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Abstract

Background/Purpose

The use of MRI as a diagnostic tool has gained popularity in the field of orthopedics.

Although 3-dimensional (3D) MRI offers more intuitive visualization and can better facilitate

treatment planning than 2-dimensional (2D) MRI, manual segmentation for 3D visualization

is time-consuming and lacks reproducibility. Recent advancements in deep learning may

provide a solution to this problem through the process of automatic segmentation. The pur-

pose of this study was to develop automated semantic segmentation on 2D MRI images of

rotator cuff tears by using a convolutional neural network to visualize 3D models of related

anatomic structures.

Methods

MRI scans from 56 patients with rotator cuff tears (T2 Linear Coronal MRI; 3.0T, 512 mm ×
512 mm, and 2.5-mm slice thickness) were collected. Segmentation masks for the cuff ten-

don, muscle, bone, and cartilage were obtained by four orthopedic shoulder surgeons, and

these data were revised by a shoulder surgeon with more than 20 years’ experience. We

performed 2D and 3D segmentation using nnU-Net with secondary labels for reducing false

positives. Final validation was performed in an external T2 MRI dataset (10 cases) acquired

from other institutions. The Dice Similarity Coefficient (DSC) was used to validate segmen-

tation quality.

Results

The use of 3D nnU-Net with secondary labels to reduce false positives achieved satisfactory

results, even with a limited amount of data. The DSCs (mean ± SD) of the cuff tendon, mus-

cle, bone, and cartilage in the internal test set were 80.7% ± 9.7%, 85.8% ± 8.6%, 97.8% ±
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0.6%, and 80.8% ± 15.1%, respectively. In external validation, the DSC of the tendon seg-

mentation was 82.74±5.2%.

Conclusion

Automated segmentation using 3D U-Net produced acceptable accuracy and reproducibil-

ity. This method could provide rapid, intuitive visualization that can significantly facilitate the

diagnosis and treatment planning in patients with rotator cuff tears.

Introduction

A rotator cuff tear (RCT) is a common source of shoulder pain and disability. In combination

with physical examinations and clinical history, imaging evaluations play a pivotal role in diag-

nosing RCTs. The imaging modality most commonly used in RCT detection is magnetic reso-

nance imaging (MRI) [1, 2]. The primary reason for performing MRI in cases of suspected

RCT is to determine the extent of the tear and help orthopedic surgeons in deciding whether

rotator cuff repair should be performed. This explains why MRI reports include descriptions

of important RCT characteristics, such as location, degree of tendon involvement, partial or

full thickness, size, and degree of retraction. However, while the tear pattern is not often

reported in MRI readings, it plays a significant role in RCT management, especially in surgical

treatment. In comparison with radiologists’ reports of knee MRI, which regularly includes

descriptions of the shape of a meniscal tear, the rotator cuff tendon tear pattern remains rela-

tively challenging to elucidate through two-dimensional (2D) MRI [3].

The rotator cuff tear pattern can play an important role in the surgeon’s approach and

selection of repair procedures as well as the likelihood of clinical success after repair [4–6]. The

availability of this information before surgery can be useful for the surgeon and will permit

complete surgical planning, allowing the surgeon to provide prognostic information to

patients based on surgical success rates for different tear patterns. Accurate determination of

the tear pattern can also help in deciding whether the tear is repairable. In addition, a correctly

defined tear pattern can help determine if there is enough tendon tissue remaining to allow

marginal convergence during the repair. Previous studies demonstrated that the characteriza-

tion of RCTs and their patterns by MRI could be difficult before arthroscopic examination [7,

8]. Even though a classification system for RCT patterns using 2D MRI has been presented in

the literature, this system is not as accurate as that seen during arthroscopy [5, 9].

Gyftopoulos et al. tried to demonstrate that 3D visualizations of images of the rotator cuff

can improve the accuracy of characterizing RCT patterns in comparison with 2D MRI-based

techniques [10]. Although 3D visualized images can offer more intuitive visualization and bet-

ter facilitate treatment planning than 2D MRI, the currently used method of manual segmenta-

tion is time-consuming and lacks reproducibility. 3D reconstruction of cuff tendon MRI

requires high-quality images (thin section, 1-mm slice), a specialist with extensive musculo-

skeletal training, and over 4–5 hours of manual tasks. For these reasons, 3D reconstruction of

cuff tendons by using MRI has not gained popularity in clinical practice.

In this regard, recent advancements in deep learning technology may provide a solution

through automatic segmentation of 3D images to produce 3D reconstructed images efficiently

and accurately. Trials and techniques for this approach have been proposed, and its usefulness

has been proven for images of the rotator cuff tendon [11–14]. Kim et al. investigated a deep

learning method that can rule out a substantial rotator cuff injury in individuals with suspected

rotator cuff tear by using conventional shoulder radiographs [12]. Although their method
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showed a high level of sensitivity, it was insufficient to identify various patterns of tendon tears

due to the use of X-ray images. G Medina et al. demonstrated the usefulness of segmentation

of the supraspinatus, infraspinatus, and susbscapularis in MRI using deep learning [13]. How-

ever, the presence and shape of the rotator cuff tendon was difficult to evaluate in the segmen-

tation result since the authors did not focus on tendon segmentation. Shim et al. proposed a

3D convolutional neural network (CNN)-based method for diagnosing the existence or

absence of an RCT, classifying tear size, and visualizing the tear location in 3D [14]. This

method can facilitate estimation of the size and position of a tear, but it shows the limitation of

not being able to display the detailed tear patterns.

However, the techniques and usefulness of automatic 3D visualization of the whole structure of

the rotator cuff tendons has not been well established and proven yet. Unlike the signal of bone or

cartilage tissue, which can be easily differentiated from other tissue, such as cuff tendon, biceps

tendon, reliable and reproducible segmentation for rotator cuff tendon can easily lead to errors.

To improve the quality of segmentation efficiency, a proper understanding of the anatomical

structures’ relevance is important. We assumed that this problem could be resolved by using a pro-

tocol based on 3D U-Net instead of 2D U-Net, which allows consideration of the images’ relation-

ships. In addition, construction of secondary labels for the biceps tendon, which is named

different from cuff tendon, can enhance the quality of automated segmentation. Thus, the purpose

of this study was to develop automated semantic segmentation on 2D MRI images of the rotator

cuff tendon by using a CNN to visualize 2-dimensional images of cuff tissue into three dimensions.

We hypothesized that our constructed segmentation protocol for 3-dimensional visualization

could consistently yield good accuracy and reproducibility in internal and external validation.

Materials and methods

Imaging datasets

This study was conducted after receiving approval from the institutional review board (AMC, No

2019–1026). The informed consent was not obtained because the collected data were analyzed anon-

ymousl. Records from the MRI database of a single center were collected, retrospectively. The 2D

MRI examinations were performed from January 2019 to February 2020 for patients with suspected

RCTs in the shoulder. Among them, we excluded patients with (1) a surgical history for the shoulder

joints, (2) suspicion of infection, and (3) traumatic fracture or deformity of the shoulder joint. After

excluding these patients, a total of 56 MRI images were eligible and enrolled for this study. The

mean patient age in the retained group was 63.7 years (male/female ratio, 24/32 patients; Table 1).

All patients underwent an identical MRI protocol using the 3.0-T scanner (Ingenia).

Gold standard

For the gold standard examination, masks for the cuff tendon, muscle, bone, and cartilage

were manually segmented by four board-certified orthopedic shoulder surgeons, and the data

was revised by one shoulder surgeon (KHK) with more than 20 years’ experience to ensure

uniformity of the gold standard. Fig 1A shows an example of the gold standard masks. The

labels were divided into four categories: muscle, humerus, cuff tendon and humeral head artic-

ular cartilage. The mean time required for manual segmentation in each case was 40 min.

Overview

Our proposed segmentation learning process enhanced segmentation performance by effi-

ciently removing irrelevant false positives. We introduced two training processes for this

purpose.
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The first process involved generating secondary labels as shown in Fig 1A. We trained a

deep learning model using a manually annotated dataset (4 classes: muscle, humerus, cuff ten-

don, cartilage). Then, we computed false positives by comparing the ground truth with the

prediction results. Lastly, we merged false positives with the ground truth to create the second-

ary labels shown as Fig 1A3. In this process, the four existing ground truth labels were pre-

served, and the false-positive part of the predicted results for the cuff tendon, the target, was

added as the fifth label.

The second step was the refined segmentation process. The segmentation model was

trained once more with the dataset to which secondary labelling was applied, and the fifth label

added during secondary labelling was excluded from the prediction results, as shown in

Fig 1B.

Table 1. Demographic data.

Demographic data

Total 56 MRI images

Sex

Male (%) 24 (42.9)

Female (%) 32 (57.1)

Right/Left (%) 32 (57.1)/24 (42.9)

Age (year) 63.7 ± 9.3

Tear size (intact/partial/small/medium/large/massive) 10/6/6/14/12/8

SSP or ISP tear 51

SSc tear 32

Goutallier stage (0/1/2/3/4) 3/21/21/7/4

ISP, infraspinatus; SSc, subscapularis; SSP, supraspinatus

https://doi.org/10.1371/journal.pone.0274075.t001

Fig 1. Study overview to improve 2D MRI visualization of rotator cuff tendons using segmentation network. In

this study, training segmentation was conducted twice in order to improve the segmentation result of the cuff tendons,

with A) secondary labelling process and B) refined segmentation training. In the secondary labelling process, a

secondary labelled dataset was constructed based on the false-positive segmentation results for the cuff tendon of the

segmentation model using the manually annotated dataset (4 classes; muscle, humerus, cuff tendon, cartilage), and the

newly formed 4 + 1 class dataset was trained once more to obtain a refined segmentation result.

https://doi.org/10.1371/journal.pone.0274075.g001

PLOS ONE Deep learning-facilitated automated reconstruction of rotator cuff

PLOS ONE | https://doi.org/10.1371/journal.pone.0274075 October 10, 2022 4 / 13

https://doi.org/10.1371/journal.pone.0274075.t001
https://doi.org/10.1371/journal.pone.0274075.g001
https://doi.org/10.1371/journal.pone.0274075


Fig 1 summarizes our study overview to improve 2D MRI visualization of rotator cuff ten-

dons using 2D/3D U-Net.

Deep learning protocol

The U-Net is the deep learning model proposed by Olaf Ronneberger et al. for biomedical

image segmentation [15]. The U-Net network consists primarily of two paths. The initial path

is an encoder path, which compresses data using convolutional and max-pooling layer stacks.

The second path is the symmetric expanding path used to enable precise localization with

transposed convolutions. Thus, U-net is a highly advanced end-to-end segmentation model

that can segment the image by pixel by combining this two-path information. We employed

the Non new U-Net (nnU-Net) framework, which is optimized for 3D medical image organ

segmentation on the basis of various intensities and spacing in computed tomography and

MRI based on this U-Net architecture (official code: https://github.com/MIC-DKFZ/nnUNet)

[16]. The nnU-Net is a patch-based learning model that shows high segmentation perfor-

mance, especially in anisotropic medical images. In addition, nnU-Net provides the 2D nnU-

Net (2D U-Net) and the full-resolution 3D nnU-Net (3D U-Net) based algorithm with

advanced post-processing capabilities. In this application, both 2D U-Net and 3D U-Net were

tested. The differences between 2D U-Net and 3D U-Net analysis methods are summarized in

Fig 2. The performance of the anisotropic image varies depending on the 2D U-Net and 3D

U-Net analysis methods, since the amount of image information varies according to the direc-

tion. Generally, 2D U-Net analyses images per slice, can be computed efficiently in memory,

and is advantageous due to its relatively large dataset. In addition, Isensee et al. argued that 2D

U-Net shows better segmentation performance than 3D U-Net in anisotropic images. How-

ever, understanding anatomical structures is inferior to 3D U-Net since it is analyzed by slices.

The dataset was randomly divided into a training set (n = 34, 60%), a tuning set (n = 11,

20%), and a validation set (n = 11, 20%). The dataset was pre-processed by resampling all cases

to a standard voxel spacing (2.5 mm × 0.29 mm × 0.29 mm) and a histogram-based normaliza-

tion technique for each MRI image. During training, images of different sizes were input to

Fig 2. Comparison between 2D and 3D convolutional calculation. The number of dimensions represents the

number of directions in the filter.

https://doi.org/10.1371/journal.pone.0274075.g002
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the 2D U-Net and 3D U-Net. For the 2D U-Net, the input was 512 × 512, which corresponds

to the full image resolution. For the 3D U-Net, a patch of size 16 × 320 × 320 became the input

of the artificial intelligence model. Fig 3 illustrates the overall pipeline of 3D rendering of a

rotating musculoskeletal system using the deep learning architecture of U-Net.

Since our research goal was to confirm the tear pattern of the tendon, we studied the rela-

tionship of labels that can best express the shape of the tendon. Tendons and muscles have

ambiguous boundaries. Therefore, the tendon segmentation performance will depend on the

relationship between labels. We used stochastic gradient descent for training with an early

stopping option to prevent model overfitting. We set the batch size to 8, epoch size to 1000,

and the loss function for learning was a combination of the Dice similarity coefficient (DSC)

and weighted cross-entropy. Eq 1. depicted the loss function, where ε is the factor used to

avoid division by zero. The model was implemented using Pytorch 1.5 in the Python 3.5 envi-

ronment. We used a single GPU (Nvidia RTX—24 GB RAM) to train our model. For 2D

U-Net and 3D U-Net, the training time on the dataset was 10 and 16 h, respectively. We

applied extensive data augmentation such as rotations, scaling, brightness, contrast, and

gamma augmentations to all training patches during the training.

Loss ¼ �
Xn

i¼0
½yi logðŷiÞ þ ð1 � yiÞ logð1 � ŷiÞ� þ 1 �

2jyi \ ŷi j þ ε
jyij þ jŷi j þ ε

Eq1

Secondary labelling

Fig 4 depicts our strategy to enhance cuff tendon segmentation using secondary labeling. We

observed that the biceps long head (BLH) tendon was predicted as a cuff tendon during our

tests. However, since the BLH tendon was not labelled in the ground truth mask, false positives

were removed using the secondary labeling technique. Inspired by Zhang et al., we assigned

the BLH as the fifth category using the difference between the ground truth and the results of

the first trained segmentation model [17].

To apply secondary labeling, labels must be reprocessed through entire datasets; thus,

5-fold cross-validation was performed to generate the secondary labeling. Fig 4 shows the pro-

cess of generating the secondary labeling. First, the dataset was divided into 5-folds, and five

training sessions were performed. For each fold, predictions were made using a validation

dataset and compared with the ground truth, and false positives estimated to be biceps were

designated as a new label (sky blue). Finally, the entire secondary labelled dataset was con-

structed using secondary label data from each of the five folds. When the dataset, including the

secondary label dataset, was constructed in this way, a segmentation model was trained into

the existing 4–5 classes, and the newly added class from the result was discarded.

Fig 3. Pipeline of the nnU-Net segmentation model of 2D rotator cuff MRI.

https://doi.org/10.1371/journal.pone.0274075.g003
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Evaluation metrics

In this study, the DSC and intersection over union (IoU) of the tendon cuff were used as the

primary metrics to express the accuracy of the tear pattern of tendons. The DSC metric is

widely used for performance evaluation of medical image segmentation tasks. The DSC is

defined as the number of overlapped volumes between the segmentation result and the gold

standard. In addition, IoU is a method for calculating the percent overlap between the target

mask and our prediction output. The definitions and more detailed explanations of DSC and

IoU metrics are well summarized in the study conducted by Taha & Hanbury [18].

DSC ¼
2 � TP

2 � TP þ FPþ FN
; IoU ¼

TP
TP þ FPþ FN

� TP ¼ True positive; FP ¼ False positive; FN ¼ False negative
Eq2

Applying the DSC and IoU as an evaluation reference, intraobserver validation was per-

formed to determine the most accurate and reproducible protocol. First, by comparing the 2D

Fig 4. Process of adapting secondary labelling. To generate a complete secondarily-labelled data set (4+1 class), we

split the data set into 5 folds and used 5 segmentation models trained by each fold.

https://doi.org/10.1371/journal.pone.0274075.g004
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U-Net and 3D U-Net models, the segmentation metrics of the images were evaluated. Subse-

quently, evaluations based on the secondary label were conducted. To confirm the effect of the

tear size on the segmentation metrics of reconstructed images, the segmentation performance

according to the tendon cuff’s tear size was compared with the data derived from the model.

External validation set

To confirm the robustness of segmentation, datasets were acquired from another independent

center. Ten additional cases were selected for every different tear size and segmented manually

by one shoulder surgeon who confirmed the intraobserver validation dataset. The manually

segmented tendons were compared with the automatically reconstructed image by our study’s

protocol. The external dataset was composed of equipment from various manufacturers, such

as Siemens and Philips, and the strength of the magnetic field also varied (1.5T and 3T).

Among these, we selected only the image produced by the coronal T2 protocol.

Statistical analysis

The paired t-test was used to determine whether the difference in performance for each test

was significant when the secondary label was adapted. One-way analysis of variance was per-

formed to evaluate the performance of the artificial intelligence model according to the degree

of tear of the patient’s cuff tendon. Both statistical analyses were performed using R version 3.5

(R Foundation for Statistical Computing, Vienna, Austria), and significance was set at a p-

value of<0.05.

Results

Intraobserver validation

After the training was complete, DSC and IoU scores for the rotator cuff were computed with

a gold standard mask. Fig 5 shows one of the training and validation curves in our study.

Table 2 represents the evaluation results of our study. The highest DSC and IoU values were

obtained when the secondary label was applied in the 3D U-Net based model. Using the 3D

U-Net model with the secondary label, the tendon’s average DSC increased by 0.072. However,

application of the secondary label in the 2D U-Net showed similar results within the error

range.

The means and SD of the DSC from the model trained on the test dataset was 0.801 ± 0.097.

Except for the humerus, the segmentation results for the muscles, tendons, and cartilage

showed DSC values lower than 0.800. The DSC of the tendon was the lowest. Application of

secondary labelling reduced false positives and improved the overall segmentation perfor-

mance (DSC 0.729! 0.801, p-value = 0.04, Table 2). Fig 6 intuitively shows that false positives

are effectively reduced by applying the secondary label in the 3D U-Net. The constructed auto-

mated segmentation using 2D and 3D U-Nets required an average inference time of 10 s and

30 s, respectively. For reference, the DSC of intraobserver difference was 0.800 ± 0.103 when

the same surgeon drew the tendon cuff again in five cases, while the DSC of interobserver dif-

ference was 0.761 ± 0.110.

Subgroup analysis according to tear size

Fig 7 shows the results of DSC evaluation based on tear size. In Fig 7, as the x-axis increases to

the right, the tear size of the tendon increases, and the y-axis is the DSC performance value of

the artificial intelligence model. There was no significant statistical difference in DSC accord-

ing to tear size among groups.
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External validation results

External validation was performed to confirm if the trained model could be applied to MRI

scans performed at outside centers with different protocols. Similarly, DSC with ground truth

was evaluated for 10 external validation datasets. The DSC for the tendon in external validation

was 0.827 ± 0.052.

Discussion

The most important finding of our study was that our set protocol based on a deep learning

system that combined 3D U-Net with secondary labeling yielded a sufficiently accurate and

reproducible DSC (intraobserver, 0.801; interobserver, 0.827) that could help clinicians reli-

ably determine the cuff tendon tear pattern. These were validated in intra- and interobserver

assessments. In our segmentation task, BLH was not a region of interest, and the objective was

to segment only the cuff tendons. However, BLH of similar intensity was repeatedly captured

Fig 5. Training and validation loss curve of 3D semantic segmentation of the rotator cuff.

https://doi.org/10.1371/journal.pone.0274075.g005

Table 2. Segmentation result for each label in 2D and 3D U-Net according to the secondary labelling effect.

Model type

(Number of parameters)

Secondary

label

Muscle Humerus Tendon Cartilage Overall

DSC IoU p-value DSC IoU p-value DSC IoU p-value DSC IoU p-value DSC IoU

2D × 0.786

±0.090

0.652

±0.109

0.79 0.976

±0.005

0.951

±0.010

0.55 0.725

±0.079

0.591

±0.103

0.21 0.738

±0.118

0.606

±0.126

0.14 0.808

±0.061

-

0.700

±0.087

O 0.786

±0.099

0.653

±0.110

0.976

±0.006

0.950

±0.011

0.728

±0.080

0.596

±0.102

0.738

±0.124

0.605

±0.135

0.810

±0.063

0.701

±0.090

3D × 0.791

±0.098

0.657

±0.109

0.56 0.977

±0.005

0.950

±0.010

0.83 0.729

±0.084

0.601

±0.110

0.04� 0.745

±0.121

0.625

±0.093

0.78 0.812

±0.065

- 0.708

±0.090

O 0.797

±0.095

0.665

±0.112

0.978

±0.006

0.953

±0.012

0.801

±0.094

0.651

±0.117

0.743

±0.114

0.615

±0.095

0.830

±0.073

0.727

±0.092

DSC, Dice similarity coefficient, IoU, intersection over union

�, p < 0.05

https://doi.org/10.1371/journal.pone.0274075.t002
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as a false-positive finding. Therefore, secondary labelling was used to effectively remove false-

positive results, and it was to be effective in combination with 3D U-Net. Therefore, we proved

that the automatic segmentation of 3D images could produce 3D reconstructed images effi-

ciently and accurately in comparison with manual segmentation.

Previous studies showed the clinical usefulness and evaluation of cuff tendon through seg-

mentation [11, 19, 20]. Some proposed the automatic segmentation method, which can help

accurately extract the 3D configuration of the supraspinatus. Additionally, 3D reconstructed

supraspinatus images were utilized for evaluating the muscle atrophy changes after rotator cuff

repair. Despite the ever-present need and high demand for 3D images, the limitations of 3D

imaging were mostly technical. To reconstruct the whole cuff tendon consistently, the protocol

was not entirely constructed, and manual segmentation for each case was not easily realized.

Fig 6. Reduction of false-positive segmentation results using secondary labelling. (a) The result of prediction using

3D U-Net. (b) The result of adapting secondary labelling. (c) Ground truth.

https://doi.org/10.1371/journal.pone.0274075.g006

Fig 7. Segmentation performance according to cuff tear size.

https://doi.org/10.1371/journal.pone.0274075.g007
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However, the deep learning used in this study resulted in high reproducibility and accuracy.

Moreover, the mean inference time for reconstruction images was taken as only 30 seconds for

each case using 3D U-Net. We could overcome many of the limitations using the Deep learn-

ing technique, which gave us the direction to move forward.

This study showed that the combination of deep learning with 3D U-Net and Secondary

labelling showed the most acceptable results in comparison with the gold standard. In the deep

learning process, the actual anatomical structure and its relationships with the surrounding

structures were analyzed together to increase the accuracy of the consistent directional result.

The deep learning system based on the 2D protocol could only study one slice per segmenta-

tion, thereby rendering its accuracy inferior to the 3D protocol, which could determine the

relationship with the slices above and below the slice under consideration. Additionally, in the

comparison based on the number of variables, no negative linear correlation was observed

between the number of variables and accuracy. Rather, the accuracy of tendon evaluation

increased when the relationship between the BLH tendon and the cuff tendon was specified.

These findings proved that learning the anatomical relationship surrounding the cuff tendon

increases reproducibility and accuracy in soft tissue reconstruction.

The clinical value of these findings can be expected to increase since CT images recon-

structed as 3D images have shown many clinical applications. Establishment and widespread

application of this technology can increase its utilization and research value in the future.

Although we have only shown the application of this technique in the visualization of a torn

cuff, further research regarding the operation plan depending on the tear pattern and related

outcomes might be worth consideration. In addition, by matching the reconstructed images

with scope photos, the gold standard of analysis of tear patterns and its accuracy and utilization

could be further improved.

The strength of this study is that it confirmed the remarkably increased efficiency and

reproducibility of segmentation using deep learning. In addition, those results were obtained

from learning various tear models and were validated with other external protocols. These

findings suggested that our constructed protocol could yield acceptable results even when

applied to different MRI protocols. Nevertheless, this study had several limitations. First, the

number of patients was relatively small. Since it takes a lot of time and resources to additionally

secure segmented labelling, we plan to proceed further. Second, the overall DSC of the recon-

structed 3D images was approximately 0.830. However, since the intra/interobserver segmen-

tation variability for the cuff tendon DSCs was 0.800 and 0.761, respectively, the performance

can be considered to be sufficiently high. Moreover, when the size of the segmentation object

is small or thin, the DSC value is undoubtedly low. Third, even though we could measure the

muscle volume, we could not evaluate the quality of the muscle and tendon.

Conclusion

Automated segmentation using 3D U-Net produced acceptable accuracy and reproducibility.

To overcome the confusion caused by the similar strengths of cartilage and tendons in MRI,

we significantly improved segmentation performance by using secondary labelling with the AI

model to refine and retrain the data. This method could provide rapid, intuitive visualization

that can substantially facilitate diagnosis and treatment planning in patients with rotator cuff

tears.
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