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SUMMARY The CD81 T cell noncytotoxic antiviral response (CNAR) was discovered
during studies of asymptomatic HIV-infected subjects more than 30 years ago. In
contrast to CD81 T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV
replication without target cell killing. This activity has characteristics of innate immu-
nity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted.
The HIV-associated CNAR does not affect other virus families. It is mediated, at least
in part, by a CD81 T cell antiviral factor (CAF) that blocks HIV transcription. A variety
of assays used to measure CNAR/CAF and the effects on other retrovirus infections
are described. Notably, CD81 T cell noncytotoxic antiviral responses have now been
observed with other virus families but are mediated by different cytokines.
Characterizing the protein structure of CAF has been challenging despite many bio-
logic, immunologic, and molecular studies. It represents a low-abundance protein
that may be identified by future next-generation sequencing approaches. Since
CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for
HIV/AIDS therapy, cure, and prevention.

KEYWORDS CD81 T cells, HIV transcription, elite controllers, human immunodeficiency
virus, innate immunity, noncytotoxic antiviral activity, soluble antiviral factor

(I) INTRODUCTION

Amajor component of the immune system, CD81 T cells are often inaccurately
known only as “killer T cells” or CTLs, for cytotoxic T lymphocytes. This terminology

defines only one of the effector functions of CD81 T cells, which is their ability to recog-
nize and kill pathogen-infected cells and cancer cells. In reality, CD81 T cells are poly-
functional (1); their various functions include not only target cell killing (cytotoxicity) but
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also expansion via cell proliferation, the secretion of soluble proteins (cytokine produc-
tion), and antiviral responses mediated by noncytotoxic mechanisms. The importance of
the CD81 T cell noncytotoxic immune activity is of major interest to our laboratory and
the topic of this review.

The initial observation of a CD81 T cell noncytotoxic antiviral response (CNAR) was
made in the context of human immunodeficiency virus (HIV) infection many years ago
(2). It was found in asymptomatic subjects infected by the virus. Indeed, CNAR was the
first discovered immune response against HIV. This noncytotoxic CD81 T cell anti-HIV
activity does not require major histocompatibility complex (MHC) recognition or cell-
to-cell contact and is not the result of blocking virus entry, reverse transcription, or
integration (section VI). Since then, this noncytotoxic antiviral activity has been shown
to be active against all HIV isolates and other retroviruses, and similar CD81 T cell non-
cytotoxic antiviral activities have been observed with other viral infections (section
VIII).

This review will provide background information on how characteristics of a noncy-
totoxic CD81 T cell-mediated antiviral response, or CNAR, differ from the antiviral cyto-
toxicity mediated by CD81 T cells (Table 1). The article will cover the discovery and
clinical relevance of CNAR as well as the major secreted protein associated with its
anti-HIV activity, CAF (the CD81 T cell antiviral factor). Furthermore, the assays and ex-
perimental approaches used to characterize this noncytotoxic antiviral response and

TABLE 1 Characteristics of the innate and adaptive immune responses and association with CD81 T cell activitya

Characteristics

Characteristics of immune responses and antiviral CD8+ T cell activity

Adaptive response Innate response
Germline invariant receptor 2 1
Clonal receptor gene rearrangement 1 2
Specificity:
Conserved motifs 2 1
Highly specific antigens 1 2

HLA restricted 1 2
Present without previous exposure to pathogens 2 1
Memory response 1 2b

Priming needed 1 2
Vaccine inducible 1 1
Speed of response Slow Fast
Cell-to-cell contact 1 1/2
Cytotoxicity 1 1/2
Soluble factor secretion 1 1
Cell population B and T cells ILCs, NK cells,gd T cells, phagocytes, mast cells

CTL activity CNAR/CAF activity
Germline invariant receptor 2 Potentially conserved viral motif recognition
Clonal receptor gene rearrangement TcR 2
Specificity
Conserved motifs 2 Affects several different retroviruses
Highly specific antigens 1 Not HIV specific

HLA restricted 1 Not restricted by HLA molecules, but histocompatibility improves the activity
Present without previous exposure to pathogens 2 Found in some uninfected individuals
Memory response 1 Found in exposed uninfected individuals and decreases after exposure;

no recall response
Priming needed 1 2/1
Vaccine inducible 1 1
Speed of response Days to wks Rapid, early response to HIV infection (min to days)
Cell-to-cell contact 1 CNAR activity improved by cell contact
Cytotoxicity 1 2
Soluble factor secretion TNF-a, IFN-g, Gzm Mediated by CAF, a secreted factor that inhibits viral transcription (Table 4)
Major CD81 T cell subsetc TEM TTM, TRM
aNo shading represents adaptive immunity, dark gray shading represents innate immunity, and light gray shading represents both.
bLimited recall response for some innate cell subsets such as innate lymphoid cells and NK cells.
cTTM, transitional memory CD81 T cells; TEM, effector memory CD81 T cells.
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its mode of action will be described. Because the search for CAF has uncovered the
existence of several proteins that have anti-HIV activity but are not CAF, such as the
b-chemokines, we will also review several of these soluble antiviral proteins (sec-
tion IX).

The noncytotoxic role of CD81 T cells is important for the development of immune-
based therapies for HIV, for understanding viral latency, and for approaches toward an
HIV vaccine and a cure, as well as for an appreciation of this immune activity in other
viral infections.

(II) THE CYTOTOXIC ANTIVIRAL ACTIVITY OF CD8+ T CELLS
(A) Characteristics of CD8+ T Cell-Mediated Cytotoxicity

CD81 T cell cytotoxicity is defined as cell death caused by the action of activated
effector CD81 T cells on viable target cells recognized via a specific T cell receptor, or
TcR, that binds to antigen-presenting HLA class I molecules (Fig. 1). The mechanism
used by those CD81 CTLs to carry out this function involves the release of two types of
soluble proteins, perforin and granzymes, from secretory vesicles, or granules. This cel-
lular process is called degranulation and occurs at the effector/target cell interface, or
immunological synapse. During this process, perforin creates pores in the target cell
membrane, allowing granzymes to enter the cell and induce targeted programmed
cell death (or apoptosis) (3, 4). When applied alone to target cells, perforin or gran-
zymes do not cause cell death, but some granzymes have direct noncytotoxic antiviral
activity (section IX).

CD81 T cells are protected from their own perforin/granzyme toxicity by CD107a, a
protein coating the inside of the granules. CD107a is expressed at the CD81 T cell sur-
face after vesicle/cell membrane fusion that occurs during degranulation (Fig. 1C). For
CD81 T cell cytotoxicity to occur effectively, all 3 components, perforin, granzymes,
and degranulation, need to be present. Most CD81 T cells are able to respond to TcR
stimulation during the degranulating process, which can be measured by assessing
CD107a expression by flow cytometry. However, the vast majority of resting CD81

FIG 1 Anti-HIV activities of CD81 T cells. To control HIV replication, CD81 T cells can use the following activity: (A) the CD81 T
cell noncytotoxic antiviral response (CNAR), which requires cell-cell contact, is improved by the interaction of adhesion
molecules to their ligands, and is mediated by a soluble factor; (B) secretion of the CD81 T cell antiviral factor (CAF), which can
pass through a semipermeable membrane (transwell) or is found in the culture supernatants of stimulated CD81 T cells; or (C)
killing of the infected target cells by cytotoxic CD81 T lymphocytes (CTL) via perforin and granzyme release, which requires
degranulation (cell-surface CD107a expression). As opposed to the latter case, CNAR/CAF does not result in target cell death,
and instead, HIV transcription is blocked by the CD81 T cells.
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T cells are not “ready to kill,” in contrast to natural killer (NK) cells. To kill, the CD81

T cell must be primed for several days before expressing the cellular proteins needed for cyto-
toxicity: perforin and granzymes (5). For this reason, measuring only CD107a without confirm-
ing that either the target cells are killed or that both perforin and granzymes are present in
effector cells is only a marker of degranulation and not CD81 T cell cytotoxicity.

The above-mentioned comment underlines the importance of determining specifi-
cally if target cell killing is the mechanism for virus control. Indeed, only a few complex
in vitro procedures permit the accurate determination of target cell death, such as the
chromium 51 (51Cr) (6) or fluorophore release (7) assays and time-lapse microscopy
imaging of real-time cytotoxicity (8). These labor-intensive assays are one of the rea-
sons that most research in immunologic activity relies on the indirect and imperfect
measure of degranulation to suggest cytotoxic function. These assays do not consider
the possible presence of a noncytotoxic antiviral response (Fig. 1A and B).

(B) CD8+ T Cell IFN-c and TNF-a Production

Antigen-activated CD81 T cells can produce gamma interferon (IFN-g) and tumor
necrosis factor alpha (TNF-a), other markers used to measure indirectly the potential
for cytotoxicity. IFN-g is a cytokine without cytotoxic capabilities that can directly in-
hibit the replication of some viruses, but not HIV (9). TNF-a is involved in death signal-
ing, but its role in inducing cell death is minor given its weak signaling potential. Both
of these cytokines can inhibit the replication of some viruses directly (section VIII) and
play a role in immune responses by activating immune cells (10). Measuring their intra-
cellular cytokine production, or release, only demonstrates that those CD81 T cells are
responding to an antigen, not that they are cytotoxic. As noted above, CD81 T cells are
mostly polyfunctional: they produce and secrete cytokines, as well as kill target cells or
have a noncytotoxic function.

IFN-g and TNF-a are also released from extracellular vesicles. As such, this response
could lead to some level of CD107a expression at the cell surface; however, this process
does not necessarily indicate that the activity is cytotoxic. Therefore, in the context of HIV
and other infections, simply measuring CD107a, IFN-g/TNF-a production, or granzyme
release does not definitively indicate killing by the effector T cells. Confirmation of target
cell death is needed. This review focuses on CNAR/CAF, the innate noncytotoxic antiviral
mechanism that could be involved in controlling a virus infection, but is often underrecog-
nized and underappreciated (11–15) (sections III and V).

(C) Activation-Induced Cell Death Activity

Another cytotoxicity mechanism through which immune cells can kill target cells is
activation-induced apoptosis via the Fas/Fas-ligand (FasL) (16, 17) or the TNF-related
apoptosis-inducing ligand (TRAIL)/TRAIL receptor (TRAIL-R) (18) pathways. However,
evidence of Fas- or TRAIL-mediated cell killing of infected cells by CD81 T cells in the
context of viruses remains limited in humans (19). In very rare cases, such as tumor
elimination, viral defense in the nervous system (20), or in autoimmune diseases, CD81

T cells express FasL or TRAIL as well as other lymphocyte-activating receptors for this
process. FasL and TRAIL have been reported, through an interaction with Fas or TRAIL-
R expression on the target cell surface, to cause activation-induced cell death by apo-
ptosis (21). However, whereas CD81 T cells can express FasL or TRAIL, there is very little
evidence in humans that CD81 T cell cytotoxicity against infected target cells is mediated
by the Fas/FasL or TRAIL/TRAIL-R (22) pathways. In this regard, a role for a Fas/FasL or
TRAIL/TRAIL-R interaction has not been observed in HIV infection during CNAR (23) (C. E.
Mackewicz, unpublished data). With CD81 T cells, these death ligands, when expressed,
are mostly acting as costimulatory receptors to induce cell activation and proliferation (24).

(III) THE NONCYTOTOXIC ANTIVIRAL ACTIVITY OF CD8+ T CELLS
(A) Discovery

During studies to determine why cultured peripheral blood mononuclear cells
(PBMC) from asymptomatic HIV-seropositive individuals did not yield any infectious
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viruses, Walker and colleagues observed that the removal of CD81 cells from the PBMC
by immunologic panning with CD8 antibodies (25) led to HIV production (2). The sub-
sequent reintroduction of the CD81 cells to the CD81 cell-depleted culture, even after
3weeks, suppressed virus replication. This finding confirmed the role of CD81 cells in
the inhibition of HIV replication in the infected cells. Most importantly, the studies indi-
cated that the CD81 cells did not kill the infected CD41 cells: these target cells
remained viable with HIV in a latent state. That observation uncovered a previously
unknown antiviral activity of CD81 cells, the CD81 T cell noncytotoxic antiviral
response (CNAR) (Fig. 1A).

In this seminal study, the CD81 cell suppression effect was shown to be dose de-
pendent, detectable at low input ratios of CD81 cells to HIV-infected CD41 cells, more
effective with autologous CD81 cells (although suppression was also observed with
heterologous CD81 cells), and independent of NK cell activity (2). Most importantly,
unlike CTL activity, the noncytotoxic antiviral response of the CD81 cells did not elimi-
nate the infected CD41 cells from the cultures (2), an observation confirmed by other
early studies (26, 27).

CNAR is not found with any other hematopoietic cells, including CD41 cells, NK
cells, or macrophages (2, 28, 29). The antiviral response appears to be induced and
maintained by viral antigen expression (30, 31). Therefore, in some HIV-infected asymp-
tomatic individuals (i.e., elite controllers [ECs]) (section III.E.i), in whom viremia is not of-
ten seen, CNAR may not be observed. This CNAR activity is associated with production
of an anti-HIV protein (32), the CD81 T cell antiviral factor (CAF) (section V). CNAR and
CAF production are maintained by persistent exposure to viral motifs and seem to be
linked by the same mode of action (section VI). Therefore, in this review, the two activ-
ities may sometimes be cited together as CNAR/CAF. It is also possible that these
responses represent two different mechanisms for control of HIV. The CD81 T cell non-
cytotoxic anti-HIV activity was reviewed 2 decades ago (13). This current comprehen-
sive review provides the most up-to-date information on this notable immunologic
function of CD81 T cells.

(B) CD8+ T Cell Noncytotoxic Antiviral Response (CNAR)

In early studies of CNAR, a dose response was readily shown: a threshold number of
CD81 T cells was needed for the antiviral effect. When the total number of CD81 cells
added to the HIV-infected CD41 cells exceeded 75% of the CD81 cell number in the
original PBMC of the infected subjects, HIV replication was completely inhibited (2, 26).
The antiviral effect was optimal when the CD81 T cells and the target cells were MHC-
matched or semimatched (26, 33) (section IV.E). However, suppression of virus replica-
tion was also observed when HIV-infected target CD41 cells were cocultured with
MHC-mismatched CD81 T cells (32, 34–38). This observation indicated a mechanism of
virus suppression that acted independently of TcR-mediated, HLA-restricted cytotoxic
activity. Importantly, HIV replication returned in 3 to 7 days after removal of CD81 T
cells from the cultures (2, 26, 27). This anti-HIV activity confirmed the lack of target cell
death and the maintenance of HIV in a silent state (section III.D). A similar noncytotoxic
role for CD81 T cells was later described in HIV-infected newborn and young children
(37).

Shortly after CNAR was described in HIV infection, the same CD81 cell antiviral
immune activity was shown with simian immunodeficiency virus (SIV) infection (39).
The removal of CD81 cells from the PBMC of SIV-infected rhesus monkeys led to
increased virus replication in vitro. A similar observation was later made with the PBMC
of HIV-infected chimpanzees (40). These studies provided early supporting evidence
that noncytotoxic CD81 T cells play a critical role in controlling HIV/SIV replication.

This CNAR activity can be demonstrated in vitro with naturally infected CD41 cells
from HIV-infected individuals (endogenous virus infection assay) or uninfected CD41

cells or macrophages (41) that are acutely infected with various strains of HIV before
coculture with activated CD81 cells from an asymptomatic infected subject (acute virus
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infection assay) (27, 33, 42–44) (section VII.A). Moreover, some studies have suggested
that certain CD81 T cell clones can have both CTL and CNAR activity (36, 45).

The absence of CD81 T cell cytotoxicity as a major mechanism is also supported by
an infectious center assay that quantifies the number of infected CD41 cells (44, 46, 47)
following a CNAR assay (section VII.A). Briefly, CD41 cells from HIV-infected subjects or
nonhuman primates (NHP) are first cultured alone or with CD81 cells from the same
subject (autologous) or from different subjects or animals (heterologous). The CD81 T
cells are removed from the cocultures 4 to 6 days later, and the CD41 cells are serially
diluted (up to 10-fold) and added to replicate cultures of PBMC from uninfected sub-
jects. Virus replication in the PBMC cultures is then measured. The assay provides a
sensitive endpoint titration of infected CD41 cells cultured in the presence or absence
of CD81 T cells (44, 46, 47).

In one infectious center assay involving CNAR with autologous human CD81 T cells
(44), 10% or 35% of CD41 cells were found infected, as measured by immunofluores-
cent cell staining for HIV antigens or reverse transcriptase (RT) activity, respectively
(48). This number was comparable to that of the CD41 cells cultured alone (44). In
another study, the frequency of infected CD41 cells was the same when cultured alone
or with CD81 T cells, whether autologous or heterologous (46, 47). Thus, both concord-
ant and discordant CD81 T cell-mediated suppression of HIV replication was observed
without killing the infected cells. Moreover, the infected CD41 cells continued to prolif-
erate in the presence of the CD81 T cells. These results further confirmed that HIV repli-
cation was inhibited in these studies without elimination of the infected CD41 cells
and without any substantial effect on their proliferation.

The CD81 T cell suppression of HIV replication in target cells was also observed
when CD41 cells naturally infected with HIV-1 were superinfected with a different HIV
isolate (e.g., HIV-2). The second virus infected and integrated into the genome of the
target cells but was not produced unless the CD81 T cells were removed. After CD81

cell removal from the culture, both the endogenous (HIV-1) and the exogenous (HIV-2)
viruses were produced (49). A similar observation has been made in vivo after homolo-
gous and heterologous HIV-2 superinfection of baboons previously infected with HIV-2
(50). Thus, CNAR activity against the initial virus infection also controls the superinfect-
ing virus.

(C) CNAR in Nonhuman Primate Studies

(i) In vivo CD8+ cell depletion studies. Several studies have demonstrated CNAR ac-
tivity in vivo by CD8 antibody-mediated depletion of CD81 cells from HIV- or SIV-
infected NHP. This antibody-mediated depletion of CD81 cells was first conducted
with an AIDS-associated retrovirus 2 (ARV-2 [also known as HIV-1SF2])-infected chim-
panzee (51, 52), in which the virus could not be recovered from the PBMC 8 years after
virus inoculation. Following in vivo removal of CD81 cells on two separate occasions,
HIV became detectable (52). Subsequently, a similar observation was made in maca-
ques infected with SIV (53, 54) as well as with a live attenuated SIV (SIVmac239Dnef)
used to protect macaques against pathogenic SIVmac251 challenge (55). Some of
these early experiments used different depleting antibodies that targeted the CD8a
subunit of the CD8 molecule over the course of several years (56). Those studies dem-
onstrated as well that when the CD8a1 cell compartment was reduced, the viral load,
previously under control in the NHP, rose from undetectable to up to 10 million RNA
copies of SIV/ml of plasma. This response was not observed in the animal groups
treated with control antibodies. Once the CD81 cells in the primates recovered from
the cell depletion, the viral load was again controlled. Multiple CD81 cell depletions in
the same animal led to the same observation of virus rebounds (52, 57). Again, these
studies demonstrated that the infected cells were not eliminated by the CD81 cells
and that the proviral DNA was stable and not transcribed.

This in vivo effect of CD81 cell depletion was also found in SIV-infected macaques
on antiretroviral therapy (ART) (58). The removal of CD81 cells gave rise to viremia. The
study indicated that CD81 cells were also involved in SIV control during ART. The
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return of CD81 cells in all 13 rhesus macaques studied led to suppression of the virus.
Notably, the earliest virus isolates that infected the animals were recovered. This find-
ing presumably reflected those viruses that established latency (or a proviral state) due
to the antiviral activity by the CD81 cells during the acute or early chronic phase of
infection. In these studies, in comparison to cells grown alone, the frequency of SIV
DNA-containing CD41 cells in the animals either expanded after CD81 cell depletion or
remained the same for the duration of the experiment. These findings confirmed that
the infected CD41 cells constituting the SIV reservoir were not eliminated.

CD81 cells also contribute to suppression of virus replication in SIV-infected rhesus
macaques during short-term ART (58). Treatment with the depleting CD8 antibody dur-
ing ART caused a rebound in SIV replication that did not subside until the CD81 cells
returned. Moreover, SIV recovered after CD81 cell depletion had point mutations in
the viral protein Nef, which is expressed during the early phase of infection, and not in
the viral protein Gag, which is expressed later in infection (59). This observation is con-
sistent with the early emergence of anti-HIV CD81 cells that provide rapid and pro-
longed noncytotoxic suppression of virus replication during the initial acute phase of
infection (59–61).

A major critique of these CD81 cell depletion studies was that the CD8a antibodies
can deplete other cell types besides CD81 T cells, since the CD8a subunit is also
expressed on NK cells, NKT cells, and gd T cells (but not CD41 cells) in NHP (62). That
issue was addressed when those findings were confirmed in subsequent depletion
experiments using an antibody specific for the CD8b subunit (57, 63). Because this
molecule is only expressed on CD81 T cells in NHP, these studies indicated that only
CD81 T cells were responsible for viral control.

(ii) Mathematical modeling of the CD8+ T cell antiviral response. In addition to the
in vivo studies described above, mathematical modeling has permitted further evalua-
tion of the potential impact of different CD81 cell functions (e.g., cytotoxic and noncy-
totoxic) on viral dynamics under various conditions, including the use of antiviral drugs
(56). For example, in studies of a successful SIV/HIV (SHIV) vaccination approach in
NHP, the peak viral loads and the resulting decay rates of virus observed were compared
to the dynamics expected from mathematical models of cytotoxic cell clearance versus
noncytotoxic cell control. The modeling suggested that the experimental data were con-
sistent only with a noncytotoxic antiviral response induced by the SHIV vaccine (64).

Other mathematical modeling of SIV infection also strongly supported the role of a
CD81 cell noncytotoxic antiviral response. For example, an approach evaluating the
CD81 T cell-mediated antiviral response in rhesus monkeys during the acute phase of
SHIV infection demonstrated that the increase in viral loads following CD81 cell deple-
tion and the similar life span of productively infected cells in the presence and absence
of CD81 cells could not be explained solely by CD81 cell-mediated killing. The studies
concluded that the contribution of a noncytotoxic antiviral activity was central to con-
trol of viremia and disease progression (60, 65).

Nevertheless, other groups proposed another model: the early eclipse phase
observed during SHIV infection could be compatible only with viral clearance mediated
by cytotoxic CD81 cells (66). Subsequently, further modeling studies unified these con-
tradictory findings by explaining that the role of CD81 T cells in SHIV infection was
much more dynamic and included both infected target cell killing and noncytotoxic
antiviral activity (67, 68). Notably, cytotoxic CD81 T cells can exert immune selection
pressure on HIV, resulting in the emergence of variants that acquired escape mutations
in HLA class I epitopes (59). By mathematical modeling, the noncytotoxic CD81 T cell
antiviral response appeared to be especially critical in suppressing replication of the
class I HLA-driven escape mutants (69). Thus, CNAR that does not depend on a TcR-
HLA/peptide interaction may contribute to suppression of these CTL escape variants
soon after they emerge (70, 71).

The clinical relevance of the above-described findings is not completely clear.
Escape mutants are also found in ECs (those HIV-infected individuals who have low viremia
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without treatment) and not just in disease progressors (72) (section III.E). Yet, because the
ECs with their ongoing CNAR activity can control replication of the escape mutant viruses
sufficiently, the viral load can remain low for several years without ART.

Not only is there no difference between how wild-type and escape mutant viruses
are controlled by CD81 T cells, more escape mutant viruses are also generated during
the first steps in HIV replication (section VI.B). This finding further implies that, in addi-
tion to a potential cytotoxic response by CD81 T cells, a CD81 T cell-mediated noncyto-
toxic mechanism is critical to suppress not only the initial virus but also the de novo
production of mutant viruses. Indeed, cytotoxic immune pressure will result in escape
mutants, which need to be immediately kept under control. The latter response can
only be accomplished via some kind of rapid, non-antigen- non-HIV-specific immune
response with innate features such as CNAR. Finally, cell-cell interaction using three-
dimensional (3D) modeling has also suggested that while the CD81 T cell noncytotoxic
antiviral response might also lead to the emergence of HIV mutants, those viruses
would be kept under better, more durable, immune control by CNAR than by CTL ac-
tivity (70) (Table 1).

(D) CNAR in Latent Infection

The effect of this CD81 T cell noncytotoxic antiviral response on HIV latency has
also been studied in cell culture. During HIV infection, some cells have latent or silent
HIV infection, in part because of virus suppression by CNAR. In one study, resting unsti-
mulated CD41 cells from uninfected subjects were infected with HIV, cultured to
induce a latent state, and then treated for 3 days with an antiretroviral drug to prevent
viral spread (73). At the same time, autologous CD81 T cells activated by CD3/CD28
antibody beads were added to the culture. Viral reactivation by latency reversal agents
(LRA) was substantially inhibited after 3 days by a noncytotoxic antiviral CD81 T cell
response (74).

Other in vivo studies with NHP have further supported a role of CNAR in maintain-
ing latency. Latently infected cells in the animals were activated in vivo with LRA to
induce virus production. The primates that had a higher number of CD81 T cells
showed better control of the reactivated SIV (74). Then, when CD81 cells were
depleted from the animals, virus replication was detected (57, 74).

Recently, an in vitro noncytotoxic antiviral immune mechanism of HIV inhibition by
CD81 T cells in the context of virus reservoir formation was reported using RNA
sequencing (RNA-Seq) of CD81 and CD41 cell cocultures (75). This process that used
CD41 and CD81 T cells from uninfected individuals had many characteristics of CNAR:
virus suppression mediated by CD81 T cells only, suppression of HIV replication at the
transcription level, and the activity is HLA class I independent as shown with an HLA
blocking antibody. The researchers suggested that soluble factors secreted by CD81 T
cells (e.g., interleukin-4 [IL-4], IL-5, and IL-13) could be mediating the viral suppression,
but this possibility was not tested directly. The CD81 T cell anti-HIV activity was attrib-
uted to a decrease in target cell proliferation and activation, along with increased
infected CD41 cell survival. However, previous findings by others showed that these
cytokines were not antiviral and that the frequency of infected CD41 cells is not
affected by CNAR or CAF (44, 46, 47) (see above and sections III.B and III.C).

(E) Clinical Relevance

(i) Phenotype of HIV-infected subjects. HIV-infected individuals, before receiving
ART, are classified according to their clinical status after infection (76). In the first cate-
gory are HIV-infected individuals who are able to keep the virus under control, with
HIV RNA levels lower than 50 RNA copies/ml (on average, 40 to 500 copies/ml) during
several years of follow-up. As noted above, these individuals are called ECs and repre-
sent 1% or less of HIV-infected subjects. They share characteristics with uninfected indi-
viduals and long-term survivors (LTS) (see below) (Appendix 1). Those who maintain
their viral load lower than 1,000 to 2,000 RNA copies/ml of blood are considered HIV
controllers (HIC) or viremic controllers (VC). In contrast, HIV-infected individuals who
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cannot control the virus, with a viral load higher than 10,000 copies/ml of HIV RNA, are
categorized as noncontrollers (NC) or viremic individuals (VI). Another category is HIV-
infected individuals for whom the disease progresses slowly over several years (from
10 to 25 years and more) without clinical symptoms of AIDS. Individuals in this cate-
gory have CD41 cell counts on average of .500 cells/ml (with a range of 300 to 1,000
cells/ml), a stable CD41 cell slope overtime, and a low viral load (usually ,10,000 RNA
copies/ml). These are slow progressors (SP) or long-term nonprogressors (LTNP). We
also call them long-term survivors (LTS) (77) (Appendix 1), some of whom we have
been following for more than 35 years. The average time for development of symp-
toms of HIV infection is 10 years (76, 78, 79). At that later stage, they are called progres-
sors. Finally, rapid progressors (RP) are HIV-infected individuals with a fast disease
course, with CD41 cell counts of ,300 cells/ml and clinical manifestations of AIDS
within 3 years of the initial infection (80).

(ii) Viral phenotype. The clinical course of HIV infection can depend on the biologi-
cal characteristics of the infecting virus. When HIV infects target cells, it begins to
express two viral envelope glycoproteins that can be found at the cell surface, gp41
and gp120. This Env multimer is used by HIV particles to bind to the major HIV cell re-
ceptor CD4 and its coreceptors, CCR5 and CXCR4. The viruses with gp120 that binds to
the CCR5 coreceptor are called R5-tropic; the gp120 of X4-tropic viruses binds to
CXCR4. Some viruses are dual-tropic: their envelope protein can bind to either or both
coreceptors.

When gp41-gp120 multimers on the infected cell surface bind with CXCR4 on other
cells in the vicinity, the strong interaction results in a fusion of cellular membranes. A
large multinucleated cell forms called a syncytium. Therefore, the X4-tropic viruses can
be associated with cytopathic effects in vitro and have also been called syncytium-
inducing (SI) viruses. The viruses using the CCR5 receptor are less capable of forming
syncytia in vitro and are known as non-syncytium-inducing (NSI) viruses (81). The R5-
tropic/NSI viruses are less cytopathic, associated with a slow disease progression, and
are able to infect macrophages. The X4-tropic/SI viruses infect established T cell lines
and are associated with a more rapid disease course (82, 83). The latter viruses gener-
ally appear at a later stage in HIV infection (84, 85).

(iii) Association of CNAR/CAF with an HIV-infected asymptomatic clinical state.
Multiple studies have confirmed that CNAR/CAF is found in clinically asymptomatic
HIV-infected individuals (11, 43, 77, 86–91). CD81 cells from these asymptomatic indi-
viduals suppress virus replication with CD81/CD41 cell ratios as low as 0.05:1. In con-
trast, CD81/CD41 cell ratios as high as 4:1 are needed to suppress 90% of the HIV repli-
cation in CD41 cells from AIDS patients with ,200 CD41 cells/ml (43, 46). Also, CD81 T
cells from AIDS patients exhibit a 4- to 20-fold lower antiviral activity when cocultured
with autologous, naturally infected CD41 cells or with acutely infected CD41 cells (43).
Thus, substantial differences in the CD81 T cell response between progressors and LTS
are observed. With the EC and LTS, this CNAR activity can remain stable for up to
20 years or more in some subjects not receiving ART.

Notably as well, the levels of integrated HIV-1 proviral DNA are lower in the PBMC
from clinically asymptomatic HIV-1-seropositive individuals than in progressors (88,
92–94). This integrated proviral HIV DNA increases when the CD81 T cells are removed
from their cultured PBMC. Therefore, CD81 T cells can block the virus spread by sup-
pressing the levels of viral mRNA as well as progeny virus: this action also reduces the
total number of infected CD41 cells (section VI). Similar observations have been made
with asymptomatic HIV-infected infants in whom autologous CD81 T cells showed sup-
pression of HIV replication during an endogenous virus CNAR assay that was detected
at as early as 3weeks of age. In contrast, HIV-infected infants with CD81 T cells that did
not suppress virus replication had rapidly progressing disease and died within 3 years
of life (37).

In acute or primary HIV-1 infection, a high level of plasma viremia is associated with
a more rapid disease course (95). In the context of the HIV-1 infection, CNAR appears
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before the production of neutralizing antibodies and is associated with a lower viral
load (87). Developing CNAR early is therefore critical for effective prevention of HIV dis-
ease progression and for a relatively asymptomatic long-term clinical course. The
extent of the CD81 cell immune response soon after infection can also determine the
prognosis for infected individuals. In asymptomatic individuals with low viral load, sub-
stantial levels of CNAR are observed in cocultures of CD81 T cells with endogenously
and acutely infected CD41 cells (30). The noncytotoxic antiviral activity is particularly
strong in HIV-infected LTNP (or LTS) (77), and maintenance of the LTNP status involves
robust CNAR/CAF activity (11).

(F) CNAR Shares Characteristics of an Innate Immune Response

Innate immunity is a combination of evolutionarily conserved defense mechanisms
(Table 1) found in many different species, including bacteria, plants, invertebrates, and
vertebrates. Adaptive (or acquired) components of the immune system later emerged
from the innate immune response in an antigen-specific manner (96, 97). Innate immu-
nity is characterized by a very rapid response (minutes to days) against foreign patho-
gens or substances and by its lack of specificity for a defined foreign antigenic epitope;
the latter could be a viral peptide that has been processed and presented by antigen-
presenting cells to T and B cells. These latter cells, part of adaptive immunity, recognize
defined epitopes by using a receptor (e.g., TcR and BcR) encoded by rearranged genes
(section II.A). In the case of innate immunity, conserved viral or bacterial pathogen-
associated motifs or stress molecules induced by infection are recognized by germ
line-encoded, genetically invariant, and conserved receptors expressed by innate
immune cells (98). This interaction triggers, among other functions, the secretion of
soluble defense proteins, such as interferons, cytokines, or chemokines, by the innate
immune cells. These soluble proteins then attract or stimulate other cell populations of
the immune system to fight off the pathogens synergistically.

CNAR shares several characteristics of an innate immune response (Table 1). It
occurs very early after HIV infection (87), is independent of the TcR, and has broad anti-
retroviral inhibitory activity. It suppresses multiple HIV-1 and HIV-2 strains, including all
biotypes of HIV-1 and HIV-2 (R5- and X4-tropic) as well as drug-resistant isolates,
escape mutant viruses, and other unrelated retroviruses (11, 12, 14) (sections VIII.A and
VIII.B). Therefore, it does not require TcR-mediated recognition of specific viral epitopes
presented by HLA molecules. HIV isolates resistant to CNAR have not been recovered
or identified after multiple passages in the presence of CNAR (K. R. Bonneau and J. A.
Levy, unpublished data). Nevertheless, the activity of CNAR/CAF associated with CD81

T cells from HIV-infected subjects is restricted to retroviruses; it has no effect on other
virus families (section VIII.C). This observation suggests that it can be elicited only by
the recognition of certain conserved retrovirus motifs (99) by germ line-encoded, invar-
iant pattern receptors. Both of these remain to be elucidated.

Also, as another characteristic of innate immunity, CNAR does not have a strong
recall response characteristic of adaptive immunity. Aside from NK cells that are con-
sidered innate lymphocytes and have such “memory-like” recall responses (100), innate
immune cells previously presented with viral antigens are not typically characterized
by an increased antiviral response (101). They can then quickly react to any incoming
pathogen without the need for previous exposure. Notably, CNAR is also found in indi-
viduals exposed to HIV who remain uninfected (see below). The CD81 T cell antiviral
response decreases over time if exposure to HIV ceases. For example, this observation
has been made with spouses of hemophiliacs (102) (see below). Reexposure to HIV is
needed to observe the antiviral activity, but the subsequent CNAR activity is not stron-
ger. Finally, as with some other innate immune responses, CNAR is linked to the pro-
duction of a soluble antiviral protein (i.e., CAF) (32) (section V).

(G) CNAR in HIV-Exposed Seronegative Individuals

CNAR is also observed in frequently exposed seronegative individuals who have no
detectable HIV infection (Table 2). This finding was particularly evident in four studies
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of subjects who had unprotected sexual activity with HIV-infected partners (102). Two
cohorts comprised heterosexual women and men with unprotected receptive sexual
activity. The other two cohorts both had a mix of male and female subjects with unpro-
tected sexual activity. Subjects were stratified according to the time since the last
unprotected exposure to an HIV-infected partner. In these studies, CD81 T cells from
all 60 subjects were evaluated for CD81 T cell suppression of one or more strains of
HIV-1, including those sensitive and not sensitive to b-chemokines. Strong inhibition
of both primary and laboratory-derived HIV isolates was observed in all four cohorts.
Thirty-five randomly selected HIV-exposed seronegative (HESN) individuals from each
of the four cohorts had levels of suppression greater than the maximum percentage
observed in control populations (,45%). At the same time, there was no HIV-1-specific
CTL activity detected in this population. Very-high-risk behavior was defined as multi-
ple exposures in the last 6months; moderate-risk behavior was defined as multiple
exposures in the last 6 to 12months before the study was conducted. The lower-risk
group had multiple exposures more than 1 year ago. The data indicated that the low-
risk and moderate-risk populations showed fewer subjects with CNAR than the very-
high-risk population (0 to 25% versus 50 to 100%) depending on the virus isolate used
in the assay. Among heterosexual women, CNAR was observed as long as the women
were exposed to HIV via their infected partner. Once unprotected sexual contact
ceased, the CD81 T cell antiviral activity was no longer detected (102). Moreover, HESN
individuals with CNAR were observed in the population of men having sex with men
(MSM) (102) (Table 2).

CNAR has also been seen in uninfected children born to HIV-infected mothers. In
one study, 54% of the 16 uninfected children showed CNAR that suppressed HIV repli-
cation .90% in the heterologous acute infection assay (103). In another study, 81%
(29/36) of HIV-infected mothers who did not transmit HIV to their children exhibited
.50% CNAR at a 1:1 (CD81 T cell/infected CD41 cell) ratio compared to 44% (4/9) of
HIV-infected mothers who transmitted the virus (104).

In certain cases, evidence of low-level CTL and HIV-specific proliferative responses
to HIV antigens has been noted in some HESN individuals (105, 106). However, those
activities could be explained in part by CD41 T cells with effector functions (102). All
these studies indicate that CNAR can be induced following an exposure to HIV but
without necessarily an established and productive HIV infection (Table 2). Thus, CNAR
shares the innate immune response characteristic of not having an antigen-specific
recall response: the anti-HIV activity is not retained once HIV exposure is no longer
present (see above) (Table 1).

(H) CNAR in Uninfected Subjects

Anti-HIV activity by CNAR/CAF can also be seen with CD81 T cells from uninfected
individuals but usually at lower and limited activity; this finding depends on the
amount of infectious virus used in the cell culture assay (107). In these studies, both
R5- and X4-tropic viruses gave similar results. Notably, CNAR is best observed with the
autologous acute virus infection assay (2, 75) (F. C. Teque and M. G. Morvan, unpub-
lished data) (section VII.A.ii). In several studies, phytohemagglutinin (PHA)- or CD3-
stimulated CD81 T cells from uninfected subjects were found to suppress HIV replica-
tion when cocultured with acutely virus-infected heterologous or autologous CD41

TABLE 2 Presence of CNAR in exposed seronegative individualsa

Descriptor Frequency of CNAR+ individuals (no/total [%])
Heterosexual partners 15/18 (83)b

MSM partnersc 18/25 (72)b

Newborns of HIV-infected mothers 16/31 (52)
Intravenous drug users 7/30 (23)
aThese data were obtained by studies conducted in the laboratory of Jay Levy (section III.G).
bIf exposed within the past 6months. CNAR is not present after 1 year of no exposure.
cMSM, men having sex with men.
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cells (33) (F. C. Teque, unpublished data). Levels of CD81 T cell suppression are gener-
ally lower than those observed in HIV-infected subjects (28, 102, 103) (F. C. Teque,
unpublished data). Moreover, the stimulated CD81 T cells from some uninfected sub-
jects with CNAR activity retain usual memory phenotypic markers when stimulated
via CD3 and are able to produce soluble factors such as CAF that control HIV in
acutely infected CD41 cells (108) (M. G. Morvan, unpublished data). Antiretroviral
suppressing activity can also be observed in clonal CD81 cell lines derived from HIV-
seronegative individuals (38, 109, 110) (see above). However, CNAR has not been
observed with resting CD81 T cells from uninfected subjects (2, 29, 33, 111).

Finally, PHA-stimulated CD81 cells from uninfected sooty mangabeys (SM) sup-
pressed SIV replication in the CD41 cells from rhesus macaques (112). Conceivably, the
CD81 cells play a central role in the prevention of immunodeficiency disease in the SM
primates (61). Taken together, these observations underscore the relative anti-HIV
potential of the CD81 cells from uninfected as well as HIV-infected subjects. The find-
ings also are not unexpected since CNAR, as noted above, is not a TcR-antigen-de-
pendent, acquired immune activity against specific antigenic peptides but is, presum-
ably, an innate immune response to conserved retroviral motifs (section III.F).

(IV) FURTHER CHARACTERISTICS OF CNAR
(A) Memory Phenotype of CD8+ T Cells with CNAR Activity

During virus infection, antigen-primed CD81 T cells undergo a differentiation pro-
cess leading to the establishment of memory cell populations with rapid recall poten-
tial. Memory cells fall within the following successive states, which can be defined by
expression of cell-surface markers (Fig. 2): central (TCM), transitional (TTM), and effector
(TEM). Late-stage effector memory cells with CD45RA reexpression, designated TEMRA,
have also been defined. They have mostly a secretory function and a senescent pheno-
type as defined by the absence of cell division, shorter telomeres, and the expression
of CD57 (113–115) and programmed cell death protein 1 (PD-1) (see below). The HIV-
specific cytotoxic CD81 T cells (i.e., CTLs) are primarily found in the TEM compartment
but not within the TEMRA compartment (116, 117).

The CD81 T cells mediating CNAR express CD28, the costimulatory cell membrane
receptor for B7.1 (CD80) and B7.2 (CD86), and CD3 but not CD11b (Fig. 2) (86). CNAR is
also associated with an activated phenotype (for example, HLA-DR expression) (86).
Moreover, some of these cells express PD-1, an activation marker (section IV.D) (29). In
HIV-infected individuals, a decline in CD81 CD281 cell number is associated with loss
of CNAR activity and disease progression (86). This phenotype is characteristic of
recently activated, transient-stage memory CD81 T cells, called transitional memory
(TTM) cells (Fig. 2).

In this regard, our studies have shown that TTM is a major CD81 T cell subset media-
ting CNAR (29). In contrast, CD81 T cells with cytotoxic function lack CD28 expression
and are CD11b1. Thus, phenotypically distinct CD81 T cell subpopulations mediate
CNAR versus CTL activities (Table 1). Notably, in the case of HIV infection, “memory”
can define a CD81 T cell subset with the innate function of mediating CNAR. However,
as noted above (section III.F), the absence of a classic T cell memory response is charac-
teristic of this noncytotoxic response. Therefore, these CD81 T cells have a memory cell
phenotype but also an innate antiviral function that does not involve a greater recall
response specific to HIV antigens.

Engagement of CD28 on the CD81 T cells of HIV-seropositive subjects results in
increased CD81 T cell activation and robust anti-HIV activity (118–120). In addition,
CD81 T cell costimulation with CD3 and CD28 antibodies, compared to that with CD3
antibody alone, enhances the CD81 T cell anti-HIV response as measured by CNAR
(121). Similarly, the interaction of the CD28 molecule on CD81 T cells with the natural
ligands CD80/CD86 on autologous antigen-presenting cells (APCs), particularly macro-
phages, results in increased antiviral suppression by CD81 T cells when cocultured
with acutely HIV-infected CD41 cells (122) (Fig. 3). Finally, blocking the CD80/CD86
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ligands on macrophages with the CTLA4-Ig fusion protein prior to exposure to CD81 T
cells prevents the interaction of the CD80/CD86 and CD28 molecules and abrogates
the CD81 T cell suppression of virus replication in CD41 cells (123).

(B) CNAR/CAF Antiviral Activity in Lymphatic Tissues

(i) Overview. HIV replication remains active in lymphatic tissues during the asymp-
tomatic phase of infection (124). Therefore, the control of virus replication in these tis-
sues is also important for maintaining a clinically asymptomatic state (section III.E).
Most studies of CNAR in HIV-infected individuals have used CD81 and CD41 cells iso-
lated from peripheral blood. However, notably, noncytotoxic CD81 T cell activity is also
present in lymph node mononuclear cells (LNMC), although requiring, in cell culture, 2
to 10 times more CD81 T cells than found in PBMC (46). As in the peripheral blood, a
direct beneficial clinical correlation is observed with LNMC CNAR activity. Low CD81/
CD41 cell ratios (0.05:1 to 0.25:1) are required to suppress HIV replication in target
CD41 cells with lymphoid CD81 T cells from asymptomatic HIV-infected individuals
(46). In contrast, higher numbers of CD81 T cells (up to 20 times compared to that in
LTS) are needed for CNAR measured with the lymphatic cells from AIDS patients and in
association with the higher viral loads found in progressors (46). In addition, the reten-
tion of a normal lymph node architecture, as seen by histological examination, corre-
lates with the suppression of virus replication by CD81 T cells in cocultured autologous
CD41 cells (46). Taken together, these findings indicate that CD81 T cells with CNAR
can play a major role in controlling virus production at the site of virus replication in
the lymphatic tissues.

(ii) CD8+ T cell subset and phenotype. Recently, a study that included RNA
sequencing conducted on CD81 T cells from ECs confirmed the noncytotoxic antiviral
function of lymphoid tissue CD81 T cells. The responsible cells had a resident memory

FIG 2 Memory phenotype and maturation stages of CD81 T cell subsets. The successive differentiation stages of
peripheral CD81 T cells from TN (naive) are TCM (central memory), TTM (transitional memory), TEM (effector memory), and
TEMRA (effector memory reexpressing CD45RA). In addition, TRM (resident memory) cells are CD81 T cells found in some
tissues. These various CD81 T cell subsets have different expression profiles for the cell surface and intracellular markers
listed. In addition, the major CD81 T cell subsets mediating CNAR or CTL are specified.
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(TRM) phenotype (see below) (Fig. 2) and a distinct transcriptional signature of tissue
resident CD81 T cells (125). The gene candidates for CAF could potentially be found
among those differentially expressed genes (125, 126) (section X.C).

Moreover, in lymphoid tissues, T resident memory (TRM) cells are found that do not
express CD27/CD28 and have a more mature phenotype that closely resembles the pe-
ripheral CD81 TEM cells (127) (Fig. 2). However, these cells, for reasons including low
expression of perforin, granzyme, and transcription factors regulating cytotoxic func-
tion, are not equipped to mediate cytotoxicity in contrast to activated TEM cells (128).
Therefore, the TRM cells represent another notable CD81 T cell subset found in tissues
that demonstrates a strong CNAR (125–128) (see below).

(iii) CXCR5+ CD8+ T cells. The chemokine receptor CXCR5 is another CD81 T cell
marker that is expressed on cells with CNAR but not CTLs (127). Originally found in the
context of chronic infections in animal models (e.g., lymphocytic choriomeningitis
mammarenavirus [LCMV], human T cell lymphotropic virus [HTLV], or SIV) (129, 130),
the CD81 T cells expressing CXCR5 are particularly present in lymphoid follicles (131,
132) where cells express its ligand, CXCL13. These CXCR51 CD81 TRM cells have a mem-
ory phenotype and express lower levels of transcription factors associated with cyto-
toxicity such as EOMES and T-bet (131). Nevertheless, these differentially regulated
CD81 T cells do not release large amounts of perforin and granzymes. However, they
are still able to degranulate and express CD107a at the cell surface (section II.A).
Importantly, as noted above, the CD81 TRM cells can suppress virus replication without

FIG 3 Tripartite immune cell interactions can induce CNAR/CAF activity. Infected CD41 cells (below)
release HIV particles containing conserved retroviral motifs that can be sensed by germ line-encoded
invariant pathogen pattern receptors (e.g., TLRs) on accessory cells (e.g., DCs and macrophages). This
recognition can (i) upregulate the expression of costimulatory ligands at the surface of the accessory
cells (e.g., CD40, and CD80/CD86), and/or (ii) stimulate cytokine secretion (e.g., IL-2, IL-15, and IL-21).
These cell surface or secreted molecules can, in turn, activate the subset of CD81 T cells that can
mediate CNAR activity by binding to costimulatory receptors (e.g., CD154 and CD28) or cytokine
receptors (e.g., CD25, CD215, and CD360). This action would induce or enhance CAF production.
CNAR/CAF activity then inhibits HIV transcription, resulting in fewer virus particles and lowered
accessory cell (and CD81 T cell) activation. Similar to the effect of ART treatment (31, 162), this action
decreases CNAR/CAF activity over time, for as long as HIV is kept in a reduced and/or latent state.
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killing the infected cells (127). Thus, lymphoid tissue CD81 TRM cells have CNAR activity.
Nevertheless, it has been suggested that when these CD81 TRM cells leave the lymph
node, they can then become antigen-specific CTLs (125, 127).

(C) Adhesion Molecules

Vascular cell adhesion molecule 1 (VCAM-1) is an adhesion molecule whose expres-
sion was detected unexpectedly on CD81 T cells with a noncytotoxic anti-HIV response
(133). Up to 12% of CD81 T cells from HIV-infected subjects with CNAR express VCAM-
1 at the cell surface compared to 0.8% in uninfected individuals. In cell culture studies,
fewer sorted VCAM-11 CD81 T cells than bulk CD81 T cells were needed to inhibit HIV
replication in infected CD41 cells. Moreover, this cell type was also associated with a
greater production of CAF as demonstrated by a transwell assay (133). Therefore, this
endothelial cell surface adhesion molecule, which favors cell-to-cell contact, is another
marker of a CD81 T cell subset with CNAR activity.

Other adhesion molecules (Table 3), such as L-selectin (CD62L, a protein found on
the surface of naive CD81 T cells and central memory CD81 T cells), are expressed at
lower levels on the CD81 T cells of HIV-infected subjects who are not on ART; their
expression is inversely correlated with viral loads (134). Compared to those from HIV-
seronegative controls and regardless of clinical status, the CD81 T cells of HIV-infected
subjects coexpress lower levels of CD62L. In contrast, the expression of adhesion mole-
cule E-cadherin (CD324) is found at higher levels on CD81 T cells of HIV-infected sub-
jects; it correlates with higher viral loads and impaired CD81 T cell functions, including
noncytotoxic activity (135). Moreover, integrinaE (CD103) is expressed at high levels
on the noncytotoxic tissue-resident memory CD81 T cells of HIV-infected subjects
(136). Finally, lymphocyte function-associated antigen (LFA-1; CD11a/CD18) is associ-
ated with anti-HIV CD81 T cell trafficking to tissues (137). Like VCAM-1, all these adhe-
sion molecules could have a beneficial effect on CNAR by stabilizing the cell-to-cell
interaction required for improving CD81 T cell-mediated HIV suppression.

(D) Activation

(i) Overview. Stimulation of CD81 T cells via the TcR, together with the costimula-
tion receptor CD28, “activates” the cells. This activation leads to antigen-specific cell
proliferation, differentiation into an effector phenotype (Fig. 2), and a reduction in
overall cell numbers by programmed cell death (apoptosis) (138). In terms of the latter
state, the activated CD81 T cells can survive if they also express cell surface inhibitory
receptors (see below) that counter overactivation and are often used as well as pheno-
typic markers of CD81 T cell activation.

Two of the main inhibitory receptors used as cell activation markers are CD69,
which is expressed early after cell stimulation, and HLA-DR, which is detected later
(139) and is one of the markers of CD81 T cells mediating CNAR. Other cell surface mol-
ecules induced after cell stimulation that can also be used as activation markers are
CD25, CD38, and CD154 (Fig. 2). Additional markers, such as CD57, CD95 (Fas), or
CD279 (PD-1), have been commonly cited as activation markers (140–142), but they
are now primarily used to characterize T cell “exhaustion” (see below). The latter term

TABLE 3 Adhesion molecules in HIV infectiona

Name Other name Ligand Role in HIV Reference(s)
CD11a/CD18 LFA-1 (ItgaL/Itgb2) CD50, CD54, CD102, CD242,

ICAM-5, CD321
Associated with CD81 T cell trafficking to
tissues; may induce CAF

137, 180

CD11b/CD18 CR3, Mac-1 (ItgaM/b2) iC3b, CD54 (ICAM-1) Absent from CD81 T cells mediating CNAR 86
CD62L L-selectin GlyCAM-1, CD34, MadCAM-1,

PSGL-1
Expression inversely correlated with viral loads 134

CD103 IntegrinaE (ItgaE) CD324 Found on (gut) CD81 TRM cells of HIV1 subjects 136
CD106 VCAM-1 VLA-4 (CD49d/CD29) Marker of CD81 T cells mediating CNAR/CAF 133, 330
CD324 E-cadherin CD103, KLRG1 Expression correlates with higher viral loads,

inhibits CNAR in vitro
135

aSee section IV.C.
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refers to CD81 T cells chronically exposed to their cognate antigens, which have dimin-
ished cytotoxic function (143–145) but not necessarily decreased CNAR; PD-11 CD81 T
cells have this noncytotoxic anti-HIV activity (29). Finally, CD27 and CD28 expression
also increases after CD81 T cell stimulation. However, when these cells transition to an
effector cell function, the CD27/CD28 expression is downregulated and their absence
at the cell surface can identify them as effector memory CD81 T cells (146). The latter
cells do not mediate CNAR but now have CTL function (Fig. 2).

(ii) Clinical relevance of CD8+ T cell activation. An asymptomatic clinical state in
HIV-infected individuals is associated with higher levels of CD28 and HLA-DR expres-
sion on CD81 T cells that reflects cell activation. Moreover, low levels of CD11b as well
as the activation marker CD38 and the senescence marker CD57 are often identified on
CD81 T cells in asymptomatic infected individuals and not in AIDS patients (86).

In cell culture, CD81 T cells that are HLA-DR1 CD281 CD11b2 found in asymptom-
atic HIV-infected individuals, as well as in vitro PHA-stimulated CD81 T cells, exhibit the
strongest CNAR activity against HIV replication (86). This early finding was later con-
firmed when the CD27/CD281 transitional memory CD81 T cells and PD-11 CD81 cells
were identified as major subsets mediating CNAR (29) (see below and section IV.A).
Notably, high PD-1 expression during chronic HIV infection has been associated with
“exhaustion” via continuous TcR stimulation of HLA-restricted CD81 T cells (see above).
The susceptibility of noncytotoxic CD81 T cells to exhaustion during chronic infection
is unknown, but perhaps unexpected given TcR engagement is not a feature of CNAR
activity. CD81 T cells that mediate CNAR do express PD-1 (29), but in this circumstance,
it is more likely a marker of activation than exhaustion. Notably, PHA, as a potent mito-
gen, can elicit broad cell activation that can lead to the general skewed expression of
some phenotypical memory markers (e.g., CCR7 and CD45RA) on CD81 T cells. This
finding is not the case with CD3 stimulation (147). Therefore, CD81 TTM cells, a
CD45RA2 CCR71 subset of cells mediating CNAR, may not be correctly identified fol-
lowing PHA stimulation.

Moreover, some activated CD81 T cell clones from asymptomatic HIV-infected sub-
jects (section III.E.iii) have suppressed viral replication in heterologous CD41 cells,
including in a transwell assay, and were noncytotoxic in response to HIV antigens
(148). This noncytotoxic suppressing activity was TcR independent, since different
clones with the same TcR exhibited variable degrees of suppression of HIV replication,
including no response (148). Moreover, the noncytotoxic clones produced antiviral
soluble factors without any correlation of this activity with their activation phenotype.
Importantly, the expression of activation markers such as CD28, HLA-DR, or CD11b/
CD18 was highly variable among the clones. These findings suggest that CD81 T cells
can suppress virus replication at various stages of the activation cycle after antigen or
mitogen stimulation.

(E) Role of HLA Class I Compatibility in CNAR

In HIV infection, CNAR differs from the mechanism(s) involved in the activity of HIV
antigen-specific cytotoxic CD81 CTLs. While CTL activity is dependent on the histocom-
patibility of HLA class I from cocultured CD81 effector T cells and HIV-infected CD41

target cells (149) (section II), CNAR is observed when there is minimal or no HLA match-
ing between the two cell populations (2, 33). In the case of heterologous target cells,
HIV suppression requires 2- to 5-fold more MHC-discordant CD81 T cells (26). Notably,
20-fold fewer autologous CD81 T cells are required to suppress HIV replication than
CD81 T cells with different HLA molecules (33). Moreover, HLA blocking antibodies do
not affect CNAR (75) (C. E. Mackewicz, unpublished data). Similar findings on the lack
of histocompatibility dependence, even across species barriers, were made in NHP.
Cultured CD81 cells from SIV-infected sooty mangabeys suppressed viral transcription
in rhesus macaque CD41 cells transiently transfected with a long terminal repeat (LTR)-
driven CAT reporter gene, without killing the target cells (112).

Studies directed at demonstrating the requirements of HLA compatibility for HIV
control by CNAR focused on a cohort of uninfected and HIV-infected subjects,
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including two pairs of HIV-discordant identical twins (33). Optimal HIV suppression
without cytotoxicity was observed when effector CD81 T cells and infected CD41 cells
from the same subject were used. This noncytotoxic viral suppression was also
observed, but at a reduced level, when CD81 T cells and infected target CD41 T cells
from different subjects were cocultured. Importantly, compared to autologous CD81

T cells, 20-fold more heterologous CD81 T cells were needed to suppress virus replica-
tion in the infected CD41 cells from HIV-seropositive subjects. This difference in CD81

T cell suppression was due neither to the HIV replication capacity nor to the sensitivity
to CNAR of the CD41 cells (33).

Furthermore, in a reciprocal coculture of CD81 T cells with acutely HIV-infected
CD41 cells from an HLA-mismatched subject, differing levels of HIV suppression were
observed (33). For instance, when the CD81 T cells and infected CD41 cells from the
same subject were cocultured (having an identical HLA genotype), HIV suppression
was very strong (97% at the 0.25:1 CD81/CD41 cell ratio). However, when culturing the
CD81 T cells with the infected CD41 cells from another subject, HIV suppression was
noted but at lower levels (48% at the same 0.25:1 cell ratio) (33). This observation indi-
cated that, in a heterologous coculture, CD81 T cell-mediated suppression of HIV can
occur at a reduced level but is not dependent on matched HLA genotypes. Overall, all
these observations demonstrate that CNAR activity suppresses HIV replication inde-
pendent of genetic histocompatibility.

Another evaluation of CD81 T cell anti-HIV responses indicated, via cell clonal lines,
that both cytotoxic and noncytotoxic activities can be involved depending on the HLA
concordance. Acutely HIV-1-infected HLA-matched CD41 cell lines and primary CD41

cells cocultured with HIV-specific CD81 T cell clones isolated from infected individuals
suppressed virus replication at lower CD81/CD41 cell ratios (0.25:1) than HLA-
unmatched target and effector cells cultured at a 1:1 ratio (45). This low number of
CD81 T cells in the coculture assays also supports the lack of CTL activity, where ratios
of 10 to 25 CD81 T cells to one target cell may be required for antigen-specific lytic
responses (3, 5, 150, 151). Moreover, these CD81 T cell clones were found to suppress
virus replication by up to 60% via the production of soluble anti-HIV factors, as demon-
strated by coculture with HLA-mismatched HIV-infected CD41 cells in a transwell assay
(45) (section V).

Other HLA studies used CD81 T cell clones generated from two infants with CD81 T
cell anti-HIV activity. When cocultured with autologous CD41 cells, these clones did
not show CTL activity by using a 51Cr release assay, but suppressed virus replication by
more than 50% (37). The results confirmed CNAR in the absence of killing even in the
presence of HLA-matched effector and HIV-infected target cells. In summary, CNAR can
be improved by HLA class I compatibility, but the activity is not HLA restricted.

(F) Factors that Induce or Enhance CNAR/CAF

The definitive mechanism of how conserved retroviral motifs (section III.F) trigger
CNAR and CAF production remains to be elucidated. The induction of CNAR in NHP
with an SIV vaccine (64) may uncover the process involved. A variety of factors or proc-
esses can induce or increase the innate activity of CNAR/CAF (Appendix 2). Notably,
the loss of the CD81 T cell-mediated anti-HIV activity in symptomatic patients has
been attributed to a transition from a decreased expression of cytokines (e.g., IL-2) that
typically promote cell-mediated immunity (the T helper 1 [Th1] response) to an
increased production of cytokines (e.g., IL-4 and IL-10) that downregulate this response
(the T helper 2 [Th2] response) (35, 152).

In this regard, when PHA-stimulated CD81 T cells from LTS or progressors were
treated in culture with IL-2, a substantial increase in suppression of HIV replication was
observed compared to that for CD81 cells grown in medium alone (35, 153).
Conversely, when these CD81 T cells were treated with either IL-4 or IL-10, a decrease
in HIV suppression was noted (Fig. 4). Furthermore, IL-2 treatment of CD81 T cells from
LTS prevented and reversed the inhibitory effects of IL-4 and IL-10 on CNAR. Notably
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as well, prolonged exposure of CD81 T cells from progressors to IL-2 (3 to 6 days)
improved the HIV suppressing activity (i.e., CNAR) of these cells (153).

As noted above, CD81 T cells that mediate CNAR express CD28 (86, 121), a costimu-
lation receptor that enhances IL-2 production when engaged with its ligands or anti-
bodies (154, 155). Some studies have revealed that, whereas culture fluids from CD81 T
cells treated only with a CD3 antibody contained minimal levels of IL-2, these same
cells costimulated with both CD3 and CD28 antibodies had detectable IL-2 levels (121).
IL-2 production by the CD81 T cells also resulted in increased expression of the IL-2 re-
ceptor (CD25) on the stimulated CD81 T cells. Furthermore, preventing the IL-2/CD25
interaction with neutralizing or blocking antibodies abrogated the CNAR of these
CD81 T cells without affecting their viability (121). Overall, CD3/CD28 stimulation of
CD81 T cells from asymptomatic HIV-seropositive subjects resulted in IL-2 production
and CD25 expression associated with virus suppression.

In clinical studies, the administration of IL-2 in combination with ART increased
CD41 cell numbers in the peripheral blood and the lymph nodes while maintaining an
undetectable viral load (156–159). Subsequent studies of primary HIV infection showed
that highly active antiretroviral therapy (HAART) combined with intermittent subcuta-
neous doses of IL-2 led to an approximately 3-fold increase in CD41 cell number over
the 48-week study (160, 161). No difference was observed with viral loads and CD81 T
cell numbers. Notably, at baseline, the HAART-treated and untreated subjects had sub-
stantial levels of CNAR activity that declined over the 48-week period (162). The latter
could reflect the lack of expression of viral motifs (section III.F), since stopping ART
quickly resulted in CNAR (163). Seventy-five percent of the subjects treated with the IL-
2/ART combination showed increased levels of CNAR activity into week 24 of the study
when HIV replication was controlled (160).

To better understand the association between the IL-2 production and CNAR activ-
ity, some studies focused on cell-to-cell interactions to identify a potential mechanism
for the T cell-mediated immunity. Previous work has noted that dendritic cells (DCs)
are involved in inducing CD81 T cell responses (164, 165), particularly IL-2 production
(166). As disease progresses, HIV-seropositive subjects undergo a decrease in DC num-
bers circulating in the periphery and reduced APC function (167). This action can lead
to dysfunction of the DC/CD81 T cell interaction and could be responsible for a
decrease in CNAR activity (Fig. 3).

FIG 4 Effect of different (Th1 and Th2) cytokines on HIV replication. To determine the effect of
cytokines in the CD81 T cell noncytotoxic anti-HIV response (CNAR), CD81 T cells were stimulated in
the presence of type 1 (IL-2) or type 2 (IL-4, IL-10) cytokines for 3 days. After being washed, these
cells were tested for their ability to suppress HIV replication in acutely infected CD41 lymphocytes.
(Modified from references 153 and 417 with permission.)
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During HIV infection, the loss of activated CD41 cells may also result in insufficient
levels of CD40 ligand (CD40L) expression that helps with the maturation of DCs via
CD40. In turn, DCs would be unable to sufficiently activate CD81 T cells to maintain
CNAR activity (Fig. 3). When sufficiently activated with CD40L, DCs secrete both IL-12
and IL-15 (168–170). These two cytokines also expand and differentiate naive CD81

T cells into cells with a memory phenotype (171, 172). Furthermore, IL-12 promotes
CD81 T cell responses, including CNAR activity (153).

Importantly, CD81 T cells from HIV-infected progressors (section III.E.i), cocultured
with CD40L-matured DCs, had higher CNAR activity than those costimulated with only
CD3/CD28 antibodies (173). IL-15 treatment of the CD81 T cells from these subjects
resulted in increased CD81 T cell proliferation and CNAR activity compared to that
with IL-12 treatment (153, 173). Since both the IL-15 receptor and the IL-2 receptor
share the same b and g subunits, each with a unique a chain, IL-15 and IL-2 may co-
promote CD81 T cell-mediated antiviral immunity, such as CNAR, through similar
downstream pathways.

Other mechanisms leading to increased anti-HIV activity via the secretion of soluble
factors have been identified. For instance, when CD81 T cell clones from uninfected
individuals were CD3/CD28 stimulated in the presence of IL-21, they exhibited higher
antiviral activity in vitro than with the use of other cytokines (e.g., IL-2, IL-7, and IL-15).
They also upregulated CD28 (110), a marker of CD81 T cells mediating CNAR. Despite
the known increased cytotoxic potential of CD81 T cells treated with IL-21 (174), it is
unlikely that these CD81 T cells killed the HIV-infected CD41 target cells, since the
PBMC were from HIV-uninfected individuals (section III.H). Instead, CNAR could have
been involved (110). In addition to the benefit of the cytokines, ART will sometimes
result in an increase in CNAR activity at least for an initial period of 2 to 3months.
However, with reduction in HIV levels, CNAR decreases (31, 162, 175). The findings
probably reflect the continued need for viral motif recognition (section III.F).

Allogeneic stimulation of polyclonal CD81 T cells from HIV-seronegative individuals
as well as PHA stimulation can also produce an antiviral soluble factor, such as CAF
(176–179). This finding supports observations that CAF is an innate immune factor that
responds to cell activating signals (section III.F).

Another way of enhancing CNAR is the treatment of PBMC with an LFA-1 antibody
(section IV.C). It binds to CD81 T cells and induces the production of a soluble factor
with antiviral activity that is not any of the known anti-HIV cytokines or chemokines
(180). In addition, thymosin a1 is a polypeptide derived from prothymosin-a (section
IX.F) that enhances the secretion of antiviral soluble factors by lipopolysaccharide
(LPS)-stimulated CD81 T cells (181). The supernatants from these treated CD81 T cells
(probably containing CAF) are able to inhibit the replication of both HIV and HTLV-1 in
vitro better than those stimulated in the absence of thymosin a1.

Finally, the use of Toll-like receptor (TLR) agonists with the cultured PBMC of unin-
fected individuals decreased HIV replication in autologous CD41 T cells. In particular,
an agonist to TLR7/8, but not TLR4 or TLR1/2, induced a state of CD81 T cell activation
that resulted in the secretion of multiple soluble factors, including presumably CAF,
which suppressed HIV replication in CD41 T cells (182). Similarly, a successful vaccine
should induce CD81 T cell responses, such as CNAR, which can decrease virus replica-
tion and protect CD41 cell numbers. To this point, a study evaluating the effect of a
vaccine on SHIV infection in NHP indicated that a noncytotoxic CD81 cell function was
primarily involved in viral control (64) (section III.C.ii).

(G) Summary: Major CNAR Characteristics

CNAR is distinct in function, regulation, and phenotype from CTL activity, an effec-
tor function essential to adaptive antiviral immunity (Table 1). Most importantly, CNAR
does not involve target cell killing. The CTL activity is triggered by the interaction
between a T cell receptor and an HLA molecule presenting a specific peptide from a
foreign pathogen (e.g., HIV antigen) or compound (e.g., haptens). With CNAR, (i) the
CD81 cells involved are innate immune cells that are responsible for inhibiting HIV
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replication without cell killing, and the suppression is dependent on the number of
CD81 T cells present; (ii) HIV suppression can be shown with autologous CD41 cell
infection or acutely HIV-infected heterologous CD41 cells; (iii) MHC compatibility pro-
vides optimal virus inhibition in CNAR but is not required for suppression of HIV pro-
duction; (iv) the activity is associated with a clinically asymptomatic state, and CNAR is
substantially reduced in HIV-infected individuals with symptoms and AIDS; (v) the
major phenotype of CD81 T cells mediating CNAR is CD281 CD11b2 activated (HLA-
DR1) TTM cells; (vi) CNAR is most effective when CD81 T cells are activated by various
stimuli such as an interaction with DCs and CD3/CD28 cross-linking, and (vii) exposure
to certain Th1 cytokines (e.g., IL-2, IL-12, IL-15, and IL-21) (Fig. 3). (viii) Moreover, CNAR
is an early response to HIV infection (44). Finally, (ix) CNAR is associated with the pro-
duction of a soluble CD81 T cell antiviral factor (CAF).

(V) THE CD8+ T CELL ANTIVIRAL FACTOR (CAF)
(A) Discovery

As reviewed above, the CD81 T cell noncytotoxic antiviral response was first dem-
onstrated by coculturing CD81 cells with HIV-infected CD41 cells. While cell-cell con-
tact gives optimal viral control, this approach is not necessary. Experiments performed
using transwell devices, in which infected target CD41 cells and effector CD81 T cells
are separated by a semipermeable membrane, showed effective virus suppression. The
studies indicated that the CD81 T cells secrete a soluble factor that can pass through a
filter and block virus replication in the target CD41 cells (32, 36, 183) (section III.B).

Similarly, supernatants taken from cultures of activated CD81 cells from HIV-
infected asymptomatic individuals can suppress HIV replication in acutely infected
CD41 cells or naturally infected CD41 cells stimulated to produce the virus. Likewise,
cell culture fluids from the CD81 cells of baboons infected with HIV-2 have suppressed
HIV-1 replication in acutely infected human CD41 cells and inhibited HIV LTR transcrip-
tion in 1G5 cell lines (184). These fluids contain an unknown CD81 T cell antiviral factor
(i.e., CAF) that can show antiviral activity in acute HIV infection assays (section VII.B). It
is noteworthy that the presence in these fluids of other cytokines (e.g., TNF-a) that
enhance HIV replication (185) may counter the antiviral activity observed with CD81 T
cell culture fluids (186, 187). This control of HIV infection by soluble secreted factors
was reviewed more than a decade ago (15). It is evident that CAF is a major anti-HIV
protein produced by the CD81 T cells that was detected early in studies of immuno-
logic control of HIV infection by asymptomatic HIV-infected individuals (32).

In the initial studies of the noncytotoxic CD81 T cell antiviral activity, the amount of
CAF produced by CD81 T cells was found to be limited. The highest dilution of CD81 T
cell culture showing a 50% suppression of HIV replication in CD41 cells was 1:4 (Fig. 5)
(186). Thus, undiluted supernatants could have 4 units of anti-HIV activity, in which
one unit of activity gives a reduction of HIV replication by 50%. Importantly, initially in
measuring CAF activity, the biological assays often used HIV-1SF2 or the more cyto-
pathic X4-tropic SI virus, HIV-1SF33 (83). Neither viral isolate is sensitive to the antiviral
activity of the b-chemokines (188, 189).

(B) Characterization of CAF

The antiviral effect of CAF is not related to a direct inactivation of the RT enzyme
nor the integrity of the virus particles. Cocultivation of virus with CAF does not affect
virus infectivity (190). Moreover, mitogen-induced proliferation and expression of acti-
vation markers such as CD25, CD38, CD69, and HLA-DR by target CD41 cells are not
affected by exposure to CNAR or to CAF (11, 191, 192).

Among the first experiments conducted to identify the nature of CAF were those
directed at determining whether the factor is a protein, a lipid, or another biological
compound. Using the serine protease trypsin in CAF assays eliminated the antiviral ac-
tivity; thus, CAF was assumed to be a protein. Mixing CAF-containing fluids with polar
solvents such as ether or acetone supported this conclusion. The HIV activity remained
in the aqueous portion, not in the polar fraction. Thus, CAF was not a lipid but likely a
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protein (192). In other studies, CAF-containing fluids were passed through a 30-kDa fil-
ter and maintained their anti-HIV activity. This CAF activity was not removed by 10-kDa
filters, but was after 3-kDa filtration. Therefore, its size is estimated between 10 kDa
and 30 kDa (J. A. Levy, unpublished data). CAF is stable to lyophilization and pHs from
2 to 8. The CAF fluids yield fractions of anti-HIV activity after ammonium sulfate precip-
itation and withstand heating up to 10 min at 86°C with the antiviral activity intact (J.
A. Levy, unpublished data) (184, 192) (Table 4).

In the above-described studies, a variety of protease inhibitors (leupeptin, antipain,
and Pefabloc) were used to counter the potential proteolytic activity in cell culture of
the proteases selected to determine if CAF was a protein. CAF was found to be particu-
larly sensitive to Staph V8 protease and other serine proteases. While most of these
protease inhibitors reduced the effect of proteases on CAF activity, surprisingly, only

FIG 5 Level of anti-HIV activity of CAF. To measure the anti-HIV activity of CAF, CD41 cells acutely
infected with HIV-1SF2 were cultured in the presence of various dilutions of CD81 T cell culture
supernatants (changed every 2 days) and monitored for viral reverse transcriptase (RT) activity. Examples
from one of several experiments are shown. Medium, control; AIDS patients (pts), CD81 T cell culture
fluid prepared from an AIDS patient diluted 50%; Asympt, CD81 T cell culture fluid prepared from an
asymptomatic HIV seropositive subject diluted 10%, 25%, and 50%. Modified from reference 186 with
permission from Elsevier.

TABLE 4 Characteristics of the CD81 T cell antiviral factora

Property CAF characteristics
Production Only by activated CD81 T cells

Not found in cellular granules
Lacks identity with other known cytokines
Precursor protein may be activated by proteolytic cleavage

Activity Inhibits all HIV-1, HIV-2, and SIV isolates
Blocks HIV replication in naturally and acutely infected cells
Blocks HIV transcription
Does not substantially affect cell activation or proliferation

Stability Lyophilization and ether
Dialysis
56°C for 30min
86°C for 10min
Up to pH 8 and as low as pH 2
(NH4)2SO4 precipitation
In polar phase separation, found in the aqueous fraction
Protease sensitive (e.g., Staphylococcus V8 protease)

Mol wt Between 10 and 30 kDa
Stable to protein purification
methods

Mono Q anion exchange chromatography column
Capto adhere multimodal chromatography resin
HiTrap Q HP anion exchange chromatography column
Hydrophobic interaction chromatography
BioLC HPLC columns
Stable-isotope labeling by amino acids in cell culture (SILAC)

aSee sections V and X for references. Modified from reference 417 with permission.
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the serine protease inhibitors, when added to infected CD41 cells, directly blocked HIV
replication (193). Several studies also indicated that when the serine protease inhibi-
tors, such as leupeptin, were placed in a CNAR coculture, they also prevented this
CD81 T cell anti-HIV activity. However, in approximately 30% of cases, leupeptin
showed no effect on CNAR/CAF. We suggest that the latter results could be explained
by the fact that a cleavage of a CAF precursor secreted by CD81 T cells is needed for
its anti-HIV activity (Fig. 6). This observation therefore suggests that the active pro-
tein could have already been clipped by a CD81 T cell serine protease during its pro-
duction or soon after its release from the CD81 cells. Then, neither CNAR nor CAF
would be sensitive to the serine protease inhibitors. The identity of the specific CD81

T cell protease has not been determined (192, 193), but it might be a granzyme (sec-
tion IX.D).

In other strategies to identify CAF, many experiments were conducted with selected
purified cytokines and antibodies to cytokines to evaluate anti-HIV activity (Table 5).
Known amounts of purified cytokines with antiviral activity were used, and enzyme-
linked immunosorbent assays (ELISAs) were performed to detect the level of potential
anti-HIV cytokines in CAF-containing fluids. None of the cytokines had any identity
with CAF (Table 5) (186). It is also conceivable that multiple factors may work together
to inhibit HIV replication. This possibility was evaluated in cell culture with up to 16 dif-
ferent cytokines used in combination at clinical concentrations (Table 5). These experi-
ments also gave negative results (L. Liu and J. A. Levy, unpublished data).

In the case of the b-chemokines that have been reported to show anti-HIV activity
(194), the clinical importance of this effect is not conclusive (section IX.A). Many studies
have shown that CAF activity observed with CD41 lymphocytes and monocytes/mac-
rophages is not related to b-chemokines (189, 195–197) and do not support the
b-chemokines as major determinants of the clinical course in HIV infection. These cyto-
kines may prove to be more involved with promoting viral spread, since they attract
CD41 cells to the site of HIV replication (198). Indeed, several studies confirm that
b-chemokines can enhance HIV infection by X4-tropic isolates (199–201). This effect
can be caused by the cross-linking of virus to the cell surface via CCL5 oligomers (200)
and increased signal transduction (199). Continued efforts to identify CAF have
included several biological, physiological, immunological, and chemical approaches.
Thus far, no definitive answer is yet available (section IX).

(C) Summary

Whether CAF is one protein or a mixture of proteins is not clear. Its biologic and
chemical properties suggest that it is one protein, unless multiple proteins with similar
physical and chemical properties are involved. We have evaluated mixtures of several
cytokines with potential anti-HIV activity and they do not show anti-HIV activity (Table
5). Moreover, the evaluation of CAF-containing fluids in comparison to fluids with no
CAF activity has not indicated any levels of known CD81 T cell secreted cytokines that
could be CAF. For this reason, the research in our laboratory has been directed at

FIG 6 Cleavage of a CAF precursor by a protease may be needed for CAF activity. During production
of the CD81 T cell antiviral factor (CAF), it is proposed that noncytotoxic CD81 T cells produce a
serine protease that cleaves a precursor to CAF into an active moiety. This activated antiviral protein
interacts with the HIV-infected CD41 cell surface to induce an anti-HIV state; or, it could enter the cell
to produce this response. If the CNAR/CAF-like activity is not blocked by a protease inhibitor (193),
the CAF precursor could have already been cleaved into an active anti-HIV protein. (Modified from
reference 192 with permission from Elsevier.)
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identifying CAF through proteomics and, more recently, molecular studies. As we note,
CAF presents a challenge of a low-abundance protein, which joins the ongoing
research by a large number of companies directed at identifying cancer biomarkers
(section X).

Other soluble factors produced by CD81 T cells might have some anti-HIV activity
(section IX) but they have specific characteristics that need to be appreciated. For
example, if the b-chemokines are involved, their activity acts only on blocking entry of
cells by R5-tropic viruses, which are generally present during an asymptomatic course

TABLE 5 Soluble factors lacking identity to the CD81 T cell antiviral factor

Protein name Other name(s) Receptor(s) Anti-HIV Reason for not being CAF Reference(s)
IL-1a IL-1R 2 No effect on HIV replication 186
IL-3a CD123 2 No effect on HIV replication 186
IL-6a CD126/CD130 2 No effect on HIV replication 186
IL-12a CD212 2 No effect on HIV replication 186
CXCL10a IP-10 CXCR3 2 No effect on HIV replication 431
Granzymes Gzm CD222, F2R, heparan sulfate 2 No effect on HIV replication 116, 327
IL-2, IL-15 CD25/CD122/CD132 2 Can enhance HIV replication 186
IL-4 CD124/CD132 2 Can enhance HIV replication 186
IL-5 IL-5R 2 Can enhance HIV replication 186
IL-7a CD127/CD132 2 Can enhance HIV replication 186
IL-9 CD129/CD132 2 Can enhance HIV replication 186
G-CSFb CSF3 CD114 2 Can enhance HIV replication 186
GM-CSFa CSF2 CD116 2 Can enhance HIV replication 186
TNF-b TNFSF1, LT-a CD18 2 Can enhance HIV replication 186
IFN-g CD119/IFNGR2 2 Can enhance HIV replication 186
TNF-aa CD120a or CD120b 1/2 Can enhance HIV replication at some

concentrations
186

TGF-bc TGFBR1, TGFBR2, or TGFBR3 1/2 Can enhance HIV replication at some
concentrations

186

IL-8a CXCL8 CD181/CD182 1 Can inhibit HIV replication, but blocking
antibodies do not affect CAF activity

186

IL-10a CSIF CD210a/CD210b 1 Can inhibit HIV replication, but blocking
antibodies do not affect CAF activity

186

IFN-a, IFN-b Type 1 interferons IFNAR1/IFNAR2 1 Can inhibit HIV replication, but blocking
antibodies do not affect CAF activity;
no expression by CD81 T cells

186

CCL3 MIP-1a CD191, CD195 1 Can inhibit HIV replication, but blocking
antibodies do not affect CAF activity

41, 188, 195, 196,
284, 291, 293

CCL4 MIP-1b CD195, CD198 1 Can inhibit HIV replication, but blocking
antibodies do not affect CAF activity

41, 188, 195, 196,
284, 291, 293

CCL5 RANTES CD191, CD193, CD195 1 Can inhibit HIV replication, but blocking
antibodies do not affect CAF activity

41, 188, 195, 196,
284, 291, 293

IL-16 LCF CD4 1 Can inhibit HIV replication, but blocking
antibodies do not affect CAF activity

324

CCL22 MDC CD194 1/2 Only truncated form has anti-HIV activity 198
CXCL12 SDF-1 CD184, ACKR3 1 Low/no expression by CD81 T cells 307
a-Defensins DEFA NA 1 Low/no expression by CD81 T cells 357
TOE1 FLJ13949 p53 1 Expressed by CD81 T cells and other cells 333
XCL1 Lymphotactin XCR1 1 Expressed by CD81 T cells and other cells 198
IL-32 TAIF ? 1 Expressed by CD81 T cells and other cells 350
Peroxiredoxin PRDX NAd 1 Expressed by CD81 T cells and other cells 352
IL-13 CD124/CD213a 1 Effect on other cells (e.g., macrophages)

than CD41 cells
432

Prothymosin-a PTMA ? 1 Effect on other cells (e.g., macrophages)
than CD41 cells

337, 340

IL-18 IGIF CD218a/CD218b 1 Different mode of action than CAF 433, 434
Ribonucleases RNases NA 1 Different mode of action than CAF 11, 192
Antithrombin AT III, Serpin C1 NA 1 Different mode of action than CAF 192
aThese cytokines, as well as CCL2, CCL7, CCL8, CXCL5, IL-28, and sCD40L, were tested in combination; no effect on HIV-1SF33 replication was observed (L. Liu and J. A. Levy,
unpublished data). GM-CSF, granulocyte-macrophage colony-stimulating factor.

bG-CSF, granulocyte colony-stimulating factor.
cTGF-b , transforming growth factor beta.
dNA, not applicable.
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of infection and not during disease progression. Moreover, in cell culture, high levels
of b-chemokines and a combination of the three chemokines are typically needed to
suppress R5-tropic virus infection compared to what has been detected in culture flu-
ids of CD81 T cells (or CD41 cells). However, if these chemokines (e.g., CCL5) are
associated with proteoglycans, the amount needed may be less (202). This finding
needs to be further evaluated.

Importantly, CAF activity is associated with a protein that blocks HIV transcription
and affects all HIV isolates. Therefore, in the studies cited in this review, we expect the
major mechanism for the noncytotoxic, cytokine-mediated anti-HIV response to
involve the secretion of CAF. In our experience, CAF, although its identity is still
unknown, has a much broader anti-HIV activity than any other potential cytokine that
could be involved.

(VI) CNAR/CAF MODE OF ACTION
(A) Overview

The CD81 T cell noncytotoxic antiviral response (CNAR) and the CD81 T cell antiviral
factor (CAF) suppress HIV replication and can inhibit the replication of other retrovi-
ruses, but not viruses from other families (section VIII). While the exact mechanism of
action for CNAR or CAF remains to be defined, several studies have shown it is retrovi-
rus restricted and involves a block of HIV transcription (sections II and V). Unlike b-che-
mokines that prevent HIV entry, the noncytotoxic CD81 T cell response inhibits HIV
replication after the virus has infected the host target cells. Decreases in HIV replication
and mRNA production are observed (44, 94, 191). The activity of CAF does not impact
the processes involved in virus reverse transcription or integration of viral cDNA into the
genome (44) and is not attributed to direct inactivation of the RT enzyme (190). The virus
envelope is not affected and the infectivity of the HIV particles is also not reduced when
exposed to CAF or CD81 T cells (190, 203).

In terms of the infected target cells, mitogen-induced proliferation of the CD41

cells is not substantially affected by exposure to CAF-containing supernatants or co-
culture with CD81 T cells (C. E. Mackewicz, unpublished data; M. G. Morvan, unpub-
lished data) (section V.B). Furthermore, CD41 cell activation remains unchanged after
an interaction with CNAR or CAF, as demonstrated by similar levels of mitogen-
induced activation markers at the cell surface, such as CD25, CD38, CD69, and HLA-DR
(C. E. Mackewicz and J. A. Levy, unpublished data). We have also found that antibodies to
CD3, CD8, CD11a (LFA-1), CD15 (LFA-3), CD18, CD44, or DRGG2 (homing receptor) do not
inhibit CNAR activity when added to cocultures of the CD81 T cells (J. A. Levy, unpublished
data). These findings confirmed that this antiviral activity is not dependent on the engage-
ment of any of those cell-surface receptors individually (section IV.F).

(B) No Effect on Early Steps in HIV Infection

As noted above, CNAR/CAF activity is not affected during the early steps in the HIV
replication cycle, including virus attachment and entry, viral uncoating, reverse transcrip-
tion, the formation and transport of the preintegration complex to the nucleus, and inte-
gration into the host genome. Moreover, coculturing infected CD41 cells with CD81 T cells
does not substantially reduce the amounts of (i) early HIV cDNA, as detected by LTR U3-R,
(ii) HIV gag cDNA in various fractions of cellular DNA, or (iii) HIV gag cDNA in the nucleus
(190) (Fig. 7). Quantification of HIV-integrated proviral cDNA by a sensitive PCR assay has
confirmed that coculture with CD81 T cells has no effect on the amount of virus cDNA
reaching the integration stage, with no major difference observed compared to that in
CD41 cells cultured alone. Thus, viral replication proceeds unaffected through proviral
integration but is then interrupted by the CD81 T cell-mediated antiviral response. Only vi-
ral transcription and virus particle production are specifically reduced (44, 190, 203, 204).

(C) Major Effect on HIV Transcription

As demonstrated by Northern blot analysis of total RNA extracted from infected
CD41 cells cocultured with CD81 T cells, the transcription of all subtypes of HIV RNA
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(unspliced, single spliced, and double spliced) is found to be downregulated by CNAR
compared to that in infected CD41 cells cultured alone (44) (Fig. 7). Since the transcrip-
tion of housekeeping genes such as b-actin, glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH), IL-2, or IL-2 receptor (IL-2R) was only slightly reduced in the presence of
CD81 T cells (44), the CNAR/CAF antiviral activity appears to inhibit specifically HIV
transcription (Appendix 3). These results were confirmed using quantitative reverse
transcription-PCR (RT-PCR), a highly sensitive method to assess the effect of CD81 T
cells on the kinetics of viral mRNA transcription in HIV-1-infected CD41 cells (190). The
addition of CD81 T cells to infected CD41 cells drastically reduced HIV tat and gag
mRNA levels as early as 3 h after infection, by 7- to 30-fold for tat and by 10- to 100-
fold for gag (190). A recent study has further confirmed that CD81 T cells cocultured
with infected CD41 cells suppress HIV replication at the transcriptional level (75).
Taken together, these findings show that the CD81 T cell-mediated antiviral activity
specifically inhibits HIV transcription, not global transcription, in infected target cells.

(D) Effect on Viral LTR

In further support of a specific and inhibitory effect of CNAR/CAF on HIV transcrip-
tion, we and others have demonstrated that this antiviral activity occurring after HIV
integration can block the LTR-dependent transcription of a reporter gene in primary
CD41 cells (44, 204). In initial studies with SIV, both the Tat-mediated enhancement of
LTR-dependent transcription and basal transcription via the LTR were suppressed by
CNAR (204). Notably, the inhibition of transcription by coculture with CD81 T cells is
specific to the HIV promoter, since transcription of a reporter gene via a cytomegalovi-
rus (CMV) promoter is not reduced (204). Moreover, when studying the effect of CD81

T cell supernatants alone on the 1G5 T cell line, a stable Jurkat cell line containing the
luciferase reporter gene under the control of the HIV-1SF2 LTR (205), CAF only affected
Tat-mediated HIV transcription, not the basal LTR-dependent transcription (44).

FIG 7 Effect of CNAR and CAF on parameters of HIV replication. The CD81 T cell noncytotoxic
antiviral response blocks viral replication, as indicated by decreased RT activity, viral protein
expression measured by immunofluorescent antibody (IFA) techniques, and in situ RNA production.
This activity has no effect on the number of infected cells in the culture. The antiviral effect is
observed as well by a reduction in unspliced (us), single-spliced (ss), and double-spliced (ds) HIV RNA
levels compared to a normal expression of b-actin RNA. Finally, the suppressing effect of CD81 T
cells or CAF does not affect the basal-level expression of HIV LTR-driven transcription but blocks
induction of this transcription by HIV, simian virus 40 tat expression, or phorbol myristate acetate
(PMA) using cells in which the HIV LTR has been linked to a reporter gene (section VI). (Modified
from reference 417 with permission.)
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CD81 T cells and their supernatants from SIV-infected NHP also inhibited SIV repli-
cation and LTR-dependent transcription, which was demonstrated in assays using ei-
ther primary CD41 cells (204) or a B cell line (112) transfected with an LTR-chloram-
phenicol acetyltransferase (CAT) reporter construct. However, in the case of the B cell
line, in contrast to observations with the 1G5 cell line (44), only basal LTR-dependent
transcription was affected, not Tat-mediated enhancement of LTR-dependent tran-
scription (112). In this study, the CD81 T cells from two different species of NHP, sooty
mangabey and rhesus macaque, inhibited the CAT activity (112). However, Tat, intro-
duced via a different LTR vector, reduced this effect. The studies also showed that NF-
κB in the LTR was necessary for CAT expression and thus appeared to be affected by
CNAR/CAF. However, whether CNAR/CAF suppression could have a direct effect on Tat
or indirectly affect the transcription factors interacting with Tat (206) was not deter-
mined. Notably, an effect on Tat/transactivation-responsive region (TAR) was not sup-
ported by later studies using a Tat/TAR-deleted mutant that was susceptible to CNAR/
CAF (207).

In further experiments, the expression of a CAT reporter gene under the control of
the HIV LTR was reduced by 50% to 70% in Jurkat cells when supernatants from stimu-
lated primary CD81 T cells or an immortalized CD81 T cell clone taken from HIV-
infected individuals were used in the assays (208). This reduction was independent of
LTR transcription being induced either by Tat or mitogenic activation via phorbol my-
ristate acetate (PMA) and ionomycin. In addition, CD81 T cell supernatants also
decreased transcription of the CAT reporter gene when it was under the control of a
minimal promoter only containing two NF-κB elements (112). Moreover, the CD81 T
cell supernatants were able to suppress transcription via the retrovirus promoters of
HTLV-1 and Rous sarcoma virus (RSV), which also contain two NF-κB elements (208).
Thus, all these findings suggested that NF-κB-related events can play an important role
in CD81 T cell-mediated suppression. However, these LTR elements may not be neces-
sary, since an SIV mutant virus lacking NF-κB and the Spl binding domain was also sen-
sitive to CAF inhibition (209).

The activity of CD81 T cell line supernatants on transcription has also been studied
using LTR promoters with various mutations, including the NF-κB, Sp-1, and nuclear
factor of activated T cells (NFAT) elements (207, 210) (see below). The results varied
depending on the construct used. Some studies, as noted above, showed that the NF-
κB elements were necessary for induction of LTR-dependent transcription by mitogenic
activation of the infected cells (112). Cultured CD81 T cell supernatants blocked this ac-
tivity. Yet, as noted above with SIV (209), CD81 T cell-mediated inhibition was observed
even in the absence of NF-κB elements (207). Notably, in these studies, Tat-mediated
enhancement of LTR-dependent transcription was suppressed by CD81 T cell superna-
tants (210). Moreover, this inhibition was not observed when the NFAT element was
mutated. Thus, the reduction in Tat-mediated transcription appeared to be dependent
on NFAT activity. Yet, when NFAT binds to the IL-2 promoter and IL-2 is added to cul-
tures of PBMC, the ability of CD81 T cells to suppress HIV replication increases (35, 153)
(section IV.F).

In other studies using the 1G5 cell line, Tat-mediated transcription was still sup-
pressed by CNAR and by supernatants from primary CD81 T cells with antiviral activity
(44). The 1G5 cell line is derived from Jurkat cells transfected with the luciferase re-
porter gene under the control of an HIV promoter cloned from the 2177 to 177
sequence of the HIV-1SF2 LTR (205). As such, the HIV-LTR in 1G5 lacks all the NFAT bind-
ing elements (as well as the 59 AP-1, USF, and COUP elements). Therefore, in these
studies, the suppression of Tat-induced transcription was not dependent on a func-
tional NFAT site in the promoter.

(E) Studies with LTR Mutants

Importantly, in assessing the mode of action of CNAR/CAF, Bonneau et al. gener-
ated multiple infectious HIV mutants with defective major elements of the LTR (207). In
some studies, a Tat/TAR-deleted virus was used. All those mutants were able to infect
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PHA-stimulated primary CD41 cells and were still susceptible to the CD81 T cell-medi-
ated suppression by CNAR and CAF (207). These findings indicated that the following
elements of the LTR do not appear involved in the transcriptional block (Fig. 8): NFAT,
AP-1, IL-2 homology region, interferon-sensitive response element (ISRE), NF-κB, Sp-1,
Tat, or TAR (207).

Other studies have suggested that the effects on the HIV LTR involved in virus sup-
pression may depend on elements downstream of the CATA box (211). In this regard,
we have shown that noncytotoxic CD81 T cells can reduce the amount of RNA poly-
merase II (RNAPII) on the HIV LTR in infected CD41 cells by 3-fold compared to that in
infected CD41 cells cultured alone. Furthermore, the recruitment of RNAPII on the viral
gag and tat sequences was reduced 4-fold (212). These observations support the other
studies showing that CNAR/CAF blocks HIV replication at transcription. Moreover,
CNAR/CAF may affect preinitiation complex assembly (212). These findings suggested
an important role for CD81 T cell activity on the positive transcription elongation factor
(P-TEFb) complex (cyclin T1, Cdk9, and hexim1) involved in cellular transcription. The
apparent sensitivity of HIV-Tat to P-TEFb (213, 214) could explain the lack of effect of
the noncytotoxic CD81 T cell response on other activities of normal cells, such as IL-2R
expression and IL-2 production (190).

(F) Summary

The mechanism by which CNAR and CAF block retroviral replication through tran-
scriptional inhibition of the LTR domain is complex and multifactorial (Fig. 8). The
hijacking of an array of cellular transcription factors by HIV-1 may reflect the exquisite
adaptability of retroviruses to replicate in diverse types of cells and, in the case of HIV-
1, infect subpopulations of CD41 lymphocytes, macrophages, and monocytes. The dif-
ferent cell lines used to measure CNAR and CAF activity may also explain the diversity
of the LTR responses described above. Cell lines and subpopulations of CD41 T lym-
phocytes have various degrees of cell surface receptor expression and kinase regula-
tory patterns that modulate transcription factors in a differential manner. Therefore,
CD41 lymphocytes are guided by IL-2 toward the memory phenotype for adaptive
immune responses. Also, CAF production appears to be IL-2 dependent (35) (section

FIG 8 Effect of CNAR/CAF on transcription elements of the HIV LTR. This schematic representation of the main transcription elements of the HIV LTR shows
(i) the relative position of these elements in the HIV promoter; (ii) which transcription elements are present in the HIV-1SF2 promoter cloned and transduced
into the 1G5 cell line used in many studies discussed in this review; and (iii) the potential role of these various transcription elements in CNAR/CAF activity
(section VI). References are as follows: Copeland, 1996 (210); Mackewicz, 1995 (44); Bonneau, 2008 (207); Copeland, 1995 (208); Locher, 2001 (209); Shridhar,
2014 (211); Chen, 1993 (204); Powell, 1993 (112).
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IV.F). Thus, CNAR activity may help retain CD41 cell immunological memory function
by blocking HIV-1 transcription without killing the cells.

In addition, regulation of HIV-1 in the context of the architecture of the lymphatic
tissues must be considered. The close proximity of the CD81 and CD41 cells surround-
ing the germinal center may provide greater control of HIV-1 transcription than found
in the in vitro assays used to measure CNAR and CAF activity. Furthermore, the potent
innate immune responses of CNAR and CAF activity observed in immunized (215) and
HIV-2-infected NHP such as baboons (47, 50) suggest that this animal model provides
an excellent resource for in vivo study of noncytotoxic mechanisms of CD81 cell con-
trol. Further studies in well-controlled and well-characterized cell lines and animal
models are required to better define the activity of specific transcription factors and
their effect on the LTR by CNAR and CAF.

(VII) CNAR/CAF ASSAYS
(A) CNAR Assay

CNAR against HIV was initially observed using an endogenous virus assay. At the
time, it was known that HIV could be readily isolated from the PBMC of individuals
with symptoms of AIDS. In contrast, when the PBMC came from individuals who were
seropositive but asymptomatic, the virus was difficult to isolate. Then, as noted above,
when CD81 cells were removed from the PBMC cultures, HIV replication was detected
(2). For CNAR, the CD81 T cell antiviral activity is typically observed by the cocultivation
of CD81 cells at various ratios with HIV-infected CD41 cells. Initially, the CD81 cells
were isolated by immunologic panning in a petri dish (2, 25). Presently, CD8 antibodies
bound to immunomagnetic beads are used.

Three distinct assays were developed by our group to measure CNAR activity (Table
6): (i) the endogenous virus infection assay (2); (ii) the acute virus infection assay (26);
and (iii) the screening assay for detection of CNAR activity (sCNAR or Rapid CNAR) (28).
Each of these assays contributes in different ways to the understanding of how CNAR con-
trols HIV replication and spread. In addition, others have adapted CNAR assays into proto-
cols called the virus inhibition assay (VIA) (151, 216–222) or HIV suppression assay (223).

(i) Endogenous virus infection assay. In this assay, endogenously infected CD41

cells isolated from the PBMC of an HIV-seropositive subject are cocultured for up to
6 days with autologous CD81 T cells at CD81/CD41 cell ratios ranging from 0.05:1 to
2:1. The CD41 cells are cultured alone as a control, and virus replication is measured
via the RT assay (48) or a p24 ELISA of the culture supernatants. CNAR activity is deter-
mined by how much endogenous HIV replication is suppressed in the CD81/CD41 cell
cocultures compared to virus replication in the infected CD41 cells cultured alone (2).
This assay was established early in the HIV epidemic when numerous HIV-infected subjects
progressed to AIDS. Notably, these subjects often had low CD41 cell counts, making it dif-
ficult to isolate enough cells to assess CNAR activity through an endogenous assay.

(ii) Acute virus infection assay. To circumvent the limitation above, the acute virus
infection assay was developed in which CD41 cells are isolated from the PBMC of

TABLE 6 Comparison of various assays measuring anti-HIV CD81 T cell activitya

Assay
HIV-infected
CD4+ cells

CD8+/CD4+

cell ratio CD8+ T cell stimulation
Assay duration
(days)

Target cell
killing?

CD8+ T cell
function

Endogenous Autologous 0.05:1 to 2:1 6 No CNAR
Acute Heterologous 0.05:1 to 2:1 3 days, PHA or resting 6 No CNAR
Transwell Autologous/

heterologous
1:1 to 4:1 3 days, PHA 6 No CNAR

sCNAR Autologous Physiological 3 days, PHA 7 No CNAR
VIA Autologous 5:1 to 25:1 Various stimuli or resting Up to 14 Possible CNAR and CTL
CAF Heterologous NAb 3 days, anti-CD3 beads; for

production up to 2 wks
4–6 No CAF secretion

aSee section VII for details.
bNA, not applicable.
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uninfected subjects, PHA stimulated for 3 days, and infected with an X4-tropic HIV-1
isolate (e.g., SF33) (83). It is optimal to use a b-chemokine-resistant virus to avoid any
possible virus suppression mediated by CCL3, CCL4, and CCL5 secreted by CD81 T cells
(see below; section IX.A). Concurrently, CD81 T cells are isolated from the PBMC of an
HIV-infected individual that have been stimulated with PHA for 3 days. The acutely
HIV-infected CD41 cells are cocultured with these CD81 cells at CD81/CD41 cell ratios
ranging from 0.05:1 to 2:1. Virus replication is measured 4 to 6 days postinfection as
noted above, and CNAR activity is determined by the extent of virus suppression in the
CD41/CD81 cell cocultures compared to that in the HIV-infected CD41 cells cultured
alone.

The acute virus infection assay is more efficient in time and breadth than the en-
dogenous infection assay to study CNAR. Uninfected donor CD41 cells, as well as a va-
riety of viral isolates with various pathogenic and biological properties, are more read-
ily available. Early studies using the acute infection assay showed that CD81 T cells
from HIV-infected subjects were able to suppress the replication of all HIV-1, HIV-2, and
SIV isolates tested (section III).

(iii) sCNAR/rapid CNAR assay. A screening CNAR (sCNAR), or rapid CNAR assay, was
developed in order to have a rapid assay to study CNAR activity in HIV-infected sub-
jects, particularly from underserved communities (28). In this assay, PBMC from an HIV-
infected subject are PHA stimulated for 3 days and acutely infected with a known
amount of a b-chemokine-resistant HIV isolate. Concurrently, CD81 cell-depleted
PBMC (mostly CD41 cells) from the same subject are PHA stimulated, infected with the
same virus, and cultured as a control. After 7 days, virus replication is measured in cul-
ture supernatants as noted above. The extent of HIV suppression by CD81 T cells is
determined by comparing HIV replication in the total PBMC to that in the CD81 cell-
depleted PBMC. The rapid CNAR assay is a time- and cost-effective alternative to the
acute virus infection assay.

(iv) Virus inhibition assay. The VIA and HIV suppression assays were designed by
other groups to measure CD81 T cell-mediated anti-HIV responses in vitro. They resem-
ble the rapid CNAR assay described above (28), in which the objective is to have an
effective screening assay. These tests generally use PBMC to isolate and coculture
acutely HIV-infected CD41 cells, usually with autologous CD81 T cells. The CD81 T cells
can be stimulated (151, 217, 221) or resting (216, 218–220, 222, 223). As with the other
assays described above, anti-HIV activity is measured in the culture supernatants by RT
or p24 antigen assays, and the extent of HIV replication is compared in the exoge-
nously infected PBMC or the CD41/CD81 cocultures to that found in the infected CD41

cells cultured alone.
In contrast to the VIA, the acute virus infection assay, described above, is usually

conducted with CD81 T cells and CD41 cells from different individuals. A heterologous
setting excludes any possible HLA-restricted CD81 T cell-mediated cytotoxicity that
could be observed with autologous, acutely HIV-infected target CD41 cells. As such,
under certain conditions, the VIA can be used to quantify noncytotoxic CD81 T cell-
mediated viral suppression. Importantly, in some VIA protocols, more CD81 T cells are
cocultured with the infected CD41 cells, with CD81/CD41 cell ratios ranging from 5:1
(221, 222) to 25:1 (151). CD81 T cells may also be cocultured for a longer period of
time (13 to 14 days) (216, 218, 221, 223), during which they could acquire the cellular
machinery required to kill target cells (151).

Because of some differences between the VIA and the CNAR assays, especially the
high number of CD81 cells used and the extended length of each assay (e.g., up to
2weeks), both CTL and CNAR activity could be involved in some VIAs measuring CD81

T cell suppression of HIV replication (Table 6) (5). This possibility is particularly impor-
tant to consider since the VIA has been used by many researchers to evaluate CD81 T
cell function in the context of vaccine studies, both in humans and in NHP. Because
the VIA cannot discriminate CTL from CNAR activity, the possible contribution from
each mechanism to viral suppression for various vaccine approaches must be
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considered. Also, since the acute virus infection assay uses stimulated CD81 T cells, the
full HIV-suppressing activity of these cells can be measured, which is often not
achieved with resting CD81 cells. Finally, acute infection of CD41 cells from an unin-
fected individual circumvents the variability caused by superinfection of autologous
CD41 cells from HIV-infected subjects. The CNAR assays also facilitate the consistent
use of various HIV isolates and lab-adapted viral strains as well as CD41 cell sources.

(B) CAF Assays

This procedure measures the antiviral activity of the soluble anti-HIV factor pro-
duced by CD81 cells (i.e., CAF) and can be utilized to evaluate other potential anti-HIV
proteins (186). The assay is more quantitative and convenient than the initial transwell
culture technique (32). It involves magnetic bead isolation and 3-day anti-CD3 bead
stimulation of CD81 cells obtained from the PBMC of HIV-infected subjects. These cells
are then cultured for 2 weeks, with culture medium changes, filtering, and storage (at
280°C) of the spent culture supernatants every 2 to 3 days. Subsequently, these fluids
(usually at a 1:2 dilution) are added to HIV-1 acutely infected CD41 cells (section VII.A.ii).
The extent of HIV replication in the fluid-treated CD41 cells is measured by the RT or p24
antigen assay. The extent of HIV production is determined by comparing the HIV levels
in the fluid-treated CD41 cells with that in control infected CD41 cells grown alone.
Generally, stimulation of CD81 T cells (preferably with anti-CD3 beads) is needed for CAF
production. Unstimulated CD81 T cells do not usually show an antiviral effect when cul-
tured in a transwell assay (C. E. Mackewicz C, unpublished data; M. G. Morvan, unpub-
lished data).

(VIII) CD8+ T CELL NONCYTOTOXIC CONTROL OF OTHER VIRUSES

As reviewed in this article, CNAR with CAF activity was first described as an immune
response in HIV infection. Then this activity was observed with other retroviruses in
humans (e.g., HTLV), NHP (e.g., SIV), and cats (e.g., feline immunodeficiency virus [FIV]).
Notably, a CD81 T cell noncytotoxic antiviral immune response, differing from the
CNAR with HIV, has also been recognized in infections caused by other virus families
(Table 7). In these cases, CAF is most likely not the soluble secreted antiviral protein
involved.

(A) Lentiviruses

(i) SIV. The NHP AIDS virus, SIV, is most similar genetically to HIV-1 and HIV-2. Its
infection has been identified in at least 45 species of NHP, causing nonpathogenic
infection in natural host species and eliciting pathogenic infection (i.e., simian AIDS) in
some NHP, such as rhesus macaques (224). Also, SIV infection in NHP exhibits pathol-
ogy comparable to that from HIV infection in humans, including CD41 T cell depletion,
immunodeficiency onset, and a beneficial response to ART (225).

Several in vivo SIV studies in NHP detail the role for CD81 T cells in a noncytotoxic
antiviral response (i.e., CNAR). In these studies, previously identified soluble anti-HIV
factors such as IL-16 (226) and b-chemokines (227, 228) produced by the immune sys-
tem were considered involved but did not always correlate with SIV controls (226). In
longitudinal studies of SIV-infected cynomolgus macaques, a soluble CD81 cell antivi-
ral factor was detected within the first week after viral infection, and this increase in
the factor activity correlated with low plasma viral load over 15months. The antiviral
effect was neither cytotoxic nor MHC restricted (226).

TABLE 7 CD81 T cell noncytotoxic antiviral response in virus infections besides HIVa

Lentiviruses Other retroviruses Herpesviruses Other families
Simian immunodeficiency (SIV) Human T lymphotropic Cytomegalovirus Hepatitis B
Feline immunodeficiency (FIV) Rous sarcoma Epstein-Barr Hepatitis C

Herpes simplex Influenza
aSee section VIII for details.
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Other studies, involving SIV-challenged macaques followed by CD81 cell depletion,
further supported the noncytotoxic antiviral function of CD81 T cells. When the CD81

cells were depleted, both at early (day 57 post-SIV infection) and late (day 177 post-SIV
infection) times, the infected CD41 cells survived and released virus from a latent state.
This finding indicated the presence of CD81 cells that did not affect the life span of
SIV-infected CD41 cells (section III.C). Thus, virus control was not due to CTL activity
but, rather, to CNAR (60). Furthermore, in vivo studies of SIV-challenged NHP, such as
African green monkeys, sooty mangabeys, baboons, and HIV-challenged chimpanzees,
can involve soluble CD81 cell antiviral factors such as IL-16 (229, 230), the b-chemo-
kines (231), and a CAF-like cytokine (52). SIV is sensitive to CAF (209).

(ii) FIV. Although FIV is genetically and antigenically distinct from HIV, these cat
viruses possess structural, pathological, immunologic, and physiologic similarities to
HIV (232, 233). In particular, during the acute and asymptomatic stage of FIV infection,
noncytotoxic CD81 cells produce a soluble antiviral factor that suppresses virus replica-
tion independent of MHC restriction (234–238). Moreover, when either autologous or
heterologous T cells or feline skin fibroblasts were infected with FIV isolates and cocul-
tured with autologous or heterologous CD81 cells, suppression of FIV replication by
the CD81 cells was observed (239).

The activity of a soluble anti-FIV factor was also detected when FIV-infected target
cells were cultured with the supernatants of CD81 T cells from HIV-infected individuals
(235, 237). Moreover, ex vivo feline studies, similar to HIV studies, demonstrated that a
CD81 cell anti-FIV soluble factor suppressed FIV in a dose-dependent manner (238).
The soluble anti-FIV factor(s) was distinct from IFNs and chemokines (235, 240). During
FIV pathogenesis and progression, the production of this feline CD81 cell antiviral fac-
tor was observed as early as 1 week postinfection in blood, spleen, and lymph nodes.
This response was sustained for several months to years in peripheral and mesenteric
lymph nodes in animals that remained clinically asymptomatic (237). Finally, the im-
munization of cats with a whole inactivated FIV vaccine led to strong noncytotoxic
anti-FIV activity of CD81 cells from the blood and lymph nodes. This response was
mediated by a soluble factor, as demonstrated with a transwell device (241). Therefore,
the cat lentivirus FIV that causes immunodeficiency in its host also induces a CD81 cell
noncytotoxic response involving a soluble anti-FIV factor similar to CAF. Moreover, FIV
is sensitive to human CAF in our CAF assay (J. K. Yamamoto and J. A. Levy, unpublished
data).

(iii) Other lentiviruses. Other less-studied lentiviruses that induce immunodefi-
ciency have been described in cattle (e.g., bovine immunodeficiency virus [BIV]) and
ungulates, such as sheep (e.g., visna-maedi virus [VMV]), goats (e.g., caprine arthritis
encephalitis [CAEV]), and horses (e.g., equine infectious anemia [EIA]). Early in vivo
CD81 cell depletion studies in sheep demonstrated that over the course of 10 days,
VMV replication was comparable in CD81 cell-depleted sheep and non-CD81 cell-
depleted sheep (242). Thus, in this animal model, CD81 cell control of VMV was not
observed. Limited studies have been conducted to find a CNAR-like response in other
lentivirus infections.

(B) Other Retrovirus Infections

Similar to HIV, HTLV-1 is a retrovirus in the subfamily of Orthoretrovirinae. It infects
mainly CD41 cells through a receptor complex consisting of glucose transporter 1,
neuropilin-1, and heparan sulfate proteoglycans (243). Once inside the host cell, the vi-
rus encodes structural proteins, such as Gag and Env, viral enzymes, and the regulatory
proteins Tax and Rex (244).

An association of virus-specific CD81 T cell cytotoxic responses with a decreased
HTLV proviral load and an asymptomatic infection has been observed (245–247).
However, in some patients, the CD81 CTLs are linked with the development of neuro-
logic diseases, particularly myelopathy or tropical spastic paraparesis (248). A CD81 T
cell noncytotoxic response controlling HTLV infection has also been reported (249).
Using CD81 cell depletion studies with cultured PBMC from HTLV-infected individuals,
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an increased level of HTLV-I p19 antigen expression in peripheral white cells was
noted. Reconstitution of the autologous CD81 cells or heterologous CD81 cells resulted
in dose-dependent viral suppression without target cell killing (249). Furthermore, HTLV
inhibition by a soluble factor was observed when autologous CD81 cells and HTLV-
infected CD81 cell-depleted PBMC were separated by a semipermeable membrane
(249). Similar to that in HIV studies, the viral suppression by a soluble factor was less effi-
cient than that seen with cell-to-cell contact cultures (249).

In an attempt to identify the CD81 cell anti-HTLV soluble factor(s), cultures of CD81

cells from uninfected human donors stimulated with LPS and thymosin a1 showed
production of a 10-kDa to 30-kDa-sized protein(s) that suppressed HTLV-1 replication
in uninfected human donor PBMC (181). To further identify the anti-HTLV-1 protein(s),
the CD81 cells were evaluated by DNA microarray for 440 genes involved in autoim-
munity and inflammatory immune responses. In comparison to untreated CD81 cells,
the LPS- and thymosin a1-treated CD81 T cells differentially upregulated certain che-
mokines (CCL22 [MDC], CCL3 [MIP1a], CCL4 [MIP1b], and interleukins [IL-1b and IL-8])
(181). The specific role of these proteins in HTLV inhibition has not been reported. The
action of the soluble factor on HTLV transcription has not been described, but it seems
to resemble CAF (181, 249).

As discussed in this review (section VI), CNAR can be studied using LTR constructs
from certain retroviruses, such as HIV-1, HTLV-1, and the RSV of chickens. Copeland et
al. (208) developed gene constructs of the HIV-1 and HTLV-1 LTRs fused to the CAT re-
porter gene. To enhance the efficiency of viral transcription, the constructs were each
cotransfected with their respective regulatory proteins (e.g., Tat and Tax) into human
Jurkat T cell lines. Subsequently, the Jurkat T cell lines were stimulated with PMA and
calcium ionophore and treated with the supernatants obtained from the primary CD81

cells or CD81 cell clones of asymptomatic HIV-infected subjects. Treatment of these
Jurkat cells with the culture fluids resulted in substantial reduction in HIV-1 LTR, HTLV-
1 LTR, and RSV LTR activity (208). The activity against the avian retrovirus, RSV, indi-
cated the broad antiviral effect of the CD81 T cell fluids on retroviruses. Similar obser-
vations were made with LTR constructs from HIV-1, HIV-2, and SIV (112) (section VI). A
CAF-like protein seems to be involved.

(C) CNAR with Other Virus Families

Whereas CNAR was first described in studies of HIV, a similar noncytotoxic response
is present in other virus infections, although CAF is not known to be involved (Table 7).

(i) Hepatitis B virus. Extensive studies have identified the role of IFN-g in its control
of viral infections, such as hepatitis B virus (HBV) and hepatitis C virus (HCV). Early stud-
ies of acute HBV infection in transgenic mice and chimpanzees suggested that anti-
gen-specific CD81 T cells suppress virus replication in infected hepatocytes via a non-
cytotoxic mechanism (250–252). Subsequently, in vitro studies using matched HLA-A21

human CD81 T cell lines or clones, and an HBV-infected human hepatoma cell line,
demonstrated similar antiviral activity with minimal cell killing via cell-to-cell contact
or when the cells were separated by a semipermeable membrane (253). These effector
CD81 T cells produced IFN-g and TNF-a that suppressed HBV replication in the HBV-
infected cell line without cytotoxicity. Moreover, IFN-g and TNF-a treatment of the
HBV-producing cell line resulted in a noncytotoxic CD81 cell antiviral response.
Blockade with IFN-g and TNF-a antibodies abrogated this antiviral activity (253). Thus,
both of these CD81 cell cytokines help to control HBV infection.

(ii) Hepatitis C virus. Similar to HBV, HCV infects hepatocytes to induce a noncyto-
lytic immune antiviral response that is both cell and cytokine mediated. Researchers
developed a coculture assay that assessed CD81 T cell antiviral responses via cell-to-
cell contact and in a transwell assay with a semipermeable membrane (254).
Importantly, 20% of the anti-HCV activity observed was linked to a CD81 cell cytokine-
mediated noncytotoxic response. Moreover, supernatants from CD81 T cell cultures
containing IFN-g inhibited HCV replication in the replicon system (255). This finding,
supported with antibody blocking studies, showed that a CD81 T cell noncytotoxic
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antiviral response was partially due to IFN-g in addition to FasL-mediated cytotoxicity
(254, 256). Subsequent in vitro studies utilizing a matched HLA-A2 epitope of the repli-
con system and an HCV-specific CD81 T cell clone demonstrated both cytotoxic and
noncytotoxic anti-HCV responses that reflected high and low CD81 cell inputs, respec-
tively (256). Concurrent ex vivo studies showed that CD81 cell depletion of HCV-
infected PBMC resulted in increased HCV RNA replication. Adding CD81 T cells back to
the depleted PBMC again inhibited HCV replication (256). Therefore, CD81 T cell con-
trol of HCV replication in these cell culture models is due to both cytotoxic and noncy-
totoxic mechanisms.

(iii) Hepatitis E virus. Hepatitis E virus (HEV) typically causes a self-limiting asymp-
tomatic infection (257). However, in some immunocompromised individuals (e.g., with
HIV infection), a chronic HEV infection can develop, with neurologic disorders and he-
patic failure (258). Whereas HEV-specific T cells have been noted (259), cytokines pro-
duced by CD81 T cells, particularly IFN-g and TNF-a, can also play a role in controlling
HEV replication via a noncytotoxic CD81 T cell antiviral response (260, 261).

(iv) Epstein-Barr virus. Other studies have identified a noncytotoxic function of
Epstein-Barr virus (EBV)-specific CD81 cells when cocultured with autologous EBV-
transformed B cells. Notably, the former cells produce IFN-g at concentrations that in-
hibit EBV-transformed B cell outgrowth without cytotoxicity. This inhibitory activity can
be neutralized with IFN-gmonoclonal antibodies (262).

(v) Herpes simplex virus. CD81 T cells mediate an immune response to maintain
herpes simplex virus 1 (HSV-1) in latency and control HSV-1 reactivation (263, 264).
Specifically, ex vivo mouse studies of dissociated, latently HSV-1-infected trigeminal
ganglions (TG) have demonstrated that depletion of CD81 T cells or IFN-g neutraliza-
tion results in enhanced HSV-1 reactivation in TG cultures without neuronal damage
and death (265). Further studies have revealed that in mice and humans, the lytic gran-
ules of CD81 T cells can reduce latent HSV-1 reactivation through a nonlytic mecha-
nism involving granzyme B (GzmB) (266). The GzmB from CD81 T cells directly cleaves
IPC4, a viral protein essential for early and late stage viral transcription (267). Therefore,
HSV infection can also be controlled by two different mechanisms involving IFN-g and
granzymes, without cytotoxicity.

(vi) Cytomegalovirus. Human CMV (HCMV) is another herpesvirus that is inhibited
by a CD81 cell noncytotoxic response. The CD81 T cells exhibit cytotoxic or noncyto-
toxic functions that eliminate virus-infected cells or maintain viral latency, respectively.
In terms of CNAR activity, CD81 cells, during mouse CMV infection, migrate to the
lungs and produce IFN-g that blocks CMV replication without killing the infected cells
(268). Other studies have demonstrated that granzyme M (GzmM) inhibits HCMV repli-
cation in infected human cells via an NK or CD81 cell noncytotoxic mechanism (269).
In particular, GzmM interacts with the HCMV proteome and efficiently cleaves the viral
tegument protein phosphoprotein 71 (pp71) through a CD81 cell noncytotoxic antivi-
ral response that does not kill the infected cells.

(vii) Influenza A virus. Influenza A virus (IAV) infects airway and alveolar epithelial
cells of several animal species (270, 271). During virus replication in humans, the viral
nucleoprotein (NP) associates with viral RNAs (vRNA) to form a viral nucleoprotein
(vRNP) complex and combines with the viral RNA polymerase, resulting in virus pro-
duction (272).

Studies have demonstrated that the host cell factors importin a/b dimer and the
importin b homolog receptor, by binding to the subunits of the RNA polymerase or
NP, initiate virus replication (273–275). The proteolytic activity of granzyme K (GzmK)
dissociates these two transporter proteins, disrupting the transport of viral NP to the
nucleus. The result is suppression of IAV replication via GzmK without cell death (276).

(IX) ANTIVIRAL PROTEINS THAT ARE NOT CAF

CAF is a soluble factor secreted by CD81 T cells that suppresses HIV transcription,
but its protein structure remains to be identified. Several other cytokines that have
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been found to inhibit HIV replication include IFN-a and -b (277) but not -g (9, 278) and
not IL-4, IL-6, TNF-a, or -b (279, 280). However, of those cytokines, only IFN-g and TNF-
a are produced by CD81 T cells. None are associated with the noncytotoxic anti-HIV ac-
tivity mediated by CD81 T cells from HIV-infected individuals (186), including some of
these cytokines in combination (Table 5). Notably, not observed with CAF, the interfer-
ons induce the 29,59-oligoadenylate synthetase/RNase L pathway to inhibit virus repli-
cation in CD41 cells (186). In the efforts to define the nature of CAF, several additional
CD81 cell soluble factors with anti-HIV activity were discovered. These proteins that
lack an identity to CAF are described below and summarized in Table 5 (section V.C).

(A) b-Chemokines

Chemokines (chemotactic cytokines), are small secreted proteins that bind to their
cell surface chemokine receptor, which induces cell chemotaxis. This response defines
the movement of cells toward chemical gradients of soluble molecules. The b-chemo-
kines, characterized by two adjacent cysteines on their N terminus (CC chemokine
ligands [CCL]), have been shown to have an anti-HIV effect. They were identified in the
search for CAF by high-performance liquid chromatography (HPLC) using supernatants
from cultured HTLV-transformed CD81 T cell lines (194). The b-chemokines, found in
secretory granules, block viral attachment and entry by binding to the chemokine re-
ceptor CCR5 (281, 282), which is also an HIV coreceptor. This activity was primarily
linked to the NSI viruses that use CCR5 for entry, called R5-tropic viruses (section III.E.ii).
These cellular proteins do not inhibit the replication of HIV isolates that enter the cell via
another HIV coreceptor, CXCR4 (X4-tropic viruses) (189, 196, 283). However, in some
cases, these cytokines can enhance X4-tropic virus replication (199–201). The virus inhibi-
tion is mediated by the synergistic effect of the three b-chemokines: MIP-1a (CCL3),
MIP-1b (CCL4), and RANTES (CCL5) (at 500-pg to 500-ng concentrations) (194). Indeed,
only when a combination of antibodies to the three b-chemokines is used is the previ-
ously observed viral inhibition reversed (283, 284). Notably as well, CCL5 activity in
monocytes/macrophages is optimal when the chemokine is in complex with proteogly-
cans (202).

Several studies have confirmed and expanded on the role of b-chemokines and
their chemokine receptors in HIV infection (285). They have also characterized addi-
tional possible virus entry coreceptors that bind other chemokines such as stromal
cell-derived factor 1 (SDF-1) (see below). In this regard, a genetic mutation correspond-
ing to a 32-bp deletion in CCR5 (CCR5D32) protects individuals who carry it from R5-
tropic virus infection. Cells expressing CCR5 receptors with this mutation are resistant
to infection by R5-tropic viruses (286, 287). This genetic advantage is found in approxi-
mately 1% of the Caucasian population (288). In some cases, this CCR5 mutation has
also been associated with an inhibitory effect on X4-tropic virus replication (289, 290).

The antiviral effect of the b-chemokines is unrelated to the noncytotoxic anti-HIV
activity mediated by CD81 T cells via CAF. When using a combination of CCL3-, CCL4-,
and CCL5-blocking antibodies with culture supernatants from HIV LTS CD81 T cells, the
CAF-mediated virus suppression was not eliminated (284, 291). Also, separate studies
have confirmed that antibodies blocking these b-chemokines do not neutralize viral
suppression mediated by the noncytotoxic CD81 T cell anti-HIV activity either in HIV-
infected CD41 cells (188, 196, 291–293) or in macrophages (41, 195). In addition, the
usual chemokine levels in the CD81 T cell CAF-containing culture supernatants (0.1 to
4 ng/ml) do not correlate with the levels needed for virus suppression (see above)
(284). Importantly, suppression by CAF is also observed with viruses not susceptible to
b-chemokine inhibition, such as the X4-tropic (SI) and dual-tropic HIV isolates (188,
294) (section III.E.ii).

The clinical relevance of b-chemokines in long-term nonprogression remains
unclear. Similar serum levels of b-chemokines are observed in HIV-infected progressors
and NP (295). Moreover, high levels of b-chemokines in supernatants from CD81 T
cells from HIV-infected subjects sometimes do not correlate with the asymptomatic
clinical state in these subjects (296, 297), nor do plasma b-chemokine levels always
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correlate with lower viral loads (298). To the contrary, high expression of b-chemokines
by CD81 T cells has been associated, at times, with disease progression and higher viral
loads (299), perhaps linked with chronic T cell activation. Furthermore, CD81 T cell
clones obtained from long-term-asymptomatic HIV-infected subjects produce slightly
higher levels of b-chemokines than those from uninfected subjects and progressors,
but the amount does not correlate with strong viral suppression (197). Moreover, in
contrast to CAF, the b-chemokines affect only HIV entry into cells; they do not affect
HIV LTR-driven transcription (284) (section VI). This observation has been further con-
firmed by other studies in which suppression of HIV-1 LTR transcription by CD81 T cell
culture supernatants was not dependent on b-chemokines levels (300), and the addi-
tion of recombinant b-chemokines did not prevent the transcription of HIV-1 LTR
genes (301).

Very puzzling is the fact that b-chemokines are induced when CD41 cells are
infected with R5-tropic viruses, and yet virus replication is not prevented in these cells.
Neutralizing antibodies to b-chemokines cause low-level virus production to occur in
the cultured CD41 cells, indicating that endogenous b-chemokines can affect HIV rep-
lication in vitro (189, 302). In contrast, infection with X4-tropic viruses decreases pro-
duction of b-chemokines by CD41 cells (189, 294, 302). There is also no consistent cor-
relation between b-chemokine production by CD41 cells and the resulting levels of
virus replication in these cells (303). In fact, the b-chemokines could play a more im-
portant role in recruiting CD41 cells to the site of HIV infection (303), thereby enhanc-
ing HIV spread on transmission.

Macrophage-derived chemokine (MDC or CCL22) is another b-chemokine identified
in culture fluids from an HTLV-transformed CD81 T cell line. It was reported to have
anti-HIV activity for both R5-tropic and X4-tropic viruses (304). CCL22 is only known to
bind to the chemokine CCR4, not any of the HIV coreceptors. Therefore, its antiviral ac-
tivity could not involve a virus entry blockade, and it was hypothesized that the activity
could be mediated by downstream CCR4 signaling (305). In early studies, we were not
able to show this anti-HIV activity with CCL22 (198). The reason for that finding was
explained by a subsequent study showing that a truncated form of CCL22 produced
by the cell line, but not the full natural sequence, was responsible for anti-HIV activity
(306). CCL22 is also not found routinely in amounts high enough in CD81 T cell fluids
to inhibit HIV replication (294) (C. E. Mackewicz, unpublished data).

Therefore, the evidence is not conclusive as to whether b-chemokines influence
disease progression. At best, the b-chemokines secreted by CD81 T cells only show
antiviral activity against HIV isolates with a CCR5 tropism. In contrast, CAF explains the
noncytotoxic anti-HIV activity of CD81 T cell culture supernatants from LTS against all
HIV biotypes (R5- or X4-tropic) or dual-tropic viruses.

(B) a-Chemokines

Another group of chemokines is characterized by the presence of a C-X-C motif. In
this group, SDF-1, or CXCL12, is an a-chemokine whose mRNA transcripts were found
to be expressed, although at very low levels, in CD81 T cells with anti-HIV activity
(307). CXCL12 has two receptors, CXCR4 (308) and the atypical chemokine receptor 3
(ACKR3; formerly CXCR7) (309). Like the b-chemokines with CCR5, CXCL12 can block
the entry of some X4-tropic HIV isolates into the cell by interfering with CXCR4. This
finding was demonstrated using a cell line transfected with CD4 and CXCR4 (310).
However, some X4-tropic HIV isolates are not sensitive to CXCL12, even when used in
combination with the b-chemokine CCL5, particularly in the case of dual-tropic isolates
(311). For example, the novel recombinant SDF-1/54, a mutant form of CXCL12, blocks
virus entry via CXCR4 despite reduced chemotactic function (312). In addition, a reces-
sive mutation, SDF-1-39A, located in an untranslated region of the gene coding for
CXCL12, can confer resistance to HIV infection as shown by genetic studies (313),
although the mechanism remains to be defined. The role of CXCL12 in suppressing
HIV replication is independent from the CD81 T cell CAF-mediated suppression of
HIV-1LAI (314).
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The clinical benefits of CXCL12 in HIV infection is unclear. Even if it blocks the entry
of some X4-tropic viruses, it has also been shown to increase the infectivity of R5-tropic
viruses by stimulating proviral gene expression (315). Moreover, while more CXCL12 is
detected in the PBMC of HIV-infected individuals, particularly asymptomatic carriers,
higher levels of CXCL12 transcripts after PHA stimulation do not correlate with a better
CD81 T cell antiviral activity in vitro (314). Finally, as mentioned above, CD81 T cells
express very little CXCL12, and there is no correlation between CXCL12 expression by
CD81 T cells and the ability of these cells to suppress virus replication (307). Thus,
CXCL12 is not responsible for the CAF-mediated activity.

(C) Interleukin-16

CD81 T cell clones from LTNP that produce b-chemokines also secrete high levels
of IL-16, a monomeric 13.5-kDa polypeptide previously known as lymphocyte chemo-
attractant factor (LCF) (197). The antiviral role of this soluble factor was initially sug-
gested in studies examining the lack of pathogenicity in natural SIV infection in NHP.
Their CD81 cells were found to suppress virus replication in the CD41 cells by secreting
this cytokine (229). Like CAF, IL-16 is not antigen specific and can suppress replication
of virus isolates with various tropisms (316). Similar to the b-chemokines, IL-16 blocks
virus entry by binding to an HIV receptor, the major cell surface virus-binding protein
CD4 (317). It is a lymphocyte chemoattractant factor (318) that brings immune cells to
the site of infection and is expressed by CD81 T cells after serotonin and mitogen stim-
ulation (319). Because IL-16, like the b-chemokines, recruits activated CD41 cells to the
site of infection, this effect could also lead to an increase in infected cells; its clinical
relevance remains unclear.

Supernatants from Jurkat cells transfected to express IL-16 can also suppress virus
replication up to 99% by blocking viral mRNA production (320). This activity reflects a
reduction in the HIV LTR promoter activity (321). Therefore, it is hypothesized that IL-
16 may inhibit CD41 T cell activation resulting from HIV infection by binding to the
CD4 receptor (316). This interaction can trigger downstream signaling that negatively
regulates the HIV promoter in the LTR region (321, 322). The mechanism is potentially
mediated by the tyrosine kinase p56-Lck (323).

Importantly, treatment of infected cells with recombinant IL-16 suppresses HIV rep-
lication only by 45% at the very high concentrations of .5 mg/ml. In addition, IL-16
was not detected in most of the CD81 T cell culture supernatants with antiviral activity
produced in our laboratory, and when found, it was only in small amounts (0.3 to
1.1mg/ml). Moreover, IL-16-neutralizing antibodies do not block the viral suppression
mediated by CAF-containing CD81 T cell culture supernatants (324). Thus, the antiviral
activity of the CD81 T cell culture supernatants from HIV-1-infected LTS is not likely to
be due to the effect of IL-16. Furthermore, the clinical importance of IL-16 remains to
be determined, since elevated IL-16 levels have been associated with poor health sta-
tus (325).

(D) Granzymes

Granzymes, serine proteases, have been shown to be antiviral without killing target
cells, by cleaving proteins required for virus replication (e.g., HSV, CMV) (section VIII.C).
These include proteolytic processes affecting entry receptors and viral and host pro-
teins involved in viral metabolism or in viral defense mechanisms that block antiviral
responses (326). However, incubating HIV-infected cells with granzymes A and B did
not indicate that these serine proteases were involved in CNAR (327). Granulysin, another
cell membrane-perforating protein found in the cytolytic granules of NK and CD81 T cells,
was also excluded from being involved directly in CNAR/CAF activity (328). Moreover,
extracts of CD81 T cell granules did not show the presence of CAF-like activity (116).

(E) Target of Egr1

Target of Egr1 (TOE1) is a nuclear protein that has been reported to be expressed
by activated CD81 T cells. This protein appears to have an anti-HIV activity similar to
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CAF (329). It is found as two active isoforms, including one resulting from cleavage by
the serine protease GzmB. Both isoforms are secreted by CD81 T cells and can enter
HIV-infected target cells. TOE1 has been found to act at the HIV transcription level by
interfering with Tat and directly affecting the viral LTR (329). Moreover, TOE1
(described initially as hypothetical protein FLJ13949) transcripts were found in one of
our studies using representative differential gene analysis (RDA) (suppressive subtrac-
tive hybridization PCR [SSH-PCR]) (section X.B). It was expressed at higher levels by
CD81 T cells with noncytotoxic anti-HIV activity (330). However, the latter finding has
not been confirmed in more recent gene expression studies using CD81 T cells from
NP (125, 331, 332). Moreover, TOE1 is also expressed by CD41 cells, whereas CAF is not.
Since studies correlating TOE1 levels with better clinical status in HIV-infected subjects
have not been reported, its clinical relevance remains to be determined (333).

(F) Prothymosin-a

Prothymosin-a (ProTa) is an acidic polypeptide with anti-HIV activity that was origi-
nally found in the culture supernatant of CD81 T cell lines established from HIV-
infected children (334), LTNP, and uninfected subjects (335). These immortalized cell
lines were derived by transformation using herpesvirus saimiri (HVS) in order to study
the antiviral activity of soluble factors produced by CD81 T cells. Culture supernatants
from those CD81 T cell lines showed antiviral activity on macrophages infected with
primary HIV isolates resistant to chemokines as well as on virus reactivation in U1, a
chronically infected promonocytic cell line (334). Protein purification by ion-exchange
chromatography and reverse-phase HPLC revealed a novel antiviral polypeptide with a
size between 3 and 10 kDa, later identified as ProTa by de novo protein sequencing
(336). ProTa induces cytokine production by activating the STAT1 pathway (335) via
TLR4 (337), although some ProTa isoforms interact with other receptors (338).

There are indeed several variants and isoforms of ProTa, which can be expressed by
CD81 T cells and have various levels of anti-HIV activity (339). ProTa isoforms inhibit HIV rep-
lication very early in the virus replication cycle, without affecting cellular proliferation or virus
transcription. This activity results from its interaction with TLR4 that induces the secretion of
antiviral cytokines, such as type 1 interferons and CCL5 (337), from infected macrophages
and monocyte-derived DCs but not CD41 T cells (337, 340). Thus, while ProTa was found
during a search for CAF and could have value as a novel anti-HIV protein, it is not CAF.

(G) Ribonucleases

Ribonucleases are enzymes that catalyze the cleavage of mRNA. The initial observa-
tion that some RNases had anti-HIV activity was made when two members of the
RNase A superfamily from other species, ranpirnase (northern leopard frog) and the bo-
vine seminal RNase (BS-RNase), were found to inhibit HIV replication substantially in a
leukemia cell line (341). Later, the supernatants of mixed lymphocyte reactions (MLR)
using HLA-mismatched PBMC from uninfected subjects were also found to reduce HIV
replication (342). Using blocking antibodies and an RNase inhibitor, the anti-HIV activity of
these supernatants was attributed to another member of the RNase A superfamily, the eosin-
ophil-derived neurotoxin (EDN; encoded by the RNASE2 gene in humans). However, because
of the nature of MLR, during which both CD41 T cells and CD81 T cells expand (343), which
cell populations secreted the RNase could not be ascertained.

RNase 4 and angiogenin (RNase 5) are other members of the RNase A superfamily
found in humans. Their antiviral activity was demonstrated after these two enzymes were
identified by HPLC in the supernatant of CD81 T cell lines derived from LTNP (344). RNase
4 is only secreted by cell lines derived from CD81 T cells (344). Angiogenin, or RNase 5, has
been found in the supernatants of both CD41 and CD81 cell lines from LTNP. X4-tropic
strains of HIV can be inhibited by a mixture of these two RNases and b-chemokines (344).
Recombinant EDN, RNase A, and angiogenin ribonucleases can suppress HIV replication in
vitro when added before, during, and up to 4h after infection (345).

While the exact mechanism of action of RNases on HIV infection is still to be deter-
mined, these enzymes appear to act primarily during early phases of the virus replication
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cycle, such as destroying viral RNA before virus entry, during internalization in the endo-
somes, or in the nucleus before reverse transcription (346). Moreover, extracellular RNases
may be able to enter the virus particles and cleave the viral RNA outside the cell before vi-
rus infection. That activity has been shown with other RNA virus infections where exposure
of the virus to RNases has decreased infectivity (347, 348).

RNases do not have characteristics of CAF. For instance, RNases block HIV replica-
tion before integration, not transcription (179), and antibodies to RNase did not block
CAF/CNAR activity (192). Also, CAF does not directly inactivate HIV particles (11).
Finally, RNases are not often found in CAF-containing fluids (C. E. Mackewicz, unpub-
lished data).

(H) Interleukin-32

IL-32 is a cytokine that has 9 known isoforms (IL-32a, IL-32b , IL-32g, IL-32d , IL-32« ,
IL-32z , IL-32h , IL-32u , and IL-32sm [for small]) resulting from alternate splicing of the
IL-32 gene transcripts (349, 350). IL-32 is expressed by CD81 T cells, CD41 T cells, and
NK cells after stimulation by mitogen agents such as PHA. While this protein is com-
monly referred to as a proinflammatory cytokine, its isoforms can have very different,
even opposite, activities. For example, IL-32a is a nonproinflammatory isoform that
could explain the (seemingly contradictory) immunomodulatory role of IL-32 observed
in the lymphoid tissues of HIV-infected patients (351). Indeed, CD81 TRM cells from
those lymphoid tissues inhibit HIV replication in a noncytotoxic fashion (127) but
express higher levels of IL-32 transcripts (as detected by single-cell RNA-Seq analysis),
but not at the isoform level (125) (section X.C). Since this cytokine is expressed by sev-
eral hematopoietic cells and induces IFN, it does not have characteristics of CAF.

(I) Peroxiredoxin

Using a cDNA expression array with activated CD81 T cells, two NK cell-enhancing
factors, NKEF-A and NKEF-B, were found upregulated in CD81 T cells from HIV-infected
individuals compared to those from uninfected individuals (352). The recombinant pro-
teins in microgram per milliliter concentrations inhibited HIV replication by 50% (352).
Elevated levels were found in the plasma of HIV-infected individuals. The results sug-
gested that these antioxidant proteins could be involved in CNAR/CAF. Using a gene
expression microarray, these peroxiredoxin proteins were found to be upregulated
with anti-HIV activity (352). The proteins are primarily associated with enhancing NK
cell antiviral activity. The researchers proposed that these proteins affect the NF-κB
pathway and inhibit HIV transcription. Since these proteins are also made by NK cells,
are not present in large amounts in CD81 T cell fluids, and their clinical relevance is not
evident, they would not be candidates for CAF.

(J) Antithrombin III

Some investigators have found that a heparin-binding protein in cell culture fluids
modifies antithrombin III in fetal bovine serum to become antiviral. They propose that
CD81 T cells from HIV-infected subjects produce anti-HIV activity by activating antithrombin
III in the culture medium (353). As a member of the serine protease inhibitor protein family
(serpins), the modified antithrombin III has antiviral and anti-inflammatory properties. In HIV
infection, these factors can affect virus replication prior to reverse transcription (354). We
have also observed that antithrombin III has antiviral activity in microgram amounts, but this
effect is not consistently observed nor clinically relevant (192). Furthermore, we can demon-
strate CNAR/CAF activity in cultures lacking serum proteins (192).

(K) Interferons

IFNs are stimulatory cytokines released by infected cells and immune cells in
response to viral infections. They can be classified into three families: type 1 IFNs that
include IFN-a, IFN-b , IFN-« , IFN-κ, and IFN-v in humans, type 2 IFN that includes only
IFN-g in humans, and type 3 IFNs that are IFN-l1 (IL-29), IFN-l2 (IL-28A), IFN-l3 (IL-
28B), and IFN-l4. While type 1 IFNs have strong anti-HIV activity, these cytokines have
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never been found to be produced by CD81 T cells. To the contrary, CD81 T cells only
express IFN-g. The type 2 IFNs do not inhibit viral replication (9). Thus, CNAR cannot be
attributed to any type of IFN.

(L) Defensins

Another group of antiviral factors that were considered CAF was the defensins.
Defensins are small proteins with broad antiviral, anti-fungal, and antimicrobial activ-
ities that are conserved among various species. The main mechanism of action of
defensins is preventing viral entry into target cells, but some defensins can also induce
infected cell death. Defensins are mainly expressed by innate immune cells such as
neutrophils, monocytes, macrophages, NK cells, and gd T cells. One study reported
that a mixture of a-defensins was expressed by CD81 T cells from HIV-infected LTNP,
and the authors noted that they had anti-HIV activity comparable to CAF (355). This
study, however, was quickly retracted after the authors found that the a-defensins
were likely produced by the irradiated feeder cells used to grow the CD81 T cells (356).
Our laboratory also determined that while a-defensins indeed have anti-HIV activity,
they lack identity to CAF. CD81 T cells do not express these proteins, which has been
confirmed at both the transcript and protein levels (357).

(M) Wingless-Type Integration Sites

Wingless-type integration sites (Wnts) are a network of secreted glycoproteins that
are found in many different organisms (358). In humans, there are 19 Wnts that primarily
act as regulators of transcription (359, 360). The canonical Wnt signaling pathway (or Wnt/
b-catenin pathway) is involved in the inhibition of HIV replication in astrocytes and various
other cells, such as monocytes, macrophages, and CD41 lymphocytes (361, 362).

Past studies have specifically underscored the role of the Wnt/b-catenin pathway in
CD81 T cells and its effect on the control of HIV replication in human astrocytes trans-
planted into humanized mice (363). Recent findings maintained that primary human
CD81 T cells express all 19 Wnt genes upon CD3/CD28 stimulation (364). In cell culture,
these CD81 T cells induce the canonical Wnt/b-catenin pathway in infected cells,
resulting in the inhibition of HIV transcription (364). In particular, the latter study noted
the structural, biological, and functional similarities of Wnts to CAF (Table 4), such as (i)
the size (,50 kDa) and heat stability, (ii) that these proteins are secreted by CD81 T cells in
a noncytotoxic non-MHC-restricted manner, and (iii) that both the Wnt and CNAR/CAF sig-
naling pathways result in transcriptional inhibition in HIV-infected CD41 cells.

Nevertheless, there are substantial distinctions between Wnts and CNAR/CAF. The
Wnts have a broad effect on various cellular mechanisms in many organisms; in con-
trast, CNAR/CAF is a response limited to retroviral infections (sections VIII.A and VIII.B),
with no effect on other biological processes (190). Also, while Wnts have been
described in the signaling pathways of different cell types, such as lymphocytes and
astrocytes, CNAR/CAF is a response restricted to CD81 T cells.

The initial observations of the CNAR/CAF response in cell culture correlated with an
asymptomatic clinical status (section III.E.iii). In comparison, while CD81 T cells
expressed comparable levels of all 19 Wnts, only Wnt2b, -3a, -9b, and -10b expression
levels have been studied with HIV status. Notably, only antibody depletion of Wnt2b
and Wnt9b in CD81 T cell culture fluids was shown to result in abrogation of HIV repli-
cation (364). While these results indicate a potential role for CD81 T cells expressing
Wnts in HIV pathogenesis, the function of most Wnts in controlling virus replication
remains to be determined. To this point, there is a potential for other Wnts to have
redundant or modulatory functions to those of Wnt2b and Wnt9b in HIV replication.
Overall, CNAR/CAF-mediated HIV suppression is distinct from the broad biological
activities of Wnt proteins.

(X) APPROACHES TO IDENTIFY CAF

CAF is produced at low levels by cultured CD81 T cells (we estimate at ,5 pg/ml of
culture supernatant) and therefore difficult to purify for structural studies. However,
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specific physical and chemical characteristics of this novel antiviral cytokine can be
appreciated (e.g., heat stability, molecular weight, and pH stability) (section V) (Table
4). Notably, how CAF differs from the other proteins that have been identified as candi-
dates for CAF is of considerable interest (section IX). Thus, biochemical, molecular,
immunological, and protein chemistry approaches to determine the nature of CAF are
currently being used. However, detection of a low-abundance protein such as CAF
even with sensitive mass spectrometry has not yet revealed the identity nor structure
of this naturally occurring antiretroviral protein. This challenge is similar to that of find-
ing other low-abundance proteins such as cancer biomarkers (365).

(A) Mass Spectrometry

Because of the high sensitivity of mass spectrometry in identifying proteins, our lab-
oratory devoted several years toward evaluating the identification of CAF by using this
procedure, following successive steps of size exclusion, NH3SO4 precipitation, ion-
exchange chromatography, and stable-isotope labeling by amino acids in cell culture
(SILAC) (Table 4). We soon realized that mass spectrometry can detect femtomoles
(10215) of a protein that could, on average, represent 50 pg of a low-abundance protein
(366). Most cytokines have been detected by immunologic approaches and are usually
produced at 5 pg/ml of plasma (367). We have therefore realized the important chal-
lenge of identifying CAF by mass spectrometry unless very large quantities of CAF
starting material are available for purification.

(B) Microarrays and Gene Expression Methods

To determine if CAF could be identified genetically from CD81 T cells isolated from
HIV-infected and uninfected individuals, identical twins were compared using repre-
sentative differential gene analysis (RDA) or suppressive subtractive hybridization PCR
(SSH-PCR) (330). The SSH-PCR approach (368) and the RDA approach were described around
the same time, but the latter is more complicated and thus less popular (369, 370). The SSH-
PCR limits the biological variations of an assay due to genetic differences. Nevertheless, this
procedure did allow the comparison of a differential gene expression profile of the CD81 T
cells from an HIV-infected twin that suppressed HIV replication with CD81 T cells from the
uninfected twin that demonstrated no suppression of HIV replication.

Genes associated with the immune response, apoptosis, and cell maintenance,
as well as unknown genes, were found to be differentially expressed in the CD81 T
cells from the twins (330). Some of those unknown genes have since been identi-
fied: FLJ13949 (TOE1), c3orf4 (CLDND1), FLJ13046 (XPO4 [exportin-4]), and KIAA0212
(EDEM1). When the expression of the most upregulated genes found in the anti-HIV
CD81 T cells was assessed by quantitative PCR in the CD81 T cells of other HIV-
infected subjects, only three genes coding for soluble proteins were consistently
found to be higher: ICT1 (encoding a peptidyl tRNA hydrolase of the mitochondrial
ribosome), NKG7 (encoding a protein with undefined function found in the granules
of NK and T cells), and TOE1. The TOE1 protein was later evaluated by others and
showed anti-HIV activity but is not CAF (329) (section IX.E). Notably, our differential
gene expression analysis studies also led to the discovery of VCAM-1 as a potential
marker of CD81 T cells mediating CNAR (133, 330) (section IV.C).

In subsequent studies, the genes differentially expressed between the CD81 T cells of HIV-
infected subjects with strong antiviral activity in CNAR assays and the CD81 T cells of unin-
fected individuals with no suppressing activity were determined via cDNA microarrays (332).
This assay, using the Affymetrix GeneChip Human Genome technology, showed that 18% of
the genes were differentially expressed between the two groups, half of the 568 genes were
higher in the CD81 T cells with strong antiviral activity (332). Using stringent selection criteria
to select only transcripts with high confidence, this list of upregulated genes was narrowed
down to 52 by RNA PCR analysis. As expected, 13 of those genes were associated with the
immune response, including the b-chemokines, granzymes H and K, and IFN-g, but 36 other
genes were also part of various known and unknown cellular processes (for example, cell cycle
and proliferation).
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Three unknown genes were also found to be upregulated in the CD81 T cells with
HIV-suppressing activity. They were FLJ35091 (a gene encoding a protein similar to
ANKRD18A), FLJ39873 (TIGIT), and TncRNA (NEAT1, a long noncoding RNA derived
from the trophoblast involved in transcriptional regulation). Notably, the increased
expression of TIGIT, an inhibitory checkpoint receptor like PD-1, on CD81 T cells of HIV-
infected subjects has since been confirmed by many groups (371–373). TIGIT nega-
tively regulates the cytotoxic function of CD81 T cells when it interacts with its ligand
CD155 (poliovirus receptor), which is expressed at the surface of HIV-infected target
cells (374). Whether it plays a role in promoting CNAR merits further evaluation. None
of the genes that were highly expressed in the CNAR1 CD81 T cells encoded proteins
with known anti-HIV activity (332).

(C) Next-Generation Sequencing Approaches

Next-generation sequencing (NGS) is a set of cutting-edge molecular biology tech-
nologies that use high-throughput DNA sequencing methods. One application for NGS
is RNA sequencing (RNA-Seq), which utilizes cDNA libraries generated by reverse tran-
scription of the RNA extracted from cell samples. By sequencing those libraries using
NGS platforms, it is now possible to analyze the full transcriptome of RNA samples gen-
erated from large-scale experiments (375). This approach could prove very useful in
identifying genes encoding proteins such as CAF, which is expressed at low levels yet
is differentially expressed in CD81 T cells from HIV-infected subjects. This powerful
new approach could also help determine known and novel pathways involved in both
the production of CAF in CD81 T cells and its downstream effects in infected CD41

cells.
In one study (125), the transcriptional signature of blood and lymph node HIV-spe-

cific CD81 T cells from HIV-infected subjects was analyzed by bulk RNA-Seq and single-
cell RNA-Seq (scRNA-Seq). CD81 T cells from the blood, as well as activated lymph
node CD691 CD81 T cells, had a transcriptional profile corresponding to a cytotoxic
phenotype, which was not the case for resting lymph node CD692 CD81 T cells. Some
differentially expressed genes upregulated in the CD691 CD81 T cells were of particu-
lar interest, such as the gene for VCAM-1 (section IV.C), as well as those for some
secreted proteins such as IFN-g, lymphotactin (both were previously excluded from
being CAF) (Table 5), and platelet-derived growth factor D (PDGFD). Notably, one gene
that was strongly upregulated in the CD692 CD81 T cells is SVIL1, which encodes
supervillin, a small soluble protein usually localized in the nucleus that warrants further
evaluation. This study showed strong differences between distinct subsets of CD81 T
cells in HIV-infected subjects. However, it did not address what genes in the transcrip-
tional profile of these CD81 T cells, all from ECs (section III.E), could code for proteins
that suppress HIV replication.

In a follow-up analysis, the same group compared differences in the transcriptomes
of lymph node CD81 T cells between ECs and progressors by single-cell RNA-Seq
(scRNA-Seq). In addition to the difference in cytotoxic potential of CD81 T cells and
their ability to suppress HIV in the absence of a cytotoxicity-mediated mechanism
described above (section IV.B), the EC lymph node CD81 T cells had a very distinct tran-
scriptional profile. For example, the lymph node CD81 T cells from ECs expressed less
perforin and GzmB at the transcript and protein levels than those from progressors,
confirming their noncytotoxic phenotype (126). Moreover, the expression of various
genes involved in CD81 T cell cytotoxicity, such as those encoding other granzymes
and the death receptors Fas and TRAIL, were similarly lower in the lymph node CD81 T
cells from ECs. Recently, HIV-specific CD81 T cells with a noncytotoxic TTM phenotype
were detected more frequently in the thoracic ducts than in the blood (435).

In contrast, CD81 T cells from progressors expressed higher levels of the transcrip-
tion factor EOMES and other inhibitory molecules, including checkpoint blockade
receptors such as TIGIT, LAG3, and 2B4. This finding indicated that CD81 T cells from
progressors not only have an effector phenotype but also present many inhibitory
receptors that are markers of what has been called T cell “exhaustion;” however, these
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inhibitory receptors are possibly associated with other functions such as CNAR (sec-
tions IV.B and IV.D). Importantly, lymph node CD81 T cells from ECs showed substan-
tially upregulated expression of many genes encoding secreted proteins with known
or potential antiviral activity, including CCL5 (section IX.A), IL-32 (section IX.H), IL-1b ,
TNF, lymphotoxin b (also named TNFSF3), and RNase1 (section IX.G) (Table 5). The pos-
sible anti-HIV activity of the other secreted proteins found by scRNA-Seq, including the
phospholipase DDHD1, the metalloprotease ADAMTS4, and the chemokines CXCL2,
CXCL3, and CCL2, remain to be elucidated.

The molecular pathways that are enriched in the CD81 T cells of ECs are notewor-
thy. Some linked to transcription (metabolism of RNA, viral transcription, and activation
of mRNA) are also of interest given our knowledge of how CNAR suppresses HIV repli-
cation at the transcriptional level (section VI). In particular, many of the pathways that
are enriched in the CD81 T cells of progressors, which means they are downregulated
in the CD81 T cells of ECs, confirm the absence of a role played by some known antivi-
ral pathways such as signaling. This finding has been made with those induced by type
1 interferons, IL-2, PD-1, Ras, or extracellular signal-regulated kinases (i.e., ERKs). Taken
together, these molecular studies confirmed the finding that HIV suppression medi-
ated by CD81 T cells in ECs is not the result of direct killing of the infected target cells;
these CD81 T cells lack the cellular ability to mediate cytotoxicity. Moreover, the
reports provide new insights into potential gene and pathway candidates in the search
for CAF.

In addition to CD81 T cells mediating antiviral activity, the NGS approaches could
also be relevant to elucidate the intracellular pathway(s) creating the antiviral state eli-
cited by CAF in CD41 cells. In one study, RNA-Seq analysis was performed on the CD41

cells of ECs (376). Although this particular study focused on subjects who were resist-
ant to R5-tropic virus infection, this NGS approach may help to determine how the
transcriptome of target cells is affected by CNAR/CAF in future experiments. Another
study using the PBMC from a cohort of ECs and progressors found several genes cod-
ing for intracellular proteins for which the transcripts were lower in the EC group (377).
These included the enzymes GTPase of the immunity-associated protein 4 (GIMAP4)
and phospholipid scramblase 1 (PLSCR1) involved in known antiviral and cell apoptosis
pathways (378, 379), as well as N-Myc and STATs interactor (NMI), which regulates tran-
scription factors (380). However, because this experiment was conducted with bulk
PBMC, any pathway associated with these genes will need to be confirmed in infected
target cells such as isolated CD41 cells.

Finally, computational analysis of the transcriptome of in vitro HIV-exposed DCs
obtained by scRNA-Seq from ECs helped find a novel, previously unknown, functional
antiviral pathway that involves the cyclic GMP-AMP synthase-stimulator of interferon
genes (cGAS-STING) and TLR3 sensing pathways and could be associated with an
asymptomatic clinical state in these subjects (381). This type of analysis could also be
used in future studies with acutely infected CD41 cells in which HIV replication is sup-
pressed by CNAR/CAF in vitro. We are currently evaluating the effects of CNAR/CAF on
particular pathways in infected CD41 cells using these approaches.

This pursuit of the antiviral pathways induced by noncytotoxic CD81 T cells in
infected CD41 cells was recently attempted using RNA-Seq (75). Some notable cellular
pathways in the CD41 cells were found to be downregulated, including pathways
related to cell death, polarization, and proliferation. However, because the experimen-
tal conditions tested were just CD41 cells cultured alone or CD41 cells cocultured with
CD81 T cells, those differences could be mostly caused by the alloantigen-stimulated
HIV-inhibiting factors found in the supernatants of a mixed lymphocyte reaction (sec-
tion IX.G) (342), not the CD81 T cell response to HIV infection itself.

(XI) PERSPECTIVES AND CONCLUSIONS

This review was written to bring further attention to the novel immunological activ-
ity first discovered in HIV infection. While the finding of a CD81 T cell noncytotoxic
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anti-HIV response (CNAR) was surprising more than 3 decades ago, this antiviral activity
of the immune system may, in fact, be much more common than was initially expected
(section VIII). Traditionally, most immunologists were trained to consider that CD81 T
cell antimicrobial control occurs by target cell killing via CD81 CTL. However, without
the proper in vivo or even in vitro assays (section VII), the breadth of the true functions
of CD81 T cells may be overlooked (Table 1; Fig. 1). Simply measuring CD81 T cell
secretion of IFN-g or CD107a expression does not conclusively identify the type of anti-
viral response mediated by these cells (section II.B). Particular assays are needed (Table
6), and these, as well as considering the major effect of CNAR/CAF on viral transcription
(section VI) (Fig. 6 and 7), can help to determine the best approaches at promoting or
inhibiting this activity.

If one focuses solely on cytotoxic activity, which can eliminate many infected target
cells, this strategy would not be necessarily in the best interests of the infected host.
CTL killing of the virus-infected cells could damage several organs of the body, particu-
larly the brain and, conceivably, the heart and kidneys (Appendix 5). Instead, holding
the virus in check or in a “locked” state by CNAR/CAF could maintain the function of
the infected cells and thus accomplish the same objective as CTLs with minimal delete-
rious side effects (382). Unfortunately, one finds too often that any activity of CD81 T
cells is considered to be cytotoxic (section II). This conclusion can be misleading and
influence the anti-HIV approaches taken. Certainly, CNAR offers an advantage to the
infected host that is not yet fully appreciated (Appendix 3). Hopefully, this review will
encourage attention to this important issue.

We have considered that CNAR/CAF is an innate mechanism for preserving the via-
bility of the infected target cells (Appendix 4) so they can return to relatively normal
function. At first glance, the activity of CNAR/CAF appeared to share properties of an
innate immune response (section III.F) (Table 1) (14). Notably, unlike adaptive epitope-
specific CTLs, the CD81 T cells that mediate CNAR show broad responses against all
retroviruses. Thus, even mutant viruses resulting from the selection pressure of cellular
immunity or drug treatment can be controlled (section III.B).

However, CNAR/CAF may share characteristics of both the innate and adaptive
arms of the immune system (Table 1). For example, similar to NK cells, which are con-
sidered innate lymphocytes yet possess adaptive characteristics such as a “memory-
like” recall response (383), CD81 T cells in HIV infection could also bridge these two
types of immune responses. They have the innate feature of mediating CNAR/CAF with
its broad antiretroviral activity. Yet, they are classified as adaptive lymphocytes, since
they have various antigen-specific receptors encoded by rearranged genes and a mem-
ory cell phenotype (Appendix 3; Table 1).

Also, because CD3/CD28 stimulation associated with CTLs increases CNAR activity,
conceivably, an HIV-specific TcR engagement activating the same intracellular path-
ways and leading to CNAR could occur as part of an adaptive immune response (sec-
tion II.A). Similarly, the direct or indirect exposure to conserved retroviral motifs recog-
nized by germ line-encoded, invariant pattern receptors can promote CNAR, leading to
the secretion of the antiviral cytokine, CAF. The latter reflects an innate immune
response. Moreover, the CD81 T cells mediating CNAR have a memory cell phenotype
(Fig. 2) similar to CTLs, but memory, defined as a better antigen-specific recall
response, is not one of their functional characteristics (section IV.A). Their main activity,
the secretion of antiviral soluble factors in response to conserved retroviral motifs,
again is part of an innate immune activity (Table 1).

At the same time, it is tempting to suggest that CNAR/CAF, being a rapid early
innate immune activity, can suppress the initial expression of HIV so that the later
adaptive immune response to the virus (e.g., CTL) does not have time to occur. In this
case, cooperation between the two arms of this novel function would not be evident.
This possibility could explain why only CNAR is found in some individuals who have
been exposed to HIV yet remain uninfected (section III.G) (Table 2). The transient, low
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antigen expression that occurs is not sufficient to elicit an adaptive immune response,
such as CTL activity and antibody production.

Obviously, with HIV infections, both innate and adaptive immune responses should
be present and contribute to the control of the virus. As noted, both seem involved
with CNAR activity, lending attention to both arms of the immune system. Information
gained from studying the CNAR/CAF response is also important for our general knowl-
edge of innate immunity as the first line of defense against retroviruses. This type of
innate immune response with uninterrupted expression of CAF could eventually lead
to the elimination of replicating virus reservoirs and lock HIV into a persistent latent
state—essentially a functional cure (section III.D).

Indeed, the objective of knowing the true function of CD81 T cells is especially im-
portant when trying to induce a long-term HIV cure. This virus integrates into the ge-
nome of the infected cells and captures the genetic machinery for progeny production.
Fortunately, this action can be suppressed by CD81 T cells via CNAR/CAF for extended
periods of time (section VI).

Nevertheless, because of the recent objective by some researchers to achieve a ster-
ilizing cure in HIV infection, this noncytotoxic response seems to be opposing that aim
(75). Yet, for others, elimination of every infected cell in the body for a cure does not
seem feasible (382, 384). Thus, whereas some researchers would choose to eliminate
CNAR, others, in contrast, would prefer to induce and maintain this noncytotoxic con-
trol (382, 384). CNAR can eventually narrow down the number of infected cells and
reduce the need for potentially toxic antiretroviral drugs.

In any case, full identification of the CD81 T cell antiviral factor (CAF) will be a ben-
efit to any group of investigators (section V) (Table 4). This protein is stable and fits
the definition of a low-abundance protein, similar to cancer biomarkers (365). Thus,
proteomics approaches with better resolution are needed to identify such rare pro-
teins. Those of us who observe the beneficial role of CAF would like to find the gene
encoding it in order to develop an immune-based therapy that would be naturally
occurring and nontoxic. Those wishing to accomplish eradication of HIV reservoirs
would like, presumably, to find neutralizing antibodies or drugs against CAF and its
production.

How sustained the CNAR/CAF activity can be over time raises the important ques-
tion of the impact of aging on this CD81 T cell function. Since most immune cells
become senescent, with decreased functional capacity as individuals age (section IV.D),
future research should focus on developing a multidisciplinary plan for the treatment
of HIV. Such an approach could include an early promotion of innate antiviral
responses such as CNAR/CAF, with subsequent ART treatment to maintain HIV control
if needed. This strategy could lead to the induction of viral latency, and further therapy
would not be needed. Such viral control has been reported in recent studies on indi-
viduals after long-term ART (385).

As for CAF, there are today very few immune factors secreted by CD81 cells that
have anti-HIV activity (section IX). Those known include the chemokines, IFNs, and a
few cytokines such as TNF-a/b (Table 5). A major discovery would be the identifica-
tion of this CD81 T cell antiviral factor. This objective has been our challenge for sev-
eral years (section X). Once identified, CAF could be found to have other beneficial
functions in the host besides its anti-HIV activity. Just as IFNs were initially discovered
as an anti-influenza response (386), these cytokines and their related proteins have
been useful in other diseases such as cancer (387). Likewise, CAF could also be play-
ing an important immunologic role in autoimmune diseases and cancer. Indeed, a
noncytotoxic CD81 T cell response has been reported in non-virus-induced tumors
(388–390).

With CAF identified, its general purpose in physiological contexts can be better
explored. In this regard, there are reports of antiviral factors within exosomes
(391–393) or immune cell secretomes that do not yet have an identity or function. One
of these may indeed be CAF. The CD81 T cell exosomes contain a factor with the
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characteristics of CAF (391). Also, because CNAR/CAF can inhibit all HIV subtypes,
including drug-resistant viruses, escape mutant viruses, and other retroviruses, it can
provide broad protection from all these viruses, including HTLV, that cause leukemia
and neurological diseases (sections III.B, III.E, and VIII.B). Moreover, the full identity of
CAF would enable the development of products or processes that could enhance or
maintain its production by CD81 T cells (section IV.F) (Appendix 2; Table 3). The result-
ing natural, nontoxic antiviral therapy would provide a promising approach.
Furthermore, an ELISA measuring this protein would be helpful in screening potential
CAF-enhancing agents and determining if enough CAF is being produced to suppress
HIV replication.

Finally, the development of a vaccine that induces CNAR/CAF (64, 241) has the addi-
tional benefit of promoting an early innate immune response that can provide protec-
tion against any retrovirus. As seen in HESN individuals (section III.G), this innate activ-
ity appears to be the major immune response that is associated with the lack of
infection in these individuals.

This discovery of a CD81 T cell noncytotoxic antiviral activity was made in the con-
text of HIV infection (section III.A). While the effect of CAF is restricted to retroviruses
(sections VIII.A and VIII.B), a similar immune activity may be found with many if not all
viruses. Some examples are presented in this review (section VIII.C). Currently, we are
faced with another pandemic: COVID-19. Most evidence fortunately suggests that co-
ronavirus infection does not substantially influence HIV transmission, infection, or
pathogenesis (394). Certainly, the early studies of HIV have helped infectious disease
experts appreciate the challenges presented by COVID-19. Perhaps a noncytotoxic
CD81 T cell response active against this virus will be found. We encourage virologists
and microbiologists to investigate this possibility further. CAF-like products may be
made very early in these infections and hold the promise of better antimicrobial drugs
and immune factors to combat drug resistance.

This background on CNAR, its characteristics, and potential presence in many viral
infections provides a foundation to encourage researchers and new students in the
field to take on the challenges of answering key questions surrounding this immune
activity.

What is the nature of the CD81 T cell antiviral factor? How is this T cell antiviral
response elicited in comparison to CTL activity? How commonly is CNAR-like activ-
ity found in viral infections, especially in uninfected individuals? For example, this
type of response could be involved in controlling other common viruses that may
be kept in a latent state and not be evident until long after the infection has taken
place. Could this be the mechanism that silences viruses such as chickenpox and
measles for many years until they reemerge as causes of other diseases (e.g., shin-
gles and encephalitis) (395, 396)?

The mediators of CNAR-like activity in other infections would be, most likely, differ-
ent for each virus family. However, the overall effect would be shared with the CD81 T
cell noncytotoxic responses to HIV infection described in this review (Appendix 3). We
look forward to seeing further innovative findings in this important immunological
field.

APPENDIX 1
Characteristics of long-term survivors (LTS) of HIV infection include the following:

� Clinically asymptomatic for.10 years*

� Not on ART*

� Normal CD41 cell number* (77, 216, 397)

� Large number of CD41 cells in the gastrointestinal (GI) tract* (398)

� Low virus load (measured by plasma viremia; infected PBMC)* (77, 216, 397)

� Low immune activation* (398)

� CCR2-V641 polymorphism as well as HLA-B54 allele (399)
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� Presence of the HLA-B57 class I allele (400)

� Viral envelope V2 region is increased in length (401)

� Virus with deletion in Nef region (402, 407)

� Presence of a predominantly nonvirulent HIV isolate (e.g., R5 virus)* (403)

� Virus with Vpr mutation (404) or deletion in SP-1 site of LTR (405)

� Strong cellular CD81 cell cytotoxic antiviral response* (89, 406, 407)

� HIV-specific CD41 T cell and CD81 T cell responses* (152, 397, 408)

� Presence of CNAR/CAF

� Presence of anti-HIV neutralizing antibodies (216, 409, 410)

� Presence of anti-Tat antibodies (411, 412)

� No enhancing antibodies (409)

� IgG2 antibodies that react with gp41 together with CD41 cell anti-p24 responses
(413, 414)

� Type 1 cytokine production by PBMC* (407)

� Strong NK cell activity (415)

� Active antibody-dependent cellular cytotoxic (ADCC) (416)

� Lymph node structure is normal* (46, 397)
LTS are also called LTNP (section III.E.i). Some of these characteristics have been

observed in only a few cases and not fully confirmed. Major factors are noted by an
asterisk (*). Modified from reference 417 with permission.

APPENDIX 2
Factors that induce and enhance CNAR/CAF include the following:

� HIV replication (2)

� HLA concordance (33)

� Conserved retroviral motifs

� Activation: CD3 or PHA stimulation of CD81 T cells

� IL-2 (121, 160, 161)

� CD40/CD40L-stimulated DCs (168, 169)

� CD28 costimulation (121)

� Early ART treatment (31, 162, 175)

� IL-15 (153, 173)

� IL-21 (110)

� Allogeneic mixed lymphocyte reaction (176–179, 342)

� LFA-1 agonist antibody (180)

� Thymosin a1 (181)

� TLR7/8 agonists (182)

� Potential vaccine (64)

APPENDIX 3
Characteristics of the CD81 T cell noncytotoxic anti-HIV response (CNAR) include the

following:

� Does not involve cell killing

� Mediated by CD81 T cells only, not CD41 cells, NK cells, or macrophages

� Mediated by heterogenous, polyclonal CD81 T cell populations

� Exhibited predominantly by the HLA-DR1 CD281 CD11b2 CD81 T cell subset

� Correlates directly with asymptomatic clinical status and normal to high CD41 cell
counts

� Early response to HIV infection that occurs before seroconversion

� Active against all isolates of HIV-1, HIV-2, and SIV tested
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� Can block HIV replication at low CD81/CD41 cell ratios (,0.05:1)

� Not MHC restricted

� Blocks HIV replication in naturally or acutely infected CD41 cells

� Has characteristic of innate immune response (Table 1)

� Dose dependent

� Associated with VCAM-1 expression on CD81 cells (133, 330)

� Blocks HIV at the transcriptional level; does not affect earlier steps in virus
replication (section VI)

� Optimal activity with cell-cell contact, potentially due to integrins and adhesion
molecules (section IV.C)

� Mediated (at least in part) by a novel soluble anti-HIV factor, CAF (Table 4)

� No substantial effect on activation or proliferation of CD41 cells

� Observed with CD81 cells from infected nonhuman primates

� Can be observed with stimulated CD81 T cells from uninfected individuals
Measured by in vitro assays. Modified from reference 417 with permission. See also

references 11, 12, and 192.

APPENDIX 4
Potential clinical value of CNAR/CAF IN HIV infection includes the following:

� Could ensure long-term survival

� Not affected by viral heterogeneity (HIV-1 and HIV-2); cytopathic and
noncytopathic strains are sensitive; can control drug-resistant and mutant viruses

� Can prevent several log units of virus replication in vitro (and possibly 3 to 5 log
units in vivo)

� Can prevent emergence of drug-resistant strains and immune “escape” mutants
by blocking virus replication at transcription

� Can inhibit replication of a superinfecting virus

� Does not substantially affect viability, activation, or proliferation of CD41 cells

� Prevents effects of CTL activities that could be destructive to the host (e.g., in
brain, lung, and kidney) (see list below)

This list was modified from reference 417 with permission.

APPENDIX 5
Possible detrimental characteristics of CTL activity in HIV infection include the

following:

� Lysis of uninfected CD41 cells (418, 419) or APCs (420, 421)

� CTL response is absent in asymptomatic NHP naturally infected with simian
lentiviruses (11)

� CTL activity can be harmful in viral infections (HTLV, LCMV, and Sin Nombre virus
[SNV]) (248, 422–424)

� Involved in lung lymphocytic alveolitis (425)

� CTL infiltration of lymph nodes (426, 427)

� Found in the cerebrospinal fluid of symptomatic disease patients (428)
This list was adapted from reference 417 with permission. See also references 11, 429,

and 430.

APPENDIX 6
Abbreviations used in this review include the following:
APC, antigen-presenting cell
ART, antiretroviral therapy
BcR, B-cell receptor
CAF, CD81 T cell antiviral factor
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CAT, chloramphenicol acetyltransferase
CCL, chemokine (C-C motif) ligand
CCR, C-C chemokine receptor
CMV, cytomegalovirus
CNAR, CD81 T cell noncytotoxic antiviral response
CTL, cytotoxic T lymphocyte
DC, dendritic cell
EBV, Epstein-Barr virus
EC, elite controller
ELISA, enzyme-linked immunosorbent assay
FAS (Fas receptor), apoptosis antigen 1 (APO-1), TNF receptor superfamilymember 6 (CD95)
FIV, feline immunodeficiency virus
Gzm, granzyme
HBV, hepatitis B virus
HCV, hepatitis C virus
HESN, highly exposed seronegative
HEV, hepatitis E virus
HIC, HIV-infected controller
HLA, human leukocyte antigen
HSV, herpes simplex virus
HTLV, human T cell lymphotropic virus
HVS, herpesvirus saimiri
IAV, influenza A virus
IFA, immunofluorescent antibody
IFN, interferon
IL, interleukin
Itg, integrin
LCMV, lymphocytic choriomeningitis mammarenavirus
LFA, lymphocyte function-associated antigen
LNMC, lymph node mononuclear cells
LPS, lipopolysaccharides (endotoxins)
LRA, latency-reversing agent
LTS, long-term survivor
LTNP, long-term nonprogressor
MHC, major histocompatibility complex
NC, noncontrollers
NGS, next-generation sequencing
NHP, nonhuman primates
NK cell, natural killer cell
NSI, non-syncytium-inducing
PBMC, peripheral blood mononuclear cells
PD-1, programmed cell death protein 1 (CD279)
PHA, phytohemagglutinin
PMA, phorbol myristate acetate
P-TEFb, positive transcription elongation factor b
R5-tropic, using CCR5
RP, rapid progressor
RSV, Rous sarcoma virus
RT, reverse transcriptase
SHIV, simian human immunodeficiency virus
SI, syncytium inducing
SILAC, stable-isotope labeling by amino acids in cell culture
SIV, simian immunodeficiency virus
SM, sooty mangabey
TCM, central memory T cell
TcR, T cell receptor
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TEM, effector memory T cell
TLR, Toll-like receptor
TNF, tumor necrosis factor
TRAIL, TNF-related apoptosis-inducing ligand (CD253)
TRM, tissue-resident memory T cell
TTM, transitional memory T cell
VCAM-1, vascular cell adhesion molecule 1 (CD106)
VI, viremic individual
VIA, virus inhibition assay
X4-tropic, using CXCR4
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