixating short

than long words in shuffled text. These effects were reproduced by

simulations of the shuffled-SWIFT model: Simulated fixation durations

showed reversed effects of word frequency and length for single and first

fixation durations, but no effect for second fixation duration.
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For measures of fixation probabilities, the model qualitatively reproduced

experimental results. Experimentally, word skipping is at a very low rate for

long and for low frequency words, but strongly increases for short and/or

high frequency words (Brysbaert & Vitu, 1998; Rayner, 1998). This skipping

pattern was present for both shuffled and normal text reading, and was also

present in the simulation results. Skipping probability was strongly reduced

for readers of shuffled text, which was basically driven by a strong reduction

in skipping of short and high frequency words. Simulations of the shuffled-

SWIFT model captured this task-effect: In the simulated eye movements,

word skipping was also considerably reduced. Empirically, readers make

more refixations on long and on low frequency words as compared to short

and high frequency words, and the SWIFT models for both, normal and

shuffled text reading, reproduced these effects. The refixation rate was also

overall higher in shuffled text reading, and the shuffled-SWIFT model

reproduced this effect. However, the model underestimated the amount of

refixations on long and low frequency words, but overestimated refixations

on short and high frequency words for shuffled text. Mismatches between

model predictions and experimental data in skippings and refixations may

Figure 3. Effects of word length and frequency on different measures of fixation durations and

probabilities for model simulations (points) and experimental data (triangles) of shuffled (solid lines)

and normal (dashed lines) text reading. Left panel: Mean durations of single, first, and second

fixations. Right panel: Mean probabilities for skipping and two fixations, and the mean number of

between-word regressions.
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have been caused by the large perceptual span in shuffled-SWIFT. The

SWIFT model also generated regressive between-word saccades. The model,

however, did not adequately capture the overall number of regressions and

the effects of word length and frequency, suggesting that postlexical

processes that are currently not implemented in the SWIFT model may
contribute to regression behaviour. We conclude that the SWIFT 3 model

qualitatively reproduced benchmark results on eye movements during first-

pass reading of normal and of shuffled text, including reversed length and

frequency effects for shuffled text.

DISTRIBUTED PROCESSING EFFECTS

Much research has been carried out under the immediacy assumption that

primarily current word processing affects fixation durations during reading

(Morrison, 1984; Rayner, 1998). However, several recent studies have found

effects of spatially distributed word processing (Inhoff, Eiter, & Radach, 2005;

Kennedy & Pynte, 2005; Kliegl, 2007; Kliegl et al., 2006; Kliegl, Risse, &

Laubrock, 2007; Risse & Kliegl, 2011) and these effects and their

interpretation have been subject to considerable debate (e.g., Pollatsek,

Reichle, & Rayner, 2006; Rayner et al., 2007). Corpus analyses of normal
text reading have found reliable effects of the upcoming word N�1

(successor effects) and the previous word N�1 (lag effects) on fixation

durations on the fixated word N (Kliegl et al., 2006). The validity of these

findings has been called into question by Rayner et al. (2007). In corpora of

normal text, word neighbourhood is not under experimental control, making

it difficult to control for potential confounds associated with neighbouring

words. Different from normal text, word neighbourhood is under experi-

mental (random) control in shuffled text. In this more highly controlled
context, we have replicated effects of distributed word processing from

normal reading (Schad et al., 2010), supporting the distributed processing

assumption. Here, we investigate predictions of the SWIFT model for effects

of distributed processing during shuffled and during normal text reading

(Figure 4). Overall, the qualitative pattern of effects is well replicated by the

model.

Lag effects

Empirically, the length of word N�1 exerts a very strong influence on single

fixation durations on word N, such that single fixation durations are longer

if word N�1 was long. Likewise, frequency of word N�1 strongly affects

single fixation durations on word N, with longer fixations after low

frequency words N�1. Both of these effects are consistent across tasks and

similar for normal and for shuffled text reading. These strong lag effects are
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also present in data simulated by the SWIFT model for both reading tasks.

Several mechanisms are responsible for producing the effects. First, a

fixation on a long word N�1 will generate less preview for word N, and,

consequently, prolong fixations on word N. Second, the processing span will

be smaller on average during previous fixations if word N�1 is a low

frequency word compared to the case when it is a high frequency word. This

also reduces the amount of preview that is available and prolongs fixation

durations on word N. Third, foveal inhibition slows the progress of the

random saccade timer. Depending on whether a saccade program is already

running, foveal inhibition can either affect the saccade timer for the current,

or for the next saccade. If no saccade program is active, then slowing the

autonomous saccade timer will prolong the current fixation duration. If a

(labile or nonlabile) saccade program has already been started, then foveal

inhibition will prolong the duration of the next fixation. Thus, lexical

processing from word N�1 can spill over into longer fixation durations on

word N.

Figure 4. Analysis of distributed processing effects for model simulations of shuffled (triangles &

solid lines) and of normal (squares & dotted lines) text and experimental data on shuffled (points &

dashed lines) and normal (diamonds & dot-dashed lines) text reading. Top row: Average single fixation

durations on word N as a function of word frequency of the previous word (word N�1, left column),

the current word (word N, middle column), and the next word (word N�1, right column). Predictions

from separate regression analyses involving cubic effects on averaged data for each condition are

shown. Bottom row: Corresponding plots as a function of word length.
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Successor effects

The SWIFT model contains no explicit mechanism for modulating

fixation durations as a function of processing upcoming words N�1.

Interestingly, the model nevertheless shows effects of the upcoming word

N�1, due to selection effects. Specifically, the likelihood for a refixation

depends on lexical activation of the next word N�1. As the lexical

activation of word N�1 is a function of the fixation duration on word N

and lexical processing of word N�1, the durations of single fixations and
of the first of multiple fixations can exhibit selection effects from word

N�1 processing. In addition, the intended saccade length could generate

small effects of parafoveal processing by influencing saccade programming

time. For long words N�1, the intended saccade length may on average be

larger, and saccade programming will be faster. This effect can cause

longer fixation durations before short words (and before high frequency

words, due to the correlation between word length and word frequency).

Current word effects

Interestingly, for shuffled text reading effects of distributed processing are

dissociated from immediacy effects. Lag and successor effects are in the same

direction as in normal text reading, while current word effects are reversed

for shuffled text reading. In Figure 4, this is visible as the effects for words

N�1 (Figure 4, left panel) and N�1 (Figure 4, right panel) are highly similar

between normal and shuffled text reading. Effects for the current word, to
the contrary, strongly differ between shuffled and normal text reading (see

Figure 4, central panel).

MODEL PREDICTION: FIXATION DURATIONS BEFORE
SKIPPING

In this section, we investigate model predictions for fixation durations before

word skipping. In SWIFT 3, we presented a mechanism to explain the pattern

of skipping costs and benefits observed in reading studies. It is a theoretically

interesting question whether average fixation durations before word skippings

are longer (skipping costs) or shorter (skipping benefits) compared to fixation

durations before normal forward saccades to the next word N�1 (Drieghe,
Brysbaert, Desmet, & De Baecke, 2004; Hogaboam, 1983; Kliegl, 2007;

McConkie, Kerr, & Dyre, 1994; Pollatsek, Rayner, & Balota, 1986; Pynte,

Kennedy, & Ducrot, 2004; Radach & Heller, 2000; Reichle et al., 1998; Risse

& Kliegl, 2011). Kliegl and Engbert (2005) investigated this question and

found reliable skipping benefits for short and for high frequency words in a

highly controlled statistical analysis. Their results show that skipping costs are
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typical for long and low frequency words, whereas skipping benefits are

reliable for short and high frequent words. Our present analyses for normal

text reading are based on a subset of the data used by Kliegl and Engbert

(2005) and we here replicate their basic findings (Figure 5).

Mathematical models of eye movement control have predicted skipping

costs (e.g., E-Z Reader: Reichle et al., 1998), and this was also the case for

previous versions of the SWIFT model (SWIFT 2: Engbert et al., 2005).

Figure 5 shows that the SWIFT 3 model successfully produces skipping

benefits for short words during normal text reading. Moreover, the model

predicts skipping costs for long words, which is well in line with the observed

data. For shuffled text, effects of word skipping on fixation durations were

less stable due to the smaller amount of available data. To get a reliable

estimate of skipping costs and benefits in shuffled text reading, we combined

data from both sub-samples of the experimental data (training set and test

set) for our analysis. Figure 5 shows that during shuffled text reading,

skipping benefits are present for short words as has been observed for

normal text reading. However, the effects for long words differed from those

Figure 5. Single fixation durations before skipping (solid triangles) and nonskipping (solid squares)

saccades as a function of word length of the skipped word for observed (left panel, dashed lines) and

simulated (central panel solid lines) data during normal (upper panel) and shuffled (lower panel) text

reading. The right panel displays the skipping difference in single fixation durations [SFD before

skipping � SFD before nonskipping] for experimental (dashed lines) and simulated (solid lines) data,

where positive difference values indicate skipping costs, and negative difference values indicate

skipping benefits. Error bars are cell-based SEM.
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during normal text reading. For long words, we did not observe reliable

skipping costs for readers of shuffled text.

The SWIFT 3 model also makes predictions about differences in skipping

costs and benefits between tasks. For shuffled text reading, Figure 5 shows

that the SWIFT 3 model successfully predicts the skipping benefits observed

for short words. For long words in shuffled text, moreover, the model correctly

predicts the absence of skipping costs. This prediction is quite surprising,

given that we had no theoretical reason a priori to expect the effect and given

that skipping costs and benefits were not explicitly included in fitting of model

parameters. That the model simulations nevertheless predict the effect lends

strong support to the mechanisms generating skipping benefits and costs in

SWIFT 3. Next, we will investigate these model mechanisms in more detail.

HOW SPECIFIC ARE MODEL PREDICTIONS?

The previous analyses demonstrated that the SWIFT 3 model successfully

reproduced key patterns of eye movements in shuffled and normal text

reading. Based on the split-half procedure, we now investigate predictions

for experimentally observed eye movements in a given test set by computing

correlations between predicted and observed data. Predictions are based on

(1) the SWIFT 3 model for the respective task, (2) experimental data

observed in the other task, and (3) predictions from the SWIFT 3 model for

the other task. As a minimal criterion for model validity, predictions based

on the SWIFT model for the respective task (a) should be as good or better

than predictions based on experimental data from the other task (b) or

model predictions for the other task.

First, we used experimental data in normal text reading to predict data

observed during shuffled text reading. For all measures of fixation prob-

abilities correlations between predicted and observed values were very high

(rs].85). These high correlations do not uncover clearly task-specific eye

movement effects, and we therefore focus our analyses on fixation durations.

Figure 6 and Table 2 show correlations between predicted and observed

data. Eye movements during normal text reading were best predicted by

simulations of the normal-SWIFT model (Figure 6a, upper panel). Correla-

tions between predicted and observed values were generally positive and high

(rs].60, except for one slightly negative correlation). However, predictions

for fixation durations during normal text reading failed when based on the

shuffled-SWIFT model (Figure 6A, lower panel) or on experimental data

observed during shuffled text reading (Figure 6C). For these cases,

correlations between predicted and observed data were low (all rs5.29,

one exception: r�.58) or negative (8 out of 12 correlations). Likewise,

fixation durations during shuffled text reading were best predicted by
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simulations of the shuffled-SWIFT model (Figure 6B, lower panel).

Correlations between predicted and observed values were very high and

positive for single and for the first of multiple fixation durations (rs].80).

Only effects in second fixation durations were not well captured by the

shuffled-SWIFT model (rs:�.60). Again, predictions based on the normal-

SWIFT model (Figure 6B, upper panel) or on experimental data observed for

normal text reading (Figure 6C) were not successful. Correlations with model

predictions were all negative, and correlations with experimental data were

negative or low (rs5.29).

Figure 6. Shown are correlations between predicted and experimentally observed eye movement

measures in the test data sets for normal and for shuffled text. Plotted at the ordinates are observed

fixation durations from two tasks (indicated in the left-most column): Normal text reading (A), and

shuffled text reading (B, C). Plotted at the abscissae are predicted fixation durations, where predictions

are based on different sources (which are indicated in the right-most column): Predictions are based on

simulations of the normal-SWIFT model [(A)-upper panel and (B)-upper panel], simulations of the

shuffled-SWIFT model [(A)-lower panel and (B)-lower panel], and observed data from normal text

reading (C). To compute correlations between observed and predicted data, word frequency (left

panel) and length (right panel) were split into bins (the same bins used in Figure 3) and correlations

were computed over average fixation durations per bin. Analyses were repeated for different measures

of fixation durations, including the durations of single fixations (Panels 1�4, counted from left to

right), first of multiple fixations (Panels 2�5) and second fixations (Panels 3�6).
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We conclude that parameter estimates for both models, the normal-

SWIFT model and the shuffled-SWIFT model, captured task-specific effects.

Critically, they did not only fit eye movements in the two tasks. Additionally,

models highly successfully predicted eye movements in the test sets from the

split half-validation procedure.

SIMULATION EXPERIMENTS: HOW DOES THE DYNAMIC
PROCESSING SPAN AFFECT EYE MOVEMENTS?

Next, we investigated the consequences of the zoom lens model for eye

movements during reading. We had hypothesized that reversed effects of

word length and frequency stem from a higher dynamic modulation of the

processing span by foveal word activation, i.e., we had predicted that a larger

d1 parameter reduces or reverses the influence of word frequency on first-

pass fixation durations. To test this prediction in the SWIFT 3 model, we

manually decreased the dynamic modulation of the processing span:

The d1additive parameter for shuffled-SWIFT (estimated as 26.45) was set

to the value estimated for the normal-SWIFT model (2.27) and 300 model

simulations with this reduced modulation of the processing span were

performed. We thus disenabled the stronger span-modulation in

shuffled-SWIFT.

TABLE 2
Correlations between predicted and observed fixation durations in the test data sets

for normal and shuffled text

Single fixation

duration

First of multiple

fixation duration

Second fixation

duration

Split by word Length Frequency Length Frequency Length Frequency

Experimental data (test set)

(a) Prediction by normal-SWIFT

Normal .67 .87 .68 .65 .60 �.12

Shuffled �.69 �.36 �.84 �.77 �.63 �.73

(b) Prediction by shuffled-SWIFT

Shuffled .88 .80 .92 .93 �.59 �.67

Normal �.56 �.14 �.68 �.48 .58 �.01

(c) Prediction by experimental

data (normal text)

Exp. data (shuffled text) �.50 .02 �.63 �.34 .04 .29

To compute correlations, word length and frequency were split into bins (cf. Figure 3) and

correlations were computed over average fixation durations per bin.
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The results from these model simulations are displayed in Figure 7. As

expected, the reversed effects of current-word frequency on single fixation

durations were absent in the simulations. Moreover, the reversed effects of

current-word length also disappeared, suggesting that a strong zoom-lens

response can also explain reversed effects of current-word length. We conclude

that the zoom lens model of attention, implemented as a dynamic processing

span in the SWIFT model, can explain (1) variations in the effects of current-

word frequency and length on fixation durations and (2) dissociations between

immediacy effects and effects of distributed processing.
Next, we investigated the consequences of the zoom lens dynamic for

skipping costs and benefits. We analysed fixation durations before skipping

when the strong dynamic modulation of the processing span was disabled in

shuffled-SWIFT. As a result, the model did not show the observed skipping

benefits any more. Instead, it produced skipping costs across nearly all word

lengths (see Figure 8). This result suggests that the dynamic modulation of

Figure 7. Effects of the dynamical processing span on spatially distributed word processing. Shown

are the same results as in Figure 4 (grey), including model simulations of shuffled (triangles & solid

lines) and of normal (squares & dotted lines) text and experimental data on shuffled (points & dashed

lines) and normal (diamonds & dot-dashed lines) text reading. In addition, simulations of the shuffled-

SWIFT model are presented, where the strong dynamic modulation of the processing span was

disabled (black stars & solid lines, ‘‘shuffled � delta1’’). Top row: Average single fixation durations as a

function of word frequency of the previous word (word N�1, left column), the current word (word N,

middle column), and the next word (word N�1, right column). Predictions from separate regression

analyses involving cubic effects on averaged data for each condition are shown. Bottom row:

Corresponding plots as a function of word length.
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the processing span is a key mechanism generating skipping benefits in the

SWIFT 3 model.

A possible mechanistic analysis of the origin of skipping benefits in the

zoom lens version of the SWIFT 3 model is beyond the current study and

will be published elsewhere.

GENERAL DISCUSSION

In this paper, we developed and analysed a zoom lens version of the SWIFT

model for eye movement control based on data from normal and shuffled text

reading. We challenged the model with strong experimental eye-movement
effects, like reversed effects of word length and frequency (Schad et al., 2010).

Both models, the normal-SWIFT and the shuffled-SWIFT variants (differing

in parameter values only), were in good agreement with data related to

standard effects of eye guidance in reading. The models reproduced

distributions of (1) fixation durations, (2) saccade lengths, and (3) within-

word landing positions (including effects on the preferred viewing location,

PVL; Rayner, 1979), as well as (4) effects of within-word landing positions on

refixation probabilities (optimal viewing position effect, OVP; O’Regan &
Lévy-Schoen, 1987), and (5) on fixation durations (inverted optimal viewing

position effect, IOVP; Vitu, McConkie, Kerr, & O’Regan, 2001; Nuthmann,

Engbert, Kliegl, 2005, 2007) (see Supplementary Information, available at

http://read.psych.uni-potsdam.de/pmr2/). Critically, in a split half-procedure

model predictions were evaluated on a data set that was independent from the

one used for parameter fitting to guard against overfitting (see the Appendix

for a procedure for model validation).
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We found effects of word length and word frequency on fixation durations

to be reversed in shuffled text reading, whereas the effects were in the

standard direction in normal text reading, and these strong effects were well

reproduced by the model simulations. For shuffled text, readers surprisingly

looked longer at short words compared to long words, and they also looked
longer at high frequency words than at low frequency words (Schad et al.,

2010). The model simulations qualitatively reproduced these reversed effects,

and a simulation experiment showed that a strong zoom-lens response in

shuffled-SWIFT was responsible for the success. This finding supports our

previous hypothesis (Schad et al., 2010) that SWIFT, as a parallel graded

attention model, equipped with a zoom lens mechanism provides a

theoretical framework that can explain reversed effects of word frequency.

Moreover, it also uncovers a clear and strong, but previously unnoticed
(Schad et al., 2010) influence of attention modulation on effects of word

length, a result that may inspire future tests of the dynamic processing span

in the SWIFT 3 model.

Effects of spatially distributed processing in the model were in agreement

with the observed data. Earlier work by Kliegl et al. (2006) and Schad et al.

(2010) reported spatially distributed effects of word frequency and length in

experiments on normal and on shuffled text reading. It is important to note

that these effects are of experimental nature for shuffled text because word
neighbourhood is under experimental (random) control. Distributed proces-

sing effects were highly similar between shuffled and normal text reading,

and at the same time immediacy effects of word length and frequency

qualitatively differed between tasks. The SWIFT 3 model successfully

reproduced this empirical dissociation of distributed processing effects

from immediacy effects.

The SWIFT 3 model was successful in reproducing experimentally

observed fixation probabilities. In shuffled text word skipping was reduced
and refixations were increased compared to normal text and the shuffled-

SWIFT model reproduced these findings at a qualitative level. Moreover,

parameter variations between the normal-SWIFT and the shuffled-SWIFT

models reproduced standard effects of word length and frequency on word

skipping and refixations.

Model predictions

Kliegl and Engbert (2005) analysed fixation durations before word skipping

using an advanced statistical bootstrapping approach and discovered the

systematic effect that skipping costs occur for long and for low frequency

(target) words, whereas skipping of short and high frequency words produces

highly reliable skipping benefits. Our simulations demonstrated that

SWIFT 3 is the first model that can explain skipping benefits; in particular,
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SWIFT 3 predicted experimental skipping benefits for short words and

predicted skipping costs for long words in normal text reading. For shuffled

text, we also found reliable benefits for skipping of short words. Skipping of

long words, however, was not associated with the costs that had been

observed in normal text reading. This finding is very interesting because it is

novel, because there was no theoretical reason to predict such an effect a

priori, and because skipping costs and benefits were not explicitly included

in the procedure for parameter fitting. Nevertheless, the SWIFT 3 model

reproduced the absence of skipping costs in shuffled text reading.

WHAT DO WE LEARN ABOUT SHUFFLED TEXT READING?

Randomly shuffling words in a corpus of text is a strong manipulation that

may affect many different aspects of eye movement control during reading,

including attentional, linguistic (lexical, syntactic, semantic), visual, and

oculomotor processes. Here, we simultaneously investigated different control

processes in a mathematical eye movement model. First, we tested the

hypothesis (Schad et al., 2010) that readers’ eye movements are less strongly

coupled to ongoing lexical word processing (see also Nuthmann et al., 2007;

Rayner & Fischer, 1996; Reichle et al., 2010; Vitu et al., 1995) when reading

shuffled text, and this hypothesis was supported by the simulation results.

For shuffled-SWIFT, the influence of lexical processing on word activations

was reduced, together with a reduced foveal inhibition of the autonomous

saccade timer. We conclude that eye movements are less coupled to ongoing

lexical processing during shuffled text reading, leading to a more autono-

mous or ‘‘mindless’’ control of eye movements.

What factors may cause this processing difference between reading tasks?

First, readers may scan over the (boring) shuffled word lists in the first pass

at a rather superficial level, accepting the risk that some long or low

frequency words are not completely processed. This strategy may indeed be

efficient for shuffled text, where words need to be encoded for later

recognition: Low frequency words have a benefit in recognition memory

(Reder et al., 2000), and processing low frequency words at a superficial level

may therefore suffice to remember these words for the recognition probes.

Alternatively, during reading of normal sentences, contextual (e.g., syntactic,

semantic, or purely statistical) constraints ease the processing of individual

words. This facilitation is not available in random lists of unrelated words.

Therefore, lexical information may become available too late to reliably

inform eye movement control.

Second, Schad et al. (2010) suggested that the perceptual span could be

more strongly modulated by foveal load in readers of shuffled text as

compared to readers of normal text, and our simulation results provided
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support for this prediction. If adaptive control of eye movements is reduced

during reading of shuffled text (i.e., more autonomous control), we

considered it surprising to find an increased adaptive control of the

attentional focus (i.e., increased zoom-lens response). This result is interest-

ing given that both mechanisms, attentional and behavioural control, share a
common function during reading: They both provide means to adapt limited

cognitive resources to local processing difficulties. Cognitive-saccadic

coupling during normal reading allows for optimal control because reading

proceeds fast for easy words, and difficult words are fixated long enough for

sufficient processing. Similarly, focusing attention on low frequency words

and defocusing attention for easy words also adapts processing to local

needs. Based on this analysis, a strong dynamical modulation of the zoom

lens during shuffled text reading may compensate for the mindless control of
eye movements.

As an alternative, the strong modulation of the processing span in

shuffled text may result from the serial nature of the shuffled text reading

task. Shuffled text enforces a rather serial processing of words because none

of the words can be predicted from the context. Accordingly, word skippings

are strongly reduced and even very short and high frequency words are often

fixated. When readers of shuffled text fixate on such words, which are

processed easily, then it would be an optimal strategy to strongly widen the
processing span to maximize preview of parafoveal words. The changed

fixation patterns in shuffled text may therefore cause a stronger dynamical

modulation of the processing span and a global increase in the size of the

perceptual span, both of which were supported by our model simulations.

As a complementary finding, global inhibition was increased in the

shuffled-SWIFT compared to the normal-SWIFT model, suggesting that

inhibition is larger for unrelated words in a randomly shuffled list. This

finding introduces a new and previously overlooked mechanism that may
explain and contribute to foveal load effects when reading shuffled or

normal text.

Third, despite the reduced cognitive-saccadic coupling in shuffled text

reading, lexical and even postlexical processes seem to be intact, as was

indicated by overall high word activations and a slowed deactivation of

words in shuffled-SWIFT (see Lamme, 2003, for dissociations between

awareness and attention). These results may indicate that readers attempt to

memorize words for later recognition probes. Additionally, our simulation
results suggest that visual and oculomotor processes in shuffled text reading

may differ from normal text reading, as transfer of visual information across

saccades was enhanced and the speed of the autonomous saccade timer was

reduced in shuffled-SWIFT.

We developed a numerical simulation of eye movements during shuffled

text reading based on the SWIFT model to capture important cognitive
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processes of eye guidance in this task. We take a parsimonious approach by

using an existing model (SWIFT 3) to explain strong effects in a novel task

(shuffled text reading) without adding post hoc assumptions about task-

specific processes. An alternative strategy may be to introduce new task-

specific assumptions to explain experimental results. For example, low
frequency words have a benefit in recognition memory (the mirror effect;

Reder et al., 2000) and readers of shuffled text may use this fact to save

encoding time on low frequency words. Note, however, (1) that previous

research has found mirror effects for retrieval but not for encoding (e.g.,

Diana & Reder, 2006) and (2) that it may be difficult to reconcile a mirror-

effect account with specific aspects of our findings, like the strong standard

lag- and successor-effects. It would be interesting to implement and test this

and other alternative accounts in the future, of course. To support these
investigations, we provide all data, analysis scripts, and the computer code of

SWIFT 3 via an online repository (see link later). From an experimental

perspective, our simulations make specific predictions that need to be

investigated in future experimental work, for example, testing attention

allocation using the boundary paradigm (Rayner, 1975) or the moving window

paradigm (McConkie & Rayner, 1975).

THE ZOOM LENS MODEL OF SELECTIVE VISUAL ATTENTION

The SWIFT 3 model demonstrates that the zoom lens model of selective

visual attention (Eriksen & St. James, 1986; LaBerge & Brown, 1989) can
add to the understanding of eye movement control in reading. It combines

the concept of the zoom lens with the idea of a processing gradient. The

zoom lens in SWIFT 3 has been inspired as an account for the foveal load

hypothesis, which states that parafoveal preview depends on the difficulty of

the fixated word (Henderson & Ferreira, 1990). As one of our key results, we

demonstrated with the development of SWIFT 3 that a zoom lens-type

modulation of the processing span by foveal load could reduce and even

reverse effects of foveal processing difficulty (Schad et al., 2010). Moreover,
we showed that the zoom lens mechanism contributed to a mathematical

explanation of systematic variations of skipping benefits and costs (Kliegl &

Engbert, 2005).

SUMMARY

In the present research, we studied eye movement control during reading of

normal and shuffled text using an advanced version of the SWIFT model

(Engbert et al., 2005). Based on statistical analysis of eye movements, we

previously (Schad et al., 2010) derived hypotheses on differences in eye
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guidance between both reading tasks. Here, we quantitatively investigated

these hypotheses. Our results demonstrate that the SWIFT 3 model

generalizes to explain specific aspects of eye movements during shuffled

text reading. They further support our hypothesis that during shuffled text

reading, readers reduce adaptive control of eye movements, but increase their

adaptive control of attention. Thus, the implementation of a new mechan-

ism, the dynamic modulation of the processing span, in the SWIFT model

turned out to be a powerful mechanism to explain effects in experimental

data.
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APPENDIX: Using parameters of cognitive models for
hypothesis testing

In this Appendix, we propose a minimum set of criteria for valid model

comparisons. First, fitting models to experimental data always comprises the

risk of overfitting error variance instead of capturing valid and reliable

effects. This is particularly problematic for high-dimensional models

containing many free parameters such as current models of eye movement

control during reading. To guard against overfitting, we implement a cross-

validation by splitting data into subsets containing half of the data.

A training set is used for the estimation of model parameters. Estimated

parameters are then used in Monte Carlo simulations to predict eye

movements on a distinct and independent evaluation set (or test sample),

where model predictions are compared to experimental results.
Second, we suggest that several basic eye movement phenomena should

be checked for each estimated parameter set to ensure that model behaviour

is reasonable for standard eye-movement effects. We suggest that it is

particularly informative to investigate distributions of fixation durations,

saccade lengths, and landing positions, as well as basic oculomotor effects

like the optimal viewing position (OVP) effect on refixation probabilities and
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inverted optimal viewing position (IOVP) effects on fixation durations (Vitu

et al., 2001). Moreover, effects of word length and frequency on various

measures of fixation durations and fixation probabilities provide benchmark

results for model evaluation.

Third, experimental results in different reading conditions are often quite
similar in many respects. In our present analyses, several effects in eye

movements were present in both shuffled and normal text conditions. For

example, readers in both conditions exhibited Gaussian landing site

distributions, an OVP effect on refixation probabilities, IOVP effects on

measures of fixation durations, and effects of word length and frequency on

fixation durations and fixation probabilities. Qualitatively replicating experi-

mental effects in each task with numerical model simulations therefore does

not guarantee that estimated model parameters capture variance that is
specific to both tasks. We here suggest two ways how more specific model

predictions can be tested. As a first step, we consider it critical to investigate

effects that (1) specifically differ between tasks and (2) are meaningfully

related to the estimated model parameters. In the present work, we are

interested in specific differences in how word frequency and word length

influence fixation durations during normal and shuffled text reading. We

have previously proposed hypotheses about what cognitive processes may

cause these effects, namely effects of foveal load on the perceptual span.
Fourth, an even closer model test should be performed before task

differences in parameter estimates can be relied upon. Such a test provides

evidence that parameter estimates for the SWIFT 3 model capture valid

task-specific differences in eye movements. As a minimal criterion, we

suggest deriving (1) model predictions for data observed in the test sample of

a task. These predictions should be better than (2) predictions from the

model for the other task and better than (3) predictions derived from the

experimental data from the other task. For example, we predict experimental
eye movement data in the test sample for shuffled text based on (1)

simulations of the shuffled-SWIFT model, (2) simulations of the normal-

SWIFT model, and (3) experimental data on normal text reading. When

comparing these three predictions, one could postulate that predictions from

the shuffled-SWIFT model must be as good or better than predictions from

the normal-SWIFT model, and than predictions from experimental data on

normal text reading. We will also test this criterion when predicting

experimental data from normal text reading.
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