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In recent years, miRNA variation and dysregulation have been found to be closely

related to human tumors, and identifying miRNA-disease associations is helpful for

understanding the mechanisms of disease or tumor development and is greatly

significant for the prognosis, diagnosis, and treatment of human diseases. This

article proposes a Bipartite Heterogeneous network link prediction method based on

co-neighbor to predict miRNA-disease association (BHCN). According to the structural

characteristics of the bipartite network, the concept of bipartite network co-neighbors is

proposed, and the co-neighbors were used to represent the probability of association

between disease and miRNA. To predict the isolated diseases and the new miRNA

based on the association probability expressed by co-neighbors, we utilized the similarity

between disease nodes and the similarity between miRNA nodes in heterogeneous

networks to represent the association probability between disease and miRNA. The

model’s predictive performance was evaluated by the leave-one-out cross validation

(LOOCV) on different datasets. The AUC value of BHCN on the gold benchmark dataset

was 0.7973, and the AUC obtained on the prediction dataset was 0.9349, which was

better than that of the classic global algorithm. In this case study, we conducted predictive

studies on breast neoplasms and colon neoplasms. Most of the top 50 predicted results

were confirmed by three databases, namely, HMDD, miR2disease, and dbDEMC, with

accuracy rates of 96 and 82%. In addition, BHCN can be used for predicting isolated

diseases (without any known associated diseases) and new miRNAs (without any known

associated miRNAs). In the isolated disease case study, the top 50 of breast neoplasm

and colon neoplasm potentials associated with miRNAs predicted an accuracy of 100

and 96%, respectively, thereby demonstrating the favorable predictive power of BHCN for

potentially relevant miRNAs.

Keywords: disease similarity, miRNA similarity, bipartite heterogeneous network, co-neighbor, computational

prediction model

INTRODUCTION

MiRNAs are a class of noncoding RNA molecules that play important roles in various biological
processes, including proliferation, differentiation, aging, development, and apophasis (Ambros,
2004). MiRNAs are closely related to various complex human diseases, such as breast cancer (Iorio
et al., 2005), lung cancer (Yanaihara et al., 2006), prostate cancer (Porkka et al., 2007), colon
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cancer (Akao et al., 2007), leukemia (Calin et al., 2002), liver
cancer (Toffanin et al., 2011), and gastric cancer (Li et al.,
2012). MiRNAs may serve as potential biomarkers for various
diseases. Thus, further exploration of the relationship between
miRNAs and diseases can help elucidate the pathogenesis of
diseases. Traditional experimental methods such as PCR and
microarray (Chen et al., 2009) can reveal the relationship between
miRNA and disease, but time consuming and only applicable
to small-scale experimental data. In the past few years, many
computational methods that predict the association between
miRNA and diseases were suggested to find the association
between miRNA and disease on a large scale (Alaimo et al., 2014;
Zou et al., 2015b; Chen et al., 2017f; Chen and Qu, 2018).

The goal of the computational approach is to reduce the
number of candidate miRNAs for a certain disease (Zeng
et al., 2015, 2018; Chen et al., 2018b). Numerous net-based
methods based on abundant bioinformatics data have been
proposed to infer the relationship between miRNA and disease.
MiRNAs with similar functions tend to be associated with
similar diseases and vice versa. On the basis of this hypothesis,
Wang et al. (2010) defined human miRNA functional similarity
(MISIM) by calculating the semantic similarity of miRNA-
related diseases. Jiang et al. (2010a) also developed a scoring
system to evaluate the intensity of miRNAs and disease
associations, but higher false-positive and false-negative target
gene predictions can affect the predictive performance. To
overcome this problem, Jiang et al. (2010b) used a Bayesian
model to integrate genomic data to rank disease-related miRNAs.
Meanwhile, Li et al. (2011) proposed a method of gene functional
consistency to predict oncogenic miRNAs. Xu et al. (2014)
transformed the association probability between miRNA and
diseases into a functional similarity calculation between miRNA
targets and disease-related genes. Thereafter, they calculated
the association degree value between miRNA and diseases by
using the known disease–gene associations and the interaction
with miRNA target, and then used this score to predict the
disease-related miRNA. In another study, Rossi et al. (2011)
calculated the degree of overlap between miRNA loci and
disease loci in OMIM as the association between miRNA and
disease. This method can calculate the association between
disease and miRNA without using additional information such
as miRNA target. Moreover, Xuan et al. (2013) proposed
the k-nearest neighbor prediction model (HDMP) to predict
disease-related miRNAs. Chen et al. (2017e, 2018c) designed
the new KNN-based disease association ranking algorithms
(RKNNMDA and BLHARMDA). Le (2015) used the k-step
Markov algorithm to predict association between disease
and miRNA.

In recent years, many researchers have applied the restarted
random walk model to disease-related miRNA prediction and
obtained a reliable predictive performance (Chen et al., 2012;
Shi et al., 2013, 2016; Liao et al., 2015; Xuan et al., 2015;
Liu et al., 2017; Luo and Xiao, 2017; Mugunga et al., 2017).
Furthermore, network-consistent prediction methods have also
been widely used to predict disease-associated miRNAs (Chen
and Zhang, 2013; Chen et al., 2016a, 2018a). Nalluri et al.
(2015) and Chen et al. (2018h) designed prediction methods

from the perspective of graph theory. Chen et al. (2016b)
constructed a heterogeneous graph method to predict miRNA-
disease association. You et al. (2017) used a depth-first search
algorithm in heterogeneous graphs to forecast. Sun et al.
(2016) used network topological similarity, and Chen et al.
(2017a) used miRNA (disease) Graphlet interaction to predict
the association between the disease and the miRNA. In 2017,
Chen et al. (2017b) introduced the concepts of “super miRNA”
and “super disease” to enhance the similarity measurement of
diseases and miRNAs. All these methods have achieved favorable
predictive results.

Machine learning-based algorithms can help improve the
predictive performance, and many machine learning-based
models have been proposed to predict potential miRNA-disease
associations (Chen et al., 2018f,k). Jiang et al. (2013) extracted
feature sets based on known associations (positive samples) and
unknown associations (negative samples) for training support
vector machine (SVM) classifiers to predict potential miRNAs
and disease associations. Xu et al. (2011) obtained a network
of interactions between miRNAs and target genes based on
target gene prediction software and then trained SVM to identify
disease-associated miRNAs. However, the target gene prediction
software results of such methods had high false positives and
false negatives, which directly affected the accuracy of miRNA-
disease association prediction. In 2016, Zeng et al. (2016b)
used two multipath methods and machine learning method to
predict potential disease-related candidate miRNAs. One big
challenge for such supervised machine learning methods is
how to acquire the negative sample data which is hard to be
obtained, Chen and Yan (2014) proposed a semi-supervised
machine learning method based on least squares to predict the
potential association between miRNAs and diseases, namely,
RLSMDA. This method can simultaneously obtain predictive
values for all miRNAs and diseases without requiring negative
sample data. Chen and Huang (2017) also used Laplacian-
regularized sparse subspace learning to reveal the relation
of miRNA-disease pairs. Meanwhile, Qabaja et al. (2013)
proposed a protein network based on the Lasso regression
model to mine miRNA-disease associations achieving favorable
prediction results.

Matrix factorization is also used to predict miRNA-disease
associations. Zhao et al. (2018) used symmetric non-negative
matrix factorization to reveal the miRNA-disease association.
In 2016, Lan et al. (2015, 2016) used the nuclearized Bayesian
matrix factorization method to infer the association scores of
disease and miRNA. In 2018, Xiao et al. (2018) performed graph-
regularized non-negative matrix factorization of heterogeneous
omics data to predict the potential miRNA-disease association.
In 2018, Zhong et al. (2018) constructed a two-layered network
to represent the complex relationships between miRNAs and
diseases. Then, they used non-negative matrix factorization
methods to speculate the underlying disease and miRNA
relationship. Chen et al. (2018j) developed a computational
model of matrix decomposition and heterogeneous graph
inference to reveal the miRNA-disease associations. Pasquier
and Gardès (2016) used the singular value decomposition
vector space to reveal information related to miRNA and
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disease. On the basis of the idea of Kronecker’s regularized
least squares method based on multi-core learning, Chen
et al. (2017d) established the MKRMDA model in 2017
which can be applied to large-scale data. In 2017, Luo et al.
(2017b) and Peng et al. (2017c) also used the same Kronecker
method for miRNA-disease prediction and achieved good
prediction results.

The recommendation system is also used to predict the
association of disease and miRNA (Li et al., 2014). In 2017, Gu
et al. (2017) used the collaborative filtering recommendation
algorithm for miRNA-disease association prediction. In 2017,
Peng et al. (2017a) combined rating-based recommendation
algorithms with negative-perception algorithms. Furthermore,
Chen et al. (2018l) employed the combination of integrated
learning and link prediction to predict potential disease-
related candidate miRNAs, used the mixed graph-based
recommendation algorithm (Chen et al., 2017c), and utilized
the bipartite network recommendation algorithm (Chen
et al., 2018i) to reveal new miRNA-disease interactions.
Meanwhile, Zou et al. (2015a) used two social network analysis
methods, KATZ and CATAPULT, to predict miRNA-associated
disease association.

Algorithms such as neural networks have also been applied
in the field of bioinformatics. Examples are extreme gradient
boosting machine (Chen et al., 2018e), automatic encoder (Fu
and Peng, 2017; Chen et al., 2018d), and transduction learning
to predict association between miRNA and disease (Luo et al.,
2017a). Chen et al. (2015) used the restricted Boltzmannmachine
to predict the different types of miRNA-disease associations.

Considering that only few miRNA similarity data and few
experimental associations between miRNA-disease are known,
Zeng et al. (2016a) and Li et al. (2017) used matrix completion to
predict miRNA-disease association. Peng et al. (2017b) employed
the improved low-rank matrix recovery (ILRMR) algorithm,
whereas Chen et al. (2018g) used the inductivematrix completion
to determine the miRNA-disease relationship.

In summary, the above methods have the following
limitations: (1) low prediction accuracy, (2) inability to predict
isolated diseases and new miRNAs, (3) many machine learning
methods require negative samples. Inspired by the general
network co-neighbors and considering the characteristics of the
bipartite network, we proposed the concept of bipartite network
co-neighbors, in which eight local structural similarity indexes
were defined, to represent the association probabilities between
nodes. These association probabilities can be used to effectively
calculate the association score between diseases and miRNAs
nodes. The AUC of this method on the gold benchmark dataset
was 0.7973, and the AUC on the prediction dataset was 0.9349.
Then, we evaluated the independent predictive performance of
the method by breast neoplasm and colon neoplasm. Of the top
50 potential associated miRNAs predicted by our method, 48
and 41 were confirmed in the updated HDMM, mir2disease and
dbDEMC databases. In predicting the isolated disease, the top 50
obtained the database support validation by the aforementioned
databases of 50 and 48, respectively. The results of LOOCV
and case studies demonstrated the reliable performance of
our method.

MATERIALS AND METHODS

Framework Structure of Bipartite
Heterogeneous Network Method Based on
Co-neighbor
The basic process of inferring miRNA-disease association
based on bipartite heterogeneous network link prediction
algorithm of co-neighbor is as follows (see Figure 1): (1) family
information is used to reconstruct miRNA similarity network;
(2) the experimentally validated miRNA-disease information and
disease semantic similarity information are used to reconstruct
the disease similarity network; (3) the number of simple paths is
calculated with a path of length 3L between the unrelated disease
node and the miRNA node; (4) the initial association scores of
disease and miRNA nodes are calculated based on the number
of simple paths; (5) the disease spatial secondary association
score is calculated according to the disease similarity network
and the initial association score; (6) the miRNA spatial secondary
association score is calculated according to the miRNA similarity
network and the initial association score; (7) integrated disease
spatial secondary and miRNA spatial secondary association
scores are used to obtain the final prediction score.

Disease Semantic Similarity Score
Using disease DAG can measure the disease semantic similarity.
The basic assumption is that the more items the two diseases
share, the more similar the two diseases are. Wang et al.
(2010) used these attributes of the disease in the Mesh database
to calculate the semantic similarity between diseases. Many
researchers used this method to calculate the similarity between
diseases (Chen and Yan, 2014; Gu et al., 2016) with the download
address from http://www.cuilab.cn/fles/images/cuilab/misim.zip.
Matrix SD was used to represent the adjacency matrix of the
semantic similarity of the disease, and SD(i, j) was used to
represent the semantic similarity score between disease di and
disease dj.

miRNA Functional Similarity Score
The relationship between miRNAs and miRNAs is mainly
established by miRNA- related diseases or genes regulated by
miRNAs. Wang et al. (2010)proposed a strategy for inferring
miRNA similarity by using semantic similarities between
miRNA-related diseases on the basis of the hypothesis that
functionally similar miRNAs are related to phenotypically similar
diseases, and they converted the miRNA similarity data into a
public database MISIM which was successfully applied to several
methods, such as RWRMDA (Chen et al., 2012), ILRMR (Peng
et al., 2017b), NetCBI (Chen and Zhang, 2013), and NCPMDA
(Gu et al., 2016). We obtained this dataset from http://www.ncbi.
nlm.nih.gov/ by using the matrix SM to represent the adjacency
matrix of the miRNA, and SM (i,j) to represent the functional
similarity score between the miRNAmi and the miRNAmj.

miRNA Family Information
More mRNA target genes are shared by the same miRNA
family, and their functions are more similar (Bandyopadhyay
et al., 2010). This study considers the use of family information
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to reconstruct the miRNA network, giving higher values
to a group of miRNAs in the same family. The miRNA
information is obtained from the miRBase database (Kozomara
and Griffithsjones, 2011). Herein, the matrix SMfam represented
the family information of the miRNA. If the two miRNAs were
in the same family, the corresponding weight was set to 1.
Otherwise, it was set to 0.

Experimentally Validated miRNA-Disease
Association
In this paper, we used two datasets for training tests. The
first dataset was obtained from 270 pairs of high-quality
experimentally validated miRNA-disease association data from
themiR2disease andHMDDdatabases. The relationship between
these miRNAs and diseases was caused by the dysregulation of
miRNAs, including 51 diseases and 118 miRNAs. We obtained
these data from the supplemental data in Wang’s previous study
(Wang et al., 2010). Given that 19 of these miRNAs could not be
found in MISIM (Wang et al., 2010), we removed these miRNAs
and their association with the diseases. Then, we removed
some of the highly similar miRNA-disease relationship pairs,
eventually leaving 99 miRNAs and 51 diseases containing 225
miRNA-disease pairs. We referred to this dataset as the gold
benchmark dataset.

The second miRNA-disease association dataset was obtained
directly from Wang’s literature (Wang et al., 2010), which was
compiled from the HMDD database released in September
2009, with 1,616 bioassay-identified human disease-miRNA
relationships. After combining the records of different miRNAs
and unifying the names of miRNAs and diseases, 1,395 miRNA-
disease associations were retained within 271 miRNAs and 137
diseases. We called this dataset the predictive dataset.

For the convenience of our description, we used a Boolean
matrix AS to represent the association between disease and
miRNA, and AS(i,j) to indicate the association between miRNA
mi and disease dj. If the element value of AS(i,j) was 1, the known
experiment implied that miRNA mi was associated with disease
dj, otherwise, no known experiments in this dataset that indicated
that miRNAmi was associated with disease dj. Our main job was
to use computational methods to infer whether or not miRNAs
and diseases in the database were associated.

Similarity Network Construction
To more accurately characterize the relationship between
diseases and the relationship between miRNAs, we used known
disease-miRNA association information combined with disease
semantic similarity data to construct disease similarity network,
and we utilized the miRNA family information and miRNA
similarity data to construct miRNA similarity network.

miRNA Similarity Network Reconstruction
Bandyopadhyay et al. (2010) found that miRNAs in the same
family share more mRNA targets, and their functions are
more similar. To make full use of the family information of
miRNAs, we provided higher weights to miRNAs belonging
to the same family when constructing miRNA networks. For
miRNA network reconstruction, the miRNA similarity network

was widely proposed by combining known experimentally
validated miRNA, disease association network information and
miRNA similarity information. Considering that Wang et al.
(2010) constructed the miRNA similarity network that utilized
miRNA-disease similarity information. We no longer used the
experimentally validatedmiRNA-disease association information
to reconstruct miRNA similarity network. Herein, we integrated
the miRNA similarity scores calculated byWang et al. (2010) and
miRNA family information to construct the miRNA similarity
network. The formula is as follows:

SIM
(

i, j
)

= SM
(

i, j
)

× (α + (1− α) × SMfam
(

i, j
)

) (1)

where SIM
(

i, j
)

indicates the similarity score between miRNAmi

and miRNA mj after the fusion of information, SM
(

i, j
)

is the
functional similarity score between miRNA mi and miRNA mj,

SMfam is the miRNA family information matrix, α denotes the
weight parameter. For simplicity, we set α to 0.5. The higher
the similarity score of the two miRNAs, the more similar the
miRNAs are.

Disease Similarity Network Reconstruction
On the basis of the hypothesis that functionally similar miRNAs
are related to phenotypically similar diseases (Wang et al., 2010),
we believed that the more miRNAs contributed to both diseases,
the more similar the two diseases were. Given that diseases share
the same number of miRNAs, the less miRNAs that caused the
two diseases, the more similar the two diseases are. The following
is the method used to measure the disease functional similarity
by using the experimentally verified disease-miRNA association:

SDAS(i, j) =
{

comm(di ,dj)√
deg(di)+deg (dj)

0

comm
(

di, dj
)

6= 0

comm
(

di, dj
)

= 0
(2)

where SDAS
(

i, j
)

denotes the disease functional similarity score
between diseases di and diseases dj, comm

(

di, dj
)

represents the
number of miRNAs shared by the disease di and disease dj,
deg

(

di
)

and deg
(

dj
)

are the degrees of diseases di and diseases
dj in the disease–miRNA network, respectively (the number of
miRNAs associated with disease).

Then, the disease similarity network was constructed by
integrating the disease functional similarity score and disease
semantic similarity information:

SDD
(

i, j
)

= β × SDAS
(

i, j
)

+ (1− β) × SD
(

i, j
)

(3)

where SDD
(

i, j
)

indicates the similarity score between diseases
di and disease dj, SDAS

(

i, j
)

is the disease functional similarity
score between disease di and disease dj, SD

(

i, j
)

is the semantic
similarity score of disease di and disease dj. β indicates the weight
parameter. For the sake of simplicity, we set β to 0.5.

Heterogeneous Bipartite Network Link
Prediction Based on Co-neighbor
Link prediction of general network is often predicted by
structural similarity between nodes, and any two different
nodes are connected by co-neighbor nodes between the two
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nodes (Martínez et al., 2017). In the bipartite network, the
nodes between the same categories are not connected, and
the connected node pairs belong to different categories. There
are no co-neighbors between the two nodes from different
not associated categories. We cannot describe the structural
similarity between nodes through co-neighbors, and the link
prediction algorithm of general networks cannot be implemented
in bipartite networks. To solve this problem, we defined the
concept of co-neighbor in bipartite network as follows:

For any disease node di ∈ D and miRNA node mj ∈ M, if

a simple path of length 3L di → ḿ → d́ → mj exists between
the disease di and the miRNA mj in the bipartite network,

disease node d́ and miRNA node ḿ are defined as the co-
neighbors between disease node di and miRNA node mj in the
bipartite network.

Some of the commonly used indexes of the general network
link prediction algorithm based on structural similarity included
the co-neighbor (Newman, 2001), Salton, Jaccard (Jaccard, 1901),
Sørensen (Sørensen, 1957), HPI (Ravasz et al., 2002), HDI (Zhou
et al., 2009), LHN1 (Leicht et al., 2006), and PA indexes (Barabasi
and Albert, 1999).

These indexes use local information such as the degree or
neighbors of nodes to measure the similarity between nodes,
which can be used to measure the relationship between nodes.
We extended the general network structure similarity index to the
bipartite network and used these indexes to calculate the initial
association score between disease nodes di and miRNA nodesmj.
The specific definition is as follows:

(1) Bipartite network co-neighbor index (CN index)

RCNi,j = NCN(di,mj) (4)

(2) Bipartite network Salton index

RSaltoni,j =
NCN(di,mj)

√

deg(di)× deg(mj)
(5)

(3) Bipartite network Jaccard index

R
Jaccard
i,j =

NCN(di,mj)

deg
(

di
)

+ deg(mj)
(6)

(4) Bipartite network Sørensen index

RSørenseni,j =
2× NCN(di,mj)

deg
(

di
)

+ deg(mj)
(7)

(5) Bipartite network HPI index

RHPIi,j =
NCN(di,mj)

min(deg
(

di
)

, deg
(

mj

)

)
(8)

(6) Bipartite network HDI index

RHDIi,j =
NCN(di,mj)

max(deg
(

di
)

, deg
(

mj

)

)
(9)

(7) Bipartite network LHN1 index

RLHN1
i,j =

NCN(di,mj)

deg(di)× deg(mj)
(10)

(8) Bipartite network PA index

RPAi,j = NCN(di,mj)× deg(di)× deg(mj) (11)

The Jaccard index of bipartite network is one half of Sørensen
index of bipartite network, so we only discussed the Sørensen
index of bipartite network in following section.

In the above formula, R∗ij is the association score between

disease node di and miRNA nodemj, NCN(di,mj) is the number
of path with length 3 between disease node di and miRNA node
mj, deg(di) is the number of edges associated with disease node
di, and deg(mj) is the degree of miRNAmj.

The above indexes were all improved on the basis of the co-
neighbors, but the normalization method is different. Through
any of the above indexes, we can measure the initial association
score between disease node di and miRNA node mj. If no
connection existed between the disease node di and miRNA node
mj or no path of length 3L existed between them, then their
predicted score cannot be judged. At this time, we set the score
between them as 0. To ensure a high association score between
the experimentally validated disease and miRNA, after all the
initial association scores were obtained, and before the second
score was obtained through similarity, we can set the disease
node and the miRNA score, which were already associated, to be
the maximum.

The calculation process of the method about bipartite
heterogeneous network based on co-neighbor has three main
steps. The HDI index of bipartite network was regarded as an
example (Figure 2).

Step 1. The miRNA-disease association (shown in the light
blue matrix in Figure 2) is used to calculate the number of paths
with a length of 3L between all disease nodes and all miRNA
nodes (light orange matrix in Figure 2) and the local structure
of similarity on the bipartite network was utilized to obtain the
initial association score between any disease node di and miRNA
nodemj (gray matrix in Figure 2).

Step 2. The second prediction score between the miRNA node
mj and the disease node di was calculated by using the sum of the
product of the miRNA similarity and the initial association score
ofmiRNA-disease (the pinkmatrix in Figure 2). Then, the sum of
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FIGURE 1 | Flow chart of bipartite heterogeneous network method based on co-neighbor.

FIGURE 2 | Calculation process of the bipartite heterogeneous network method based on co-neighbor.
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the product of the initial association score of miRNA-disease and
the disease similarity was used to obtain the secondary prediction
score between disease node di and miRNA node mj (the cyan
matrix in Figure 2). The specific calculation is as follows:

(a) Secondary prediction score based on miRNA similarity
The basic idea of this score calculation is as the following.

If a certain miRNA mj is associated with disease di, the
other miRNA mk similar to miRNA mj is also associated
with disease di. We used the sum of the product of the
similarity scores mk-mj and the initial association score di-
mj as the secondary prediction score between disease node di
and miRNA nodemj. The concrete formula is as follows:

RFBM
(

i, j
)

=
∑m

k=0
RPB(i, k)× SIM(k, j) (12)

where RFBM(i, j) is the secondary prediction score between
disease node di and miRNA node mj based on miRNA
similarity, RPB(i, k) is the initial association score between the
disease node di and miRNA node mk and SIM(k, j) denotes
the similarity scores between miRNAmk and miRNAmj.

(b) Secondary prediction score based on disease similarity
The basic idea of this score calculation is the following: if a

disease node di andmiRNA nodemj are related to each other,
the other diseases dk similar to disease di are also associated
with miRNA mj. We used the sum of the product of the
similarity scores of dk-di and the initial association score of
dk-mj as the secondary association scores of disease node di
and miRNA nodemj. The formula is as follows:

RFBD
(

i, j
)

=
∑n

k=0
RPB(k, j)× SDD(k, i) (13)

where RFBD(i, j) is the secondary prediction score between disease
node di andmiRNA nodemj based on disease similarity, RPB(k, j)
is the initial association score between the disease node dk and
the miRNA node mj and SDD(k, i) denotes the similarity scores
between disease dk and disease node di.

Step 3. The two spatial scores were integrated. The weighted
sum of the secondary prediction score between di-mj based on
miRNA similarity RFBM(i, j) and the secondary prediction score
di-mj based on disease similarity RFBD(i, j) was used as the final
association score RFB(i, j) of di-mj (yellow matrix in Figure 2).

RFB
(

i, j
)

= (1− γ ) × RFBM
(

i, j
)

+ γ × RFBD(i, j) (14)

where RFB(i, j) is the final association score. γ is the weight
coefficient. We defined γ as the rational number between 0 and
1. The larger RFB

(

i, j
)

, the more likely the disease node di and
miRNA nodemj are related.

When no connection exists between disease node di and
miRNA node mj or when no co-neighbor exists between them,
the number of paths with a length of 3L cannot be used to
obtain the score of the initial association between them. If the
initial association score is used directly as the predictive score,
no predictive power exists for the isolated disease (without
association of any miRNA) and newmiRNA (without association
of any disease). However, we have solved the problem of

FIGURE 3 | ROC curve and AUC value of co-neighbor index in five scenarios.

predicting isolated diseases by utilizing the similarity of disease
space. Utilizing the similarity of miRNA space solves the problem
of new miRNA prediction.

RESULTS

Performance Evaluation
Weproposed a link predictionmethod of bipartite heterogeneous
network based on co-neighbors to predict miRNA-disease
association (BHCN). We tested the model predictive
performance with eight similarity indexes in six different
scenarios which are as follows:predictive performance using
only known miRNA-disease association information (BHCN-
MDA); predictive performance based on miRNA similarity
without miRNA similarity network reconstruction (BHCN-MS-
noMSR); predictive performance based on miRNA similarity
with miRNA similarity network reconstruction using miRNA
family information (BHCN-MS-MSR); predictive performance
based on disease similarity without disease similarity network
reconstruction (BHCN-DS-noDSR); predictive performance
based on disease similarity with disease similarity network
reconstruction using known miRNA-disease association
information (BHCN-DS-DSR) and predictive performance
using all information (BHCN). The eight indexes are as follows:
co-neighbor, Salton, Jaccard, Sørensen, HPI, HDI, LHN1, and
PA. Considering that Jaccard index is extremely similar to the
Sørensen index in the bipartite network, we only discussed
the Sørensen index for these two indexes. Given that the last
scenarios need to be considered the influence of the weighting
parameters, these scenarios will be discussed later. Figures 3–9
show the ROC and AUC calculated by the seven indexes
in the first five scenarios of the gold benchmark dataset.
Figure 3 illustrates the prediction performance when using the
co-neighbor index.
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FIGURE 4 | ROC curve and AUC value of Salton index in five scenarios.

As shown in Figure 3, even without using family information
for miRNA network reconstruction, the predictive performance
based on miRNA similarity significantly improved compared
with that on BHCN-MDA. AUC increased from 0.6734 of
BHCN-MDA to 0.7438 of BHCN-MS-noMSR after using the
family information to reconstruct the miRNA network. Thus,
the prediction accuracy had improved again, and the AUC
further reached 0.7745. However, the predictive performance
in the scenarios of co-neighbors based on disease similarity
was not ideal. The prediction accuracy was lower than BHCN-
MDA, and the AUC values were 0.5822 and 0.6334, respectively.
Nevertheless, the use of known miRNA-disease association
information improved the prediction accuracy of disease network
reconstruction, thereby increasing the AUC from 0.5822 of
BHCN-DS-noDSR to 0.6334 of BHCN-DS-DSR.

The Salton index predictive performance changes similar to
co-neighbor index. Using miRNA similarity can greatly improve
the predictive performance, whereas such performance can
decrease when the disease similarity is used. Reconstructing
the miRNA network with family information can improve
the prediction performance. Reconstructing disease networks
using known miRNA-disease association information can also
improve prediction accuracy. ROC curve and AUC values were
listed in Figure 4. The Salton index poorly predicts the overall
performance and is inferior to the co-neighbor index in all
scenarios. The best scenarios were to use the family information
to reconstruct the miRNA network, and the AUC value was
only 0.7485.

The third index is the Sørensen index. The overall
performance of the forecast performance of this index was
the same as the previous two indexes. ROC curve and AUC
values were given in Figure 5. The predicted performance of
the Sørensen index was lower than that of the Salton index,
with the maximum and minimum AUC values of 0.7389 and
0.5758, respectively.

FIGURE 5 | ROC curve and AUC value of Sørensen index in five scenarios.

FIGURE 6 | ROC curve and AUC value of HPI index in five scenarios.

The ROC curve and AUC values using the HPI index were
presented in Figure 6. The HPI index had good predictive
performance. The AUC of BHCN-MDA and BHCN-MS-MSR
reached 0.7289 and 0.7934, respectively. The worst prediction
was BHCN-DS-noDSR with an AUC of 0.6502.

Figure 7 showed the ROC curve and AUC values of HDI
index. As depicted in Figure 7, HDI indicators also have
favorable predictive performance. The AUC value of BHCN-
MDA was 0.7325, which was nearly 5% higher than that of the
HPI indicator. At this time, we solely used the experimentally
validated miRNA-disease association information for prediction.
The best predictive effect was BHCN-MS-MSR, whose AUC value
was 0.7869, which was better than the co-neighbor, Salton and
Sørensen indexes.

Frontiers in Genetics | www.frontiersin.org 8 April 2019 | Volume 10 | Article 385

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. miRNA-Disease Association Prediction

FIGURE 7 | ROC curve and AUC value of HDI index in five scenarios.

FIGURE 8 | ROC curve and AUC value of LHN1 index in five scenarios.

The sixth index was the LHN1 index. As shown in Figure 8,
the AUC value of BHCN-MDA was 0.7127. The best predictive
effect was BHCN-MS-MSR, which had an AUC value of 0.7736,
better than the results of Sørensen and Salton indexes.

As shown in Figure 9, the PA index also had better predictive
performance. For the best scenarios, the BHCN-MS-MSR AUC
value was 0.7915, which was only lower than the 0.7936 of the
HPI index.

As depicted in Figures 3–9, in the scenarios of BHCN-MDA,
the AUC values obtained by using the co-neighbor, the results
of Salton and Sørensen indexes were all less than 0.7, whereas
those of HPI, HDI, LHN1, and PA indexes were all>0.7. We only
used the 225 known association information from theoretical
5,049 associations that may be obtained in the gold benchmark
dataset with 99 miRNAs and 51 diseases. The AUC value of HDI

FIGURE 9 | ROC curve and AUC value of PA index in five scenarios.

index was as high as 0.7325. Consequently, the prediction effect
was satisfactory.

As shown in Figures 3–9, the miRNA similarity can be used to
improve the prediction performance. In the scenario of BHCN-
MS-noMSR, the AUC value of each type of index was higher than
that of BHCN-MDA, and their AUC values improved which were
>0.7. The AUC value predicted by the HPI index reached 0.7546,
and the PA index was 0.7542. Hence, using the score of miRNA
similarity and the initial association score of miRNA-disease as
the secondary prediction score were effective.

To more accurately describe the similarity relationship
between miRNAs, we reconstructed the miRNA similarity by
using the family information. In this scenario, the prediction
accuracy of any type of index improved compared with that
of the previous scenarios, among which the AUC values of
the HPI and PA indexes both exceeded 0.79, thereby fully
demonstrating the effectiveness of reconstructing miRNAs with
family information.

As presented in Figures 3–9, the AUC value of BHCN-DS-
noDSR and BHCN-DS-DSR did not increase compared with that
of BHCN-MDA. This finding was mainly due to the fact that
when predicting the association between a specific disease node
di and miRNA node mj, we used the initial association scores of
all other disease node dk and miRNA node mj as the prediction
association scores of disease di and miRNA mj. Considering
that we used phenotypic similarity as the similarity between
diseases, the similaritymethod itself could not accurately describe
the relationship between diseases. Given the introduction of
all the diseases during the calculation, noise was observed
unfortunately, thereby leading to an un-ideal forecast effect. In
BHCN with DSR, we used the known miRNA-disease-related
information to reconstruct the disease similarity network. The
prediction performance of the seven indexes improved compared
with that in BHCN-DS-noDSR. The most improved index was
the PA, and the AUC value was from 0.5887 to 0.6477, thereby
indicating an increase of 10.79%. The lowest improvement was

Frontiers in Genetics | www.frontiersin.org 9 April 2019 | Volume 10 | Article 385

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. miRNA-Disease Association Prediction

FIGURE 10 | ROC curve and AUC value of BHCN compared with other

methods on the gold benchmark dataset.

shown by the HPI index, with the AUC value from 0.6502 to
0.6760, thereby indicating an increase of mere 3.97%. These
facts further verified the abovementioned reason analysis, which
indicated that building accurate network can improve the
prediction accuracy.

Thereafter, the prediction effect of BHCN was verified. First,
the AUC values predicted by BHCN-MS-MSR and BHCN-DS-
DSR were listed in the gold benchmark dataset by using various
indexes (Table 1).

The AUC values of the BHCN were listed in Table 2, and the
first column was the weighting factor γ in the Formula 14. As
presented in Tables 1, 2, when the weight coefficient increased
from 0.1 to 0.6, the weighted prediction results of all indicators
were better than those of BHCN-MS-MSR and BHCN-DS-DSR.
Most of the indicators acquired the highest AUC value when the
weight was 0.5, and the prediction effect was the best. However,
when the weight increased from 0.6 to 0.9, the prediction effect
was dragged down, caused by the disease similarity as the
foundation of co-neighbor link prediction score, and the AUC
value gradually decreased. The comparison between Tables 1,
2 illustrates the information of the two networks of integrated
diseases and miRNAs which is helpful for our prediction.

Comparison With Other Method
We then compared the classic global method RWRMDA (Chen
et al., 2012) with BHCN. The RWRMDA restart parameters were
as described in the literature (Chen et al., 2012). The weight
of BHCN was 0.5. The comparison of RWRMDA and BHCN
prediction effects is shown in Figure 10. The AUC value of
the RWRMDA on the gold benchmark dataset was 0.6732. The
worst predictive performance of the seven indexes in BHCN was
manifested in the Sørensen index, with the AUC value of 0.7422,
whereas the best was the HPI index with the AUC of 0.7973,
which was higher than the RWR AUC value.

FIGURE 11 | ROC curve and AUC value of BHCN compared with other

methods on the predictive dataset.

To verify whether the BHCN was sensitive to the dataset,
we performed a comparative experiment on the predicted
dataset. The experimental results were shown in Figure 11. The
prediction accuracy of BHCN and RWRMDA greatly improved.
The AUC value of RWRMDA was 0.8617, and that of LHN1
indicator of BHCN was 0.8087, which was lower than the RWR
algorithm. The AUC values of the six other indexes were higher
than RWR. The minimum AUC value for the six indexes was
noted in the Salton index. Its AUC value was 0.8815, which
was 2.3% higher than the ARC value of the RWR. The AUC
value of the PA index was 0.9349, which was considerably larger
than the RWR. These facts fully demonstrated the superiority of
the BHCN.

Considering that the indexes were based on the number of co-
neighbors in the bipartite work, the normalization method varied
according to the degree of the disease node and the miRNA node.
The prediction performance of each index naturally followed the
heterogeneous bipartite graph, and the change produced different
prediction effects. Hence, our algorithm was not sensitive to the
dataset and had a good prediction effect. However, some indexes
still depended on the dataset, and different prediction effects were
generated according to the different distributions of the network
node degrees.

Isolated Disease and New miRNA
Prediction
The new miRNA refers to the miRNA without known
information related to the disease. With the continuous
improvement of miRNA recognition technology, increasing
number of miRNAs is continuously being excavated. Most of
their relationships with disease are unknown. Using biological
methods to identify miRNA-disease association is time
consuming and labor intensive. If the relationship between
new miRNA and disease can be inferred by computational
methods, the blindness of subsequent biological methods can be
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TABLE 1 | The AUC values of BHCN-MS-MSR and BHCN-DS-DSR.

Methods CN Salton Sørensen HPI HDI LHN1 PA

BHCN-MS-MSR 0.7745 0.7485 0.7389 0.7934 0.7869 0.7736 0.7915

BHCN-DS-DSR 0.6334 0.6261 0.6250 0.6760 0.6818 0.6777 0.6477

TABLE 2 | The AUC values of BHCN.

Weight CN Salton Sørensen HPI HDI LHN1 PA

0.1 0.7755 0.7494 0.7397 0.7939 0.7876 0.7746 0.7923

0.2 0.7769 0.7506 0.7409 0.7947 0.7885 0.7756 0.7935

0.3 0.7786 0.7515 0.7419 0.7958 0.7892 0.7761 0.7947

0.4 0.7798 0.7521 0.7424 0.7967 0.7896 0.7761 0.7958

0.5 0.7803 0.7522 0.7422 0.7973 0.7892 0.7752 0.7959

0.6 0.7795 0.7515 0.7415 0.7971 0.7883 0.7733 0.7944

0.7 0.7770 0.7484 0.7380 0.7961 0.7854 0.7703 0.7910

0.8 0.7686 0.7396 0.7282 0.7911 0.7779 0.7631 0.7819

0.9 0.7401 0.7099 0.6997 0.7720 0.7564 0.7445 0.7541

FIGURE 12 | ROC curve and AUC value of BHCN of new miRNA.

reduced. In recent years, the association prediction problem of
new miRNAs and diseases has become a hot topic in the field
of disease association prediction. To simulate new miRNAs, we
removed the association between each miRNA and all diseases.
The predicted results in the gold benchmark dataset are shown
in Figure 12. The highest AUC value was 0.7854 of the PA index,
and the lowest was the LHN1 index of 0.7345, thereby fully
demonstrating that our method has a good performance for
new miRNAs.

Isolated disease refers to the diseases without any miRNA-
associated information. The association prediction of isolated
diseases also helps scientists to understand the molecular
mechanism of disease and contribute to the diagnosis and
treatment of diseases. We used LOOCV to verify the predictive

power of BHCN for isolated diseases. To simulate isolated
diseases, we removed the association of the disease with all
miRNAs when each disease was verified. The ROC curve and
AUC value of BHCN for isolated disease prediction in the gold
dataset were shown in Figure 13. The best AUC value was only
0.6040, and the worst case AUC value was only 0.5623. We used
BHCN-DS-noDSR and BHCN-DS-DSR to conduct experiments
in isolated diseases and found that the prediction results were the
same as in BHCN. The reason is that the reconstruction of disease
network was based on the information related to knownmiRNA-
disease, and the known diseases were deleted in the simulation of
isolated diseases. Therefore, such disease network reconstruction
method was not helpful for the prediction of isolated diseases.
Such predictions further validated our previous analyses. Firstly,
we were not precise enough to describe the relationship between
diseases. Secondly, we utilized all diseases information which
might have produced noise.

Case Studies
To validate the predictive power of BHCN for known miRNA-
disease associations, we used BHCN (weighted value was 0.5,
similarity index was PA) to predict breast neoplasms and
colon neoplasms. Firstly, we used the known disease-miRNA
association training model. Secondly, we used the unknown
association as the test validation set. Finally, all the prediction
results were verified in the updated HDMM, mir2disease and
dbDEMC databases. The top 50 miRNAs for the prediction of
the two neoplasms and the validation are listed in Tables 3,
4, respectively.

A total of 78 miRNAs were associated with breast neoplasms
in the predicted dataset. We used these known associations for
prediction. From Table 3, only 2 of the top 50 miRNAs were
not confirmed. The first one was hsa-mir-30e, ranking 9th, and
the other one was hsa-mir-142, which ranked 42. However, Lin
et al. (2016)confirmed that hsa-mir-30e is down-regulated in
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FIGURE 13 | ROC curve and AUC value of BHCN of isolated disease.

TABLE 3 | Prediction of the top 50 predicted miRNAs associated with breast neoplasms based on known associations in HMDD database.

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-let-7b HMDD, dbDEMC 26 hsa-mir-195 HMDD, dbDEMC

2 hsa-let-7e HMDD, dbDEMC 27 hsa-mir-192 dbDEMC

3 hsa-let-7c HMDD, dbDEMC 28 hsa-mir-24 HMDD, dbDEMC

4 hsa-let-7i HMDD, dbDEMC 29 hsa-mir-130a dbDEMC

5 hsa-let-7g HMDD, dbDEMC 30 hsa-mir-372 dbDEMC

6 hsa-mir-18b HMDD, dbDEMC 31 hsa-mir-135a HMDD

7 hsa-mir-106a dbDEMC 32 hsa-mir-27a HMDD, mir2disease, dbDEMC

8 hsa-mir-98 dbDEMC, miR2disease 33 hsa-mir-32 dbDEMC

9 hsa-mir-30e Unconfirmed 34 hsa-mir-107 HMDD, dbDEMC

0 hsa-mir-16 HMDD, dbDEMC 35 hsa-mir-203 HMDD, mir2disease, dbDEMC

11 hsa-mir-30a HMDD, dbDEMC 36 hsa-mir-182 HMDD, mir2disease, dbDEMC

12 hsa-mir-92b dbDEMC 37 hsa-mir-150 HMDD, dbDEMC

13 hsa-mir-92a HMDD, dbDEMC 38 hsa-mir-196b dbDEMC

14 hsa-mir-126 HMDD, mir2disease, dbDEMC 39 hsa-mir-23b HMDD, dbDEMC

15 hsa-mir-29c HMDD, mir2disease, dbDEMC 40 hsa-mir-128b miR2Disease

16 hsa-mir-223 HMDD, dbDEMC 41 hsa-mir-335 HMDD, mir2disease, dbDEMC

17 hsa-mir-181a HMDD, mir2disease, dbDEMC 42 hsa-mir-142 Unconfirmed

18 hsa-mir-191 HMDD, mir2disease, dbDEMC 43 hsa-mir-22 HMDD, dbDEMC

19 hsa-mir-101 HMDD, dbDEMC, miR2disease 44 hsa-mir-26a mir2disease, dbDEMC

20 hsa-mir-99b dbDEMC 45 hsa-mir-130b dbDEMC

21 hsa-mir-373 HMDD, mir2disease, dbDEMC 46 hsa-mir-95 dbDEMC

22 hsa-mir-199b HMDD, dbDEMC 47 hsa-mir-28 dbDEMC

23 hsa-mir-520b HMDD, dbDEMC 48 hsa-mir-181d mir2disease, dbDEMC

24 hsa-mir-15b dbDEMC 49 hsa-mir-148a mir2disease, dbDEMC

25 hsa-mir-100 HMDD, dbDEMC 50 hsa-mir-224 HMDD, dbDEMC
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TABLE 4 | Prediction of the top 50 predicted miRNAs associated with colon neoplasms based on known associations in HMDD database.

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-98 dbDEMC 26 hsa-mir-125a dbDEMC, miR2Disease

2 hsa-mir-106b HMDD, mir2disease, dbDEMC 27 hsa-mir-181b dbDEMC, miR2Disease

3 hsa-mir-93 dbDEMC 28 hsa-mir-15a HMDD, dbDEMC

4 hsa-mir-20b dbDEMC 29 hsa-mir-205 HMDD, dbDEMC

5 hsa-mir-18b dbDEMC 30 hsa-mir-103 HMDD

6 hsa-mir-200a Unconfirmed 31 hsa-mir-1 dbDEMC

7 hsa-mir-429 dbDEMC 32 hsa-mir-196a dbDEMC, miR2Disease

8 hsa-mir-222 dbDEMC 33 hsa-mir-135b HMDD, mir2disease, dbDEMC

9 hsa-mir-200c HMDD 34 hsa-mir-30a dbDEMC

0 hsa-mir-29a HMDD, dbDEMC, miR2Disease 35 hsa-mir-215 dbDEMC

11 hsa-mir-92b Unconfirmed 36 hsa-mir-194 dbDEMC

12 hsa-mir-34b Unconfirmed 37 hsa-mir-203 dbDEMC

13 hsa-mir-34c Unconfirmed 38 hsa-mir-218 dbDEMC

14 hsa-mir-25 dbDEMC 39 hsa-mir-373 Unconfirmed

15 hsa-mir-30d dbDEMC 40 hsa-mir-210 dbDEMC

16 hsa-mir-199a HMDD 41 hsa-mir-302b HMDD, dbDEMC

17 hsa-mir-30b dbDEMC 42 hsa-mir-15b dbDEMC, miR2Disease

18 hsa-mir-16 HMDD, dbDEMC 43 hsa-mir-181a dbDEMC, miR2Disease

19 hsa-mir-146a HMDD, dbDEMC 44 hsa-mir-150 dbDEMC

20 hsa-mir-29c dbDEMC 45 hsa-mir-339 Unconfirmed

21 hsa-mir-125b dbDEMC 46 hsa-mir-451 dbDEMC, miR2Disease

22 hsa-mir-30e dbDEMC 47 hsa-mir-219 Unconfirmed

23 hsa-mir-214 dbDEMC 48 hsa-mir-133a dbDEMC

24 hsa-mir-146b dbDEMC 49 hsa-mir-195 dbDEMC

25 hsa-mir-9 dbDEMC 50 hsa-mir-199b dbDEMC

TABLE 5 | The top 50 breast neoplasms-related miRNAs candidates predicted by BHCN with removed all known breast neoplasms-miRNAs associations and the

confirmation of these associations.

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-21 HMDD, mir2disease, dbDEMC 26 hsa-let-7g HMDD, dbDEMC

2 hsa-mir-17 HMDD, dbDEMC 27 hsa-mir-181b HMDD, mir2disease, dbDEMC

3 hsa-mir-20a HMDD, dbDEMC 28 hsa-mir-141 HMDD, mir2disease, dbDEMC

4 hsa-mir-155 HMDD, mir2disease, dbDEMC 29 hsa-mir-127 HMDD, mir2disease, dbDEMC

5 hsa-mir-18a HMDD, dbDEMC 30 hsa-mir-146b HMDD, miR2disease

6 hsa-let-7a HMDD, mir2disease, dbDEMC 31 hsa-mir-126 HMDD, mir2disease, dbDEMC

7 hsa-mir-146a HMDD, mir2disease, dbDEMC 32 hsa-mir-143 HMDD, mir2disease, dbDEMC

8 hsa-mir-19a HMDD, dbDEMC 33 hsa-mir-29b HMDD, mir2disease, dbDEMC

9 hsa-mir-16 HMDD, dbDEMC 34 hsa-mir-106a dbDEMC

0 hsa-mir-221 HMDD, miR2disease 35 hsa-mir-9 HMDD, dbDEMC

11 hsa-let-7e HMDD, dbDEMC 36 hsa-mir-199a HMDD, dbDEMC

12 hsa-mir-19b HMDD, dbDEMC 37 hsa-mir-106b HMDD, dbDEMC

13 hsa-mir-222 HMDD, dbDEMC 38 hsa-mir-29c HMDD, dbDEMC

14 hsa-let-7b HMDD, dbDEMC 39 hsa-mir-132 dbDEMC

15 hsa-mir-223 HMDD, dbDEMC 40 hsa-mir-1 dbDEMC

16 hsa-mir-125b HMDD, mir2disease, dbDEMC 41 hsa-mir-29a HMDD, dbDEMC

17 hsa-mir-92a HMDD, dbDEMC 42 hsa-mir-214 dbDEMC

18 hsa-let-7d HMDD, mir2disease, dbDEMC 43 hsa-mir-205 HMDD, mir2disease, dbDEMC

19 hsa-let-7c HMDD, dbDEMC 44 hsa-mir-101 HMDD, dbDEMC, miR2disease

20 hsa-let-7i HMDD, mir2disease, dbDEMC 45 hsa-mir-191 HMDD, mir2disease, dbDEMC

21 hsa-mir-145 HMDD, mir2disease, dbDEMC 46 hsa-mir-181a HMDD, mir2disease, dbDEMC

22 hsa-mir-34a HMDD, dbDEMC 47 hsa-mir-24 HMDD, dbDEMC

23 hsa-mir-15a HMDD, dbDEMC 48 hsa-mir-203 HMDD, mir2disease, dbDEMC

24 hsa-mir-200b HMDD, mir2disease, dbDEMC 49 hsa-mir-194 dbDEMC

25 hsa-let-7f HMDD, mir2disease, dbDEMC 50 hsa-mir-150 dbDEMC
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breast cancer tissues, and Isobe et al. (2014) found that miR-
142 regulates the tumorigenicity of human breast cancer stem
cells via WNT signaling pathway. Furthermore, Schwickert et al.
(2015) found that has-mir-142 inhibits breast cancer cell invasion
by integrating Alpha V and simultaneously targeting WASL.
These literature were published after the last update of the above
three databases and were not collected in the database, thereby
further confirming the validity of BHCN for miRNA-disease
association prediction.

In the predictive dataset, 37 miRNAs were associated with
colon neoplasm, and we used these known information for
miRNA-disease association prediction. From Table 4, 41 of the
top 50 colon neoplasm-associated miRNAs predicted by BHCN
were found in updated HMDD, miR2disease, and dbDEMC.
The unverified ones were the hsa-mir-200a (ranked 6th), hsa-
mir-92b (11th), hsa-mir-34b (12th), hsa-mir-34c (13th), hsa-mir-
199a (16th), hsa-mir-103 (30th), hsa-mir-373 (39th), hsa-mir-
339 (45th), and hsa-mir-219 (47th). For these miRNAs that were
not validated in the above three databases, some supporting
evidence were obtained by searching with the relevant literature.
Pichler et al. (2014) found that MiR-200a affects the prognosis of
patients with rectal cancer by regulating epithelial–mesenchymal
transition-related gene expression. Niu et al. (2016) found that
hsa-miR-92b can be used as a reference gene in circulating
miRNAs in colorectal cancer. To elucidate the role of the miR-34
family in colon cancer, Hiyoshi et al. (2015) used quantitative
RT-PCR to measure tumors and adjacent non-cancerous tissues

of 159 American and 113 Chinese patients with colon cancer,
and all mir-34 family members showed significantly increased
colon tumors. Nonaka et al. (2014) discovered that miR-199a can
be used as a serum biomarker for colorectal cancer. Mussnich
et al. (2015) found that MiR-199a and MiR-375 affected the
colon cancer cells’ sensitivity to cetuximab by targeting PHLPP1.
Moreover, Drusco et al. (2014) reported that the up-regulation
of hsa-miR-21, hsa-miR-103, hsa-miR-93, hsa-miR-31, and the
down-regulation of hsa-miR-566 are the markers of colon cancer
metastasis. Tanaka et al. (2011) found that miR-373 plays an
important regulatory role in colon cancer cell proliferation.

Predecessors also used the computational prediction method
to confirm that the miRNAs such as hsa-mir-92 and hsa-mir-
200a are closely related to colon neoplasm. These two miRNAs
were predicted to be associated with colon neoplasm in the
case analysis of RLSMDA (Chen and Yan, 2014). DRMA (Chen
et al., 2018d) also predicted that hsa-mir-199a was associated
with colon neoplasm in case studies. MCMDA (Li et al., 2017),
PBMDA (You et al., 2017), and EGBMMDA (Chen et al., 2018e)
predicted hsa-mir-199a and hsa-mir-200a to be associated with
colon neoplasm in the case analysis. Meanwhile, GIMDA (Chen
et al., 2017a) predicted that hsa-mir-199a was associated with
colon neoplasm.

Considering all the datasets used in this paper were
generated before the publication of the abovementioned
literature, the reliability of the proposed method was
further illustrated.

TABLE 6 | The top 50 colon neoplasms-related miRNAs candidates predicted by BHCN with removed all known colon neoplasms-miRNAs associations and the

confirmation of these associations.

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-21 HMDD, miR2Disease, dbDEMC 26 hsa-let-7i HMDD, dbDEMC

2 hsa-mir-17 HMDD, dbDEMC 27 hsa-let-7f HMDD, dbDEMC

3 hsa-mir-20a HMDD, miR2Disease, dbDEMC 28 hsa-mir-143 HMDD, miR2Disease, dbDEMC

4 hsa-mir-18a HMDD, miR2Disease, dbDEMC 29 hsa-let-7g HMDD, miR2Disease, dbDEMC

5 hsa-mir-155 HMDD, miR2Disease, dbDEMC 30 hsa-mir-1 dbDEMC

6 hsa-let-7a HMDD, miR2Disease, dbDEMC 31 hsa-mir-141 HMDD, miR2Disease, dbDEMC

7 hsa-mir-19a HMDD, miR2Disease, dbDEMC 32 hsa-mir-146b dbDEMC

8 hsa-mir-16 HMDD, dbDEMC 33 hsa-mir-127 HMDD, miR2Disease, dbDEMC

9 hsa-mir-221 HMDD, miR2Disease, dbDEMC 34 hsa-mir-9 dbDEMC

10 hsa-mir-146a HMDD, dbDEMC 35 hsa-mir-106b HMDD, mir2disease, dbDEMC

11 hsa-mir-222 dbDEMC 36 hsa-mir-126 HMDD, dbDEMC

12 hsa-mir-15a HMDD, dbDEMC 37 hsa-mir-29b HMDD, miR2Disease, dbDEMC

13 hsa-mir-19b HMDD, miR2Disease, dbDEMC 38 hsa-mir-200a Unconfirmed

14 hsa-mir-145 HMDD, miR2Disease, dbDEMC 39 hsa-mir-214 HMDD

15 hsa-let-7e HMDD, dbDEMC 40 hsa-mir-25 dbDEMC

16 hsa-mir-200b HMDD, dbDEMC 41 hsa-mir-29a HMDD, dbDEMC, miR2Disease

17 hsa-mir-125b dbDEMC 42 hsa-mir-205 HMDD, dbDEMC

18 hsa-let-7b HMDD, miR2Disease, dbDEMC 43 hsa-mir-181a dbDEMC, miR2Disease

19 hsa-let-7d HMDD, dbDEMC 44 hsa-mir-132 HMDD, dbDEMC

20 hsa-mir-181b dbDEMC, miR2Disease 45 hsa-mir-15b dbDEMC, miR2Disease

21 hsa-mir-92a HMDD, dbDEMC 46 hsa-mir-194 dbDEMC

22 hsa-mir-34a HMDD, miR2Disease, dbDEMC 47 hsa-mir-106a HMDD, dbDEMC, miR2Disease

23 hsa-mir-223 HMDD, miR2Disease, dbDEMC 48 hsa-mir-29c dbDEMC

24 hsa-mir-199a Unconfirmed 49 hsa-mir-30c HMDD, dbDEMC

25 hsa-let-7c HMDD, dbDEMC 50 hsa-mir-196a dbDEMC, miR2Disease
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To validate the predictive capability of BHCN for isolated
diseases, we removed the known associations of miRNAs with the
disease. We used breast and colon neoplasms as case studies, and
the results were shown in Tables 5, 6, respectively.

For breast neoplasm, we removed 78 known associations
between breast neoplasm and miRNAs, used BHCN
to predict the association of potential miRNAs with
breast neoplasm. All of the top 50 miRNAs predicted
can be found in the updated HMDD, miR2disease, and
dbDEMC databases.

For colon neoplasm, the associations of 37 known miRNAs
with colon neoplasm were removed. Of the top 50 miRNAs
predicted, 48 miRNAs were confirmed in the above three
datasets. The first one unverified was hsa-mir-199a (24th), and
the second one unverified was hsa-mir-200a (38th). Both of
these miRNAs were predicted in the previous colon neoplasm
case, and many previous literatures have shown that these
miRNAs are associated with colon neoplasm. Therefore, we
believe that BHCN is able to perform well for predicting the
isolated diseases.

DISCUSSION AND CONCLUSION

Inspired by the general network co-neighbors, this paper
proposed the definition of the co-neighbors of the bipartite
network based on the hypothesis that that functionally similar
miRNAs are related to phenotypically similar diseases. Eight
local structural similarity indexes which are co-neighbor,
Salton, Jaccard, Sørensen, HPI, HDI, LHN1, and PA were
used to measure the association probabilities between nodes.
Several types calculation methods of computational miRNA-
disease prediction score were introduced, namely, the bipartite
network co-neighbor link prediction score using only known
association information, the co-neighbor link prediction score
based on miRNA similarity, the co-neighbor link prediction
score based on disease similarity, the weighted co-neighbor
link prediction score based on miRNA similarity and disease
similarity. Using only known association information, the co-
neighbor link prediction score on bipartite network cannot
predict the isolated diseases and new miRNAs, but the score
calculation is simple, and only the experimentally verified
miRNA-disease association information can be used for inference
prediction. The co-neighbor link prediction score based on
miRNA similarity used the association probability of all miRNAs
and specific diseases to measure the degree of association
between specific miRNAs and specific diseases. Using this
score can significantly improve the prediction accuracy, but
it cannot be used to predict isolated diseases. This approach

also used the association probability of all diseases and specific
miRNAs to measure the degree of association between specific
diseases and specific miRNAs. Given that the disease network
is not sufficiently precise and using only known association
information between all diseases and specific miRNAs creates

noise. The predicted AUC value failed to rise and fall compared
with that in the bipartite network co-neighbor link prediction
score. However, the method can be used for the prediction
of isolated diseases. After considering the advantages and
disadvantages of the previous prediction scores, we finally
developed a weighted co-neighbor link prediction score based
on miRNA similarity and disease similarity with absorbing
the advantages of the abovementioned methods to get high
prediction accuracy.

In the current case study, we predicted breast and colon
neoplasms with the results showing that our method had a good
predictive ability. Compared with the most advanced computing
methods at present, our method is simple to implement, can
be used in the prediction of isolated diseases and new miRNAs,
has strong interpretability with few parameters. Therefore, our
proposed calculation method can be used as a powerful auxiliary
tool for biological experiments.

Although our method has many advantages, some drawbacks
are still noted. Firstly, it is not accurate enough to construct
disease similarity networks and miRNA similarity networks.
Secondly, our method is a local method that uses only local
structural information. In future research, to avoid noise, we will
use only the association information of diseases that are closely
related to the disease to be predicted. Thus, we will use more
scientific metrics to construct the similarity network.
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