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Invaginations of the nuclear membrane occur in different shapes, sizes, and compositions.
Part of these pleiomorphic invaginations make up the nucleoplasmic reticulum (NR), while
others are merely nuclear folds. We define the NR as tubular invaginations consisting of
either both the inner and outer nuclear membrane, or only the inner nuclear membrane.
Specifically, invaginations of both the inner and outer nuclear membrane are also called
type II NR, while those of only the inner nuclear membrane are defined as type I NR. The
formation and structure of the NR is determined by proteins associated to the nuclear
membrane, which induce a high membrane curvature leading to tubular invaginations.
Here we review and discuss the current knowledge of nuclear invaginations and the NR in
particular. An increase in tubular invaginations of the nuclear envelope is associated with
several pathologies, such as laminopathies, cancer, (reversible) heart failure, and Alzheimer’s
disease. Furthermore, viruses can induce both type I and II NR. In laminopathies, the amount
of A-type lamins throughout the nucleus is generally decreased or the organization of lamins
or lamin-associated proteins is disturbed. Also, lamin overexpression or modulation of lamin
farnesylation status impacts NR formation, confirming the importance of lamin processing in
NR formation. Virus infections reorganize the nuclear lamina via (de)phosphorylation of
lamins, leading to an uneven thickness of the nuclear lamina and in turn lobulation of the
nuclear membrane and the formation of invaginations of the inner nuclear membrane. Since
most studies on the NR have been performed with cell cultures, we present additional proof
for the existence of these structures in vivo, focusing on a variety of differentiated
cardiovascular and hematopoietic cells. Furthermore, we substantiate the knowledge of
the lamin composition of the NR by super-resolution images of the lamin A/C and B1
organization. Finally, we further highlight the essential role of lamins in NR formation by
demonstrating that (over)expression of lamins can induce aberrant NR structures.
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1 INTRODUCTION

The term nucleoplasmic reticulum (NR), first launched by
Echevarría et al. (2003) was defined as a nuclear invagination
of both the inner nuclear membrane (INM) and outer nuclear
membrane (ONM), including the underlying nuclear lamina
(Fricker et al., 1997; Clubb and Locke, 1998; Broers et al.,
1999; Echevarría et al., 2003). These invaginations form
branched tubular structures throughout the whole nucleus
that contain many of the different elements normally only
present in the cytoplasm, such as filamentous cytoskeletal
structures. The presence of these invaginations has long
been regarded as a non-physiological structure or a
technical artefact due to cell culturing or chemical fixation.
Indeed, the presence of this intranuclear structure challenged
the classical view of the nucleus as a structure with a smooth
and continuous INM. However, different types of fixation and
live cell imaging confirmed the existence of the NR, excluding
the possibility that the NR can be generated as a consequence
of fixation (Bridger et al., 1993; Broers et al., 1999). Studies
performed since the first description of the NR have led to
increased evidence for the existence of the NR as a genuine
intranuclear structure.

In this study we review and discuss the current knowledge of
nuclear invaginations and the NR in particular. So far, most
studies on the NR have been performed with cell cultures. We

present additional proof for the existence of the NR as a distinct
nuclear organelle in vivo. Furthermore, we substantiate the
knowledge of the lamin composition of the NR by super-
resolution images of the lamin A/C and B1 organization.
Finally, we show that (over)expression of lamins can induce
aberrant NR structures. These NR organizations in vivo and
in vitro are illustrated with different types of high-resolution
microscopy, including electron microscopy (EM) and Stimulated
Emission Depletion (STED) microscopy.

1.1 Structure of the NR
Invaginations of the nuclear envelope occur in different shapes,
sizes, and compositions. The pleomorphic appearance of these
invaginations, often if not always combining the different
structural entities within one nucleus, indicates that these
different structures have separate functions. Mainly based on
electron microscopic observations, the pleiomorphic nuclear
membrane invaginations (PNMI) can be divided into the
following subtypes: 1) nuclear folds (NF) resulting in surface
clefts; 2) double nuclear membrane tubular invaginations of both
ONM and INM, previously described as type II NR (Malhas et al.,
2011); 3) invaginations of only the INM, previously described as
type I NR (Malhas et al., 2011); and 4) other intranuclear
structures (Figure 1). In this review, we use the term
nucleoplasmic reticulum (NR) only for the previously defined
type I and type II NR.

FIGURE 1 | Schematic overview of the different types of nuclear membrane invaginations. PNMI, Pleiomorphic nuclear membrane invaginations; NR,
Nucleoplasmic reticulum; NF, Nuclear folds.
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1.1.1 Nuclear Folds
Within eukaryotic cells a dynamic balance exists between the
folded and unfolded state of a nucleus. In 1965, folded nuclei were
described for the first time. Lane (1965) demonstrated that the
nuclei of smoothmuscle cells disclosed clefts in their surface upon
contraction. This phenomenon was suggested to occur as a
consequence of mechanical forces exerted onto these nuclei
during muscle cell contraction, since upon relaxation these
nuclei regained their smooth contour. However, Franke and
Schinko (1969) revealed that some nuclei of striated muscle
cells retained their invaginations even after isolation from the
muscle cells. This finding contradicted the pure mechanical
explanation of nuclear folds and indicated that these nuclear
folds represent a functional conformation of the nuclear
membrane.

1.1.2 Double Nuclear Membrane Invaginations
Fricker et al. (1997) were the first to describe in detail the complex
membranous structure within the nucleus, now known as the NR.
These authors described long, dynamic intranuclear tubular
structures and demonstrated that these tubes consisted of a
double (nuclear) membrane with enclosed nuclear pore
complexes, surrounded by lamins and containing proteins
such as protein disulphide isomerase and glucose-6-
phosphatase. These transmembrane proteins are normally only
found in the endoplasmic reticulum (ER) membrane, clearly
indicating that these tubes result from invaginations of both
the ONM and INM together with the underlying nuclear
lamina. To date, intranuclear tubular invaginations of both the
INM and ONM have been reported in a variety of cultured cells
and cells in tissues, including mouse 3T3 fibroblasts (Schmidt
et al., 1994; Fricker et al., 1997; Clubb and Locke, 1998), Sertoli
cells (Suarez-Quian and Dym, 1992), rat small neuroblasts
(Radouco-Thomas et al., 1971), raccoon and rat neurons
(Burns et al., 1971; Stevens and Trogadis, 1986), human and
mouse liver cells (Leduc and Wilson, 1959a, 1959b; Wier et al.,
1971; Bourgeois et al., 1979), mouse skeletal muscle cells (Marius
et al., 2006), and rat cardiomyocytes (Guatimosim et al., 2008).
Nuclear invaginations of the INM and ONM have also been
found in many tumour-derived cell lines and in virus-infected
cells (see Section 1.4). Invaginations of both the INM and ONM
have previously been described as type II NR (Malhas et al., 2011).
According to this description, it encloses a diffusion-accessible
cytoplasmic core, which often contains cytoskeletal elements.
In addition, it contains nuclear pore complexes and a
nuclear lamina. We emphasize that also nuclear pockets,
described as cytoplasmic projections into the nucleus (Burns
et al., 1971), and consisting of invaginations of both nuclear
membranes (Bourgeois et al., 1979) belong to this group of NR
structures. Nuclear pockets have been reported in a variety of
hematopoietic cells, including leukocytes (Anderson, 1966; Smith
and O’Hara, 1967b, 1967a), monocytes (Huhn, 1967), and
lymphocytes (Anderson, 1966; Smith and O’Hara, 1967a,
1967b; Huhn, 1967; Sasaki and Kendall, 1985; Sasaki and
Matsumura, 1988).

Before its classification as type II NR, Broers et al. (1999)
further specified these double nuclear membrane invaginations

by demonstrating that all three A-type lamins were found to be
associated with these structures. In addition, long-term life cell
imaging using GFP-tagged lamins showed that these
invaginations were highly stable during interphase. Double
labelling with rhodamine B hexyl ester and GFP-labelled
lamins showed that all membrane-containing tubules are
associated with lamins. Remarkably, Fricker et al. (1997) as
well as Broers et al. (1999) also described intranuclear lamin
structures (foci and tubules) without a nuclear envelope staining.

Next to tubular invaginations which seemed to be mainly
vertically organized in cells growing on cover slips, more complex
tangled filament networks, parallel to the cell substrate were
described in cultured fibroblasts (Clubb and Locke, 1998;
Broers et al., 1999). These horizontally organized tubular
invaginations contained (cytoplasmic) actin fibers, while the
vertical tubular invaginations lacked actin filaments (Clubb
and Locke, 1998). Other studies confirmed the presence of
actin in tubular invaginations (Johnson et al., 2003; Storch
et al., 2007) but made no reference to the distinction between
vertically and longitudinally oriented tubules.

1.1.3 Single Nuclear Membrane Invaginations
In addition to type II NR, also single membrane intranuclear
structures have been described, such as the annulate lamellae
(AL) system (Chen and Merisko, 1988; Kessel, 1989) and the
nucleolar channel system (NCS) (Clyman, 1963; Moricard and
Moricard, 1964; Ancla et al., 1965; Terzakis, 1965; More and
McSeveney, 1980). Invaginations of only the INM have been
defined as type I NR (Malhas et al., 2011). Type I NR does not
contain a cytoplasmic core, can lack nuclear pore complex
components and often lacks a nuclear lamina.

AL are often abundant in cells with high proliferative capacity,
such as oocytes, embryonic cells, and tumour cells, but they are
also present in non-proliferating cells under permanent cell-cycle
arrest, including murine neurons and cardiomyocytes
(Raghunayakula et al., 2015). These cytoplasmic organelles
lack a nuclear lamina, similar to the endoplasmic reticulum
(Chen and Merisko, 1988), but do contain annulate pore
complexes, which are morphologically comparable to nuclear
pore complexes (Raghunayakula et al., 2015). AL have been
proposed to function as a storage compartment for excess
nucleoporins to support the assembly of NPCs during rapid
cell proliferation, but this function does not seem to
correspond with the AL expression in non-proliferating cells
(Raghunayakula et al., 2015; Ren et al., 2019). In addition, a
role for AL in viral infection is becoming evident. AL have been
observed in cells infected with various viruses, including the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) (Eymieux et al., 2021b; Caldas et al., 2021). The increase in AL
might be a cellular stress reaction, but it could also be a specific
induction in favour of the pathogen (Eymieux et al., 2021a).
Although there are a few hypotheses, the exact biological role of
AL remains largely unknown.

The NCS is an invagination of only the INM and not of the
whole nuclear envelope. The NCS consists of several layers of
membrane tubules embedded in an electron dense matrix and it
lacks both nuclear pore complexes and a nuclear lamina, in
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contrast to the true tubular invaginations (Kittur et al., 2007).
This structure appears transiently, during an ~5-day window, in
the midluteal phase of the menstrual cycle when the human
endometrium is receptive to implantation of the fertilized egg
(Kittur et al., 2007; Zapantis et al., 2013). The NCS is restricted to
nuclei of endometrial epithelial cells (Clyman, 1963; Moricard
and Moricard, 1964; Ancla et al., 1965; Terzakis, 1965; More and
McSeveney, 1980) and is a hallmark for secretory transformation
of endometrial epithelial cells. Although their exact function
remains elusive, evidence points towards a role in preparing
the endometrium for blastocyst attachment and implantation
(Zapantis et al., 2013; Pytowski et al., 2019).

Next to these two specific structures, type I NR is also found in
tumour-derived cell lines and in certain virus-infected fibroblast
cells (see Section 1.4). Finally, type I NR can be induced in
Schwann cells by modulating HMG CoA reductase activity
(Berciano et al., 2000; Verstraeten et al., 2006).

1.2 Formation of the NR
The expansion and invagination of the nuclear membrane leads
to the formation of the NR. Fricker et al. (1997) were amongst the
first to hypothesize that the intranuclear channels result from
incomplete resolution of invaginations during nuclear envelop
reassembly. Normally, at the end of mitosis the invaginations are
resolved by chromatin decondensation, after which the nuclear
envelope vesicles fuse to from the nuclear envelope. However, if
the fusion of the vesicles precedes decondensation of chromatin,
it may result in a nucleus with intranuclear channels. Differential
rates of decondensation of chromatin in different cell types could
explain the different degree of complexity, the number of NR
channels and their different orientation in particluar cell types.
However, formation of new NR channels has also been reported
in post-mitotic primary cells, cycle arrested cells, and during
interphase in free cycling cells (Goulbourne et al., 2011; Drozdz
et al., 2017). In addition, later studies showed that either
alterations in the constitution of the nuclear membrane or
changes in nuclear membrane associated proteins can induce
formation of invaginations, thus indicating a cell cycle-
independent manner of NR formation (see below).

1.2.1 Mechanisms of NR Formation
Since Drozdz and Vaux (2017) described three possible
mechanisms that could induce NR formation, additional
evidence for all three mechanisms has been found. The first
mechanism is the “pulling in” mechanism, which suggests that
NR invaginations could be driven by rearrangements of
chromatin tethered to the NE and pulling in the nuclear
membrane. Indeed, many (dynamic) interactions between
chromatin and the NE exist (Amendola and van Steensel,
2014; Ptak et al., 2021). In addition, polytene nuclei from
Drosophila melanogaster salivary glands were found to induce
NR structures after condensin-mediated chromatin compaction
(Bozler et al., 2014).

Alternatively, the NR can be formed via the “pushing in”
mechanism. NR formation could take place as a result of forces
exerted on the NE from the outside of the nucleus (Drozdz and
Vaux, 2017). These forces could be generated by the cytoskeleton,

which would also explain the presence of cytoskeletal elements,
such as microfilaments, intermediate filament, and microtubules,
in the cytoplasmic core of type II NR (Malhas et al., 2011).
Furthermore, the force could also come from the centrosomes,
since the centrosomal region of granulocytic cells was found to be
in close proximity to major nuclear invaginations (Olins and
Olins, 2005). In addition, the microtubule network could exert
forces on the nuclear envelope. In HGPS fibroblasts, a high
stability of the microtubule network was found to contribute
to HGPS cellular phenotypes (Larrieu et al., 2014). The aberrant
nuclear morphology in HGPS patient cells, but also lamin
A/C-depleted cells could be corrected by Remodelin (Larrieu
et al., 2014; Larrieu et al., 2018). This small molecule targets the
protein N-acetyl-transferase 10 (NAT10) and this inhibition was
found to destabilize the microtubule network, thereby releasing
external forces on the nuclear envelope and contributing to
nuclear shape rescue. Finally, extracellular membrane vesicle
(EV) loading of the endosomal compartment were recently
found to induce NR structures (Section 1.3.3) (Corbeil et al.,
2020). However, the “pushing in” mechanism can only explain
the formation of type II NR, not type I NR.

Lastly, the NR could be assembled de novo, via a dedicated
machinery. Several cellular machineries are already known to
induce lipid bilayer curvature and cellular membrane
invaginations, including clathrin-mediated endocytosis,
clathrin-independent mechanisms, membrane curvature
regulation by reticulons and DP1/YOP1, and vesicle budding
by coatomer protein complex I and II (Drozdz and Vaux, 2017).
The variety of membrane deformation mechanisms present in
cells possibly includes a selective machinery for NR formation.
Additional evidence that supports de novo NR formation comes
from studies that demonstrate that cells incorporate newly
synthesized phospholipids and lamin B1 into nascent tubular
NR invaginations (Drozdz et al., 2017; Pytowski et al., 2019).

It should also be noted that nuclear membranes are more
elastic compared to the plasma membrane, which suggests that
the nuclear membrane has an intrinsic property to fold, leading to
high membrane fluctuations (Larijani et al., 2022). This elastic
property likely favours the NR formation, independently of which
mechanism being involved.

1.2.2 The Role of LipidMetabolism and NE-Associated
Proteins in NR Formation
Several data indicate that modulating the metabolism of
cholesterol greatly influences the shape of the NR (Berciano
et al., 2000; Verstraeten et al., 2006). Invaginations of only the
INM can be seen when cells are treated with tellurium or
lovastatin (see below), both of which block the cholesterol
synthesis. The mechanism leading to these additional single
membrane invaginations or perhaps only membrane
lobulations is unclear. Possibly, the absence of membrane
stabilization by cholesterol causes local membrane extensions
without formation of nuclear pore complexes (NPC).

An essential enzyme in the process of NR formation is the
CTP:phosphocholine cytidylyltransferase (CCTα) enzyme. CCTα
is a rate-limiting enzyme in the choline phosphotransferase
(CTP)-choline pathway for phosphatidylcholine (PC)
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synthesis. Upon activation by fatty acids, the enzyme translocates
to the NR and stimulates the proliferation of the NR (Lagace and
Ridgway, 2005). The activity and membrane-binding function of
this enzyme is essential for the formation of the NR, as the
activation of the enzyme with oleate or enhancing its membrane
binding capacity, leads to an increase of NR formation (Lagace
and Ridgway, 2005; Gehrig et al., 2008). Accordingly, the
expression of CCTα-GFP mutants with a compromised
catalytic or membrane binding affinity decreases induced NR
formation. On the other hand, oleate treatment of CHO-K1 cells
resulted in an increase of NR structures within 2 h (Lagace and
Ridgway, 2005; Gehrig et al., 2008).

The altered expression of CaaX motif containing lamins (see
Section 1.2.3) or other proteins associated with the INM, such as
lamin B receptor (LBR) (Ellenberg et al., 1997; Ma et al., 2007),

certain mutants of fibroblast growth factor receptor 4 (Sorensen
et al., 2004), mouse germ cell-less protein (Kimura et al., 2003),
nucleoporin 153 (Bastos et al., 1996; Marelli et al., 2001), or
Nopp140 (Isaac et al., 2001), leads to the expansion of the nuclear
membrane and the formation of intranuclear membrane
structures. Different mechanisms have been described to
explain the formation of NE invaginations as a result of
altered INM protein expression. For LBR, the transmembrane
segment is involved in nuclear membrane overproduction, while
the N-terminus interacts with chromatin or chromatin-
associated proteins, leading to NE invaginations (Ma et al.,
2007). An explanation for the formation of nuclear
invaginations by Nopp140, often described as R-rings, is based
on the interaction of its highly charged repeat domain with the
head groups of phospholipids. The positively charged repeats can

FIGURE 2 | 3D STED of normal human dermal fibroblast cells, stained for lamin A/C (red) and B1 (green). (A,E) 2D image of the middle of the nucleus. (B–D)
Different 3D reconstruction views of the cell in (A) using ImageJ 3D viewer. (F–H) Different 3D reconstruction views of the cell in (E) using ImageJ 3D viewer. Scale bars
indicate 5 μm. Also see Supplementary Figures S1,S2. Cell culture and immunostaining of NHDF was performed as described previously (Stiekema et al., 2021).
STED images were taken with an abberior Instruments INFINITY LINE microscope equipped with an inverted IX83 microscope (Olympus), a 60× oil objective
(UPlanXApo 60×/1.42 oil, Olympus), using pulsed excitation lasers at 561 nm (for secondary antibody Abberior STAR ORANGE) and 640 nm (for Abberior STAR RED)
and a pulsed STED laser operating at 775 nm. All acquisition operations were controlled by the Lightbox Software. STED images were deconvoluted as described in
Stiekema et al. (2021).
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bind directly to the head groups of phospholipids, while the
negatively charged repeats can interact with phospholipids via
calcium bridges (Isaac et al., 2001; Kittur et al., 2007).

1.2.3 The Role of Lamins in NR Formation
Next to the association of the NR with several organelles, type II
NR also contain a nucleoplasmic lamina.

Nuclear lamins are thought to have a wide variety of functions,
which can also be expected from the many interactions they have
with the INM and within the nucleoplasm. Lamins have more
than a hundred lamin-binding proteins, most of which are
integral proteins of the INM (Gruenbaum and Medalia, 2015).
The functions assigned to the lamins include playing a role in
chromatin organization (Galiová et al., 2008; Dechat et al., 2009),
mitosis (Dittmer and Misteli, 2011; Naetar et al., 2017), and
apoptosis (Rao et al., 1996). Furthermore, lamins are involved in
providing structural support to the cells and in mechanosensing
and mechanoresponse of cells (Stiekema et al., 2020). Also the
lamin in the NR structures is important in maintaining the
nuclear architecture (Section 1.3.1).

To gain more insight into the distribution of lamins A/C and
B1 in the NR, we imaged cultured normal human dermal
fibroblasts (nHDF), immunostained for lamin A/C and B1
with three-dimensional high resolution STED microscopy
(Figure 2; Supplementary Figures S1,S2). These images
clearly demonstrate that both lamin A/C and lamin B1 are
associated with NR tubules, as also shown by 3D Stochastic
Optical Reconstruction Microscopy (3D-STORM) (Schoen
et al., 2017). Drozdz and Vaux (2017) also recently visualised
lamins in NR tubules in nHDF with super resolution light
microscopy, although these seem to mainly consist out of
lamin B1. Some tubules transverse the entire nucleus, while
others are (much) shorter in length and end in the
nucleoplasm. In addition, from these fluorescence images it
became evident that the thickness of the lamina layer
associated with the tubules varies.

The interaction of CCTα with nuclear lamins appears to be
important for NR formation (Gehrig et al., 2008). The presence
(Prufert et al., 2004) and the proper processing (Maske et al.,
2003) of the CaaX-motif in lamins is crucial for the incorporation
of lamins into the nuclear lamina and their association with the
nuclear membrane. The processing of lamins, except for lamin C,
consists of the farnesylation of the CaaX-motif, proteolytic
cleavage of the last three COOH-terminal amino acid residues
of the CaaX motif, and carboxymethylation of the farnesylated
cysteine. Maturation of lamin A requires a second cleavage that
removes 15 amino acids from the C-terminus, along with the
farnesylated and carboxymethylated residues (Simon andWilson,
2013; Tatli and Medalia, 2018). Modulation of lamin
farnesylation also effects the NR formation. This becomes
apparent when treating cells with farnesyltransferase-inhibitors
or statins, the latter blocking cholesterol metabolism and as a
result the farnesylation of, amongst others, lamins. As a result,
non-farnesylated prelamin accumulates and the number and size
of tubular invaginations of the nuclear envelope increases
(McClintock et al., 2006; Verstraeten et al., 2006).
Accumulation of farnesylated prelamin using non-

peptidomimetic compound N-acetyl-S-farnesyl-L-cysteine
methylester (AFCMe) leads to an accumulation in the
nucleoplasm, resulting in the formation of even more tubular
invaginations (Lattanzi et al., 2007; Mattioli et al., 2008). Taken
together, both prenylated and not-prenylated lamin A causes NR
formation, but the permanent attachment of a farnesyl group to
lamin A has a more dramatic effect on the induction of the NR
formation.

Overexpression of lamins with the CaaX motif (lamins A,
AΔ10, B1, B2, and Dm0) leads to proliferation of the nuclear
envelope, resulting in lobulated nuclei with highly folded nuclear
membranes and invaginations of the nuclear membrane (Broers
et al., 1999; Prufert et al., 2004).

Figure 3 illustrates the specific effects of over-expression of
different subtypes of lamins in CHO-cells. Over-expression of
lamin A-GFP and lamin AΔ10-GFP (Figures 3A,B) resulted in
increased tubule formation but not into a prominent increase in
lobulation of the nuclei. Further examination of CHO cells over-
expressing lamin A by electron microscopy clearly demonstrates
that these invaginations and tubes consist of a double membrane
(Figures 3F,G). Upon over-expression of lamin C, not containing
the CaaX-motif, aggregates inside the interior of the nucleus
occur without growth of the nuclear membrane or additional
tubule formation (Figure 3C, see also Broers et al., 1999; Prufert
et al., 2004). Transfection with lamin B1-GFP (Figure 3D)
resulted in nuclear lobulation and a moderate increase in
tubular invaginations. Depending on the length of the lamin
B2-GFP construct, different effects can be seen. Over-expression
of lamin B2-GFP lacking the first 20 amino acids resulted in
dramatic lobulation of the nuclear envelope (Figure 3E, see also
Schumacher et al., 2006), with only a slight increase in true
intranuclear tubule formations. Over-expression of the complete
lamin B2-GFP construct did not lead to lobulation of the nucleus
(Schumacher et al., 2006).

1.3 Functions of the NR
The occurrence of variable amounts of NR structures in different
cell types and the finding of several studies that the amount of NR
structures can be regulated both in vivo and in vitro, clearly
proves that the NR is a functional unit of the nucleus (Section
1.1). In addition, the formation of the NR appears to be a complex
process with a lot of different proteins involved, which also
suggests that it is involved in numerous nuclear functions
(Section 1.2). In the following paragraphs we discuss the
many theories about the exact function of the NR that were
formulated over the years, which are not mutually exclusive.

1.3.1 Role of the NR in Maintaining the Architecture of
the Nucleus
Several high-resolution imaging studies investigating the tubular
invaginations of the NR have been performed in vitro, with a
variety of cell cultures. An early three-dimensional electron
microscopy reconstruction of these tubular invaginations in
PC12 cells has been published by Stevens and Trogadis (1986).
Nuclear clefts and folds were first hypothesized to be a
consequence of mechanical forces exerted on cells (Lane,
1965). This report on clefts and folds in nuclei of smooth
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muscle cells during contraction forwarded the hypothesis that the
nuclei change their shape to cope with the mechanical stress
during compression and relaxation, eventually protecting the
integrity of the nucleus and the whole cell (Lane, 1965).

Furthermore, in vivo data confirm the presence of nuclear
clefts in cardiomyocytes, which are continuously exposed to force
differences (Figures 4A–C). With a stronger contraction the
abundance of nuclear invaginations and folds increases in
cardiomyocytes (Figures 4A–C). This finding suggests an
increasing need for these structural alterations with higher
mechanical forces. In addition, increasing foldings,
convolutions, and intranuclear tubules were reported in
patients with cardiac hypertrophy by Ferrans et al. (1975) and
hypothesized to be a response to the stimulus of hypertrophy. In
contrast, cardiomyocytes in relaxation can either lack or still
contain nuclear invaginations or folds (Figure 4D). Similarly,
nuclear invaginations are also visible in mast cells, capillary
endothelial cells, and fibroblasts in cardiac tissue (Figures
4E–G). The presence of the nuclear invaginations and folds in
cells that experience no mechanical forces indicates a structural
function of these structures. This does not rule out the possibility
of a flexible regulation of the nuclear folds that facilitates coping

with increasing mechanical forces by upregulating the number of
nuclear folds. The finding that comparable clefts and folds also
occur in nuclei of non-contracting isolated muscle cells, points
toward a more structural and less dynamic adaptation of nuclei to
stress. In other cell types, Lammerding et al. (2004) and Broers
et al. (2004) reported that nuclei have a coping strategy to
withstand mechanical compression, and that A-type lamins
play an essential role in this process. Indeed, the tubular
invaginations could provide structural support during
mechanical compression (Broers et al., 1999). The vertical
orientation and stability of the observed tubules points to a
role in structural support of the nucleus in cell cultures.

1.3.2 Function of the NR in Nucleocytoplasmic
Transport
Bourgeois et al. (1979) hypothesized that the nuclear tubular
invaginations of the nuclear membrane in kidney, liver, and
carcinoma cells have a functional role in nucleo-cytoplasmic
transport, as they form associations with nucleoli. Other
groups also demonstrated a (partial) association of the nuclear
tubular invaginations with nucleoli (Dupuy-Coin et al., 1986;
Fricker et al., 1997; Clubb and Locke, 1998; Abe et al., 2004;

FIGURE 3 | Effects of over-expression of different types of lamins on the nucleus of CHO-cells. (A) The over-expression of lamin A leads to nuclear membrane
growth and the formation of a large number of tubular invaginations of the nuclear envelope. Scale bar indicates 10 μm. (B) The over-expression of lamin AΔ10 leads to
nuclear membrane growth and the formation of a large number of tubular invaginations of the nuclear envelope. Scale bar indicates 10 μm. (C) The over-expression of
lamin C leads to mainly aggregates in the nucleoplasm. Scale bar indicates 10 μm. (D) The over-expression of lamin B1 leads to nuclear membrane growth and the
formation of a limited number of tubular invaginations of the nuclear envelope. Scale bar indicates 10 μm. (E) The over-expression of lamin B2 leads to enlarged nuclei
with highly folded nuclear membranes and lobulations of the nuclear membrane. Scale bar indicates 10 μm. (F) EM-recording of tubular invaginations in lamin A over-
expressing CHO cells. Scale bar indicates 5 μm. (G) Detailed recording of tubular invaginations in lamin A over-expressing CHO cells. Scale bar indicates 0.5 μm. CHO-
cells were grown, transfected and imaged as described (Broers et al., 1999). Confocal fluorescence images (A-E) show maximal Z-stack projections.
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Lagace and Ridgway, 2005; Lee et al., 2006). The distance between
the deeply buried nucleoli and the nuclear envelope is largely
reduced by the presence of a tubular invagination, thus
facilitating the transport of mRNA out of the nucleus. As
Fricker and collaborators stated in 1997 (Fricker et al., 1997),
even a single tube traversing the nucleus decreases the maximal
distance between a random location in the nucleoplasm and the
nuclear envelope with 50%. With only a few tubes, the distance of
any location of the nucleoplasm and nucleolus to the nuclear
envelope is reduced to less than 0.5 μm. In general, the expansion
of the interface-surface between the nucleus and the cytoplasm

will facilitate the communication and transport between the two
compartments (Gehrig et al., 2008).

The NR was recently also found to be involved in the
intracellular transfer pathway of extracellular vesicles (EVs)
(Santos et al., 2018). EVs, such as exosomes and microvesicles,
are nano-biological membrane structures important in cell-to-
cell communication and their actions can lead to favoring
proliferation versus differentiation of stem cells, inducing
epithelial-mesenchymal transition, and modulating immune
responses. However, EVs are also involved in pathological
conditions, such as in developing a pre-metastatic niche in

FIGURE 4 | NR-like invaginations of the nuclear envelope in different cardiovascular cell types as seen at the electron microscopy level. (A) Cardiomyocyte in
relaxation (goat in vivo atrial tissue), the nuclear membrane shows no invaginations or folds. (B) Cardiomyocyte in mild contraction (goat in vivo atrial tissue), the nuclear
membrane shows some folds. (C) Cardiomyocyte in strong contraction (goat in vivo atrial tissue), the nuclear membrane is strongly folded. (D) Cardiomyocyte in
relaxation (goat in vivo atrial tissue) demonstrating a large invagination of the nuclear envelope. (E) Mast cell in cardiac tissue (human ventricle), the nuclear
membrane has large invaginations. (F) Capillary endothelial cell in cardiac tissue (human ventricle) with several invaginations of the nuclear envelope. (G) Fibroblast in
cardiac tissue (human ventricle), the nuclear membrane is strongly folded. Scale bars indicate 1 μm. Goat atrial samples were fixed for 2 h in 3% glutaraldehyde buffered
to pH 7.4 with 90 mM KH2PO4. Thereafter the samples were washed in the same buffer for 24 h and post-fixed for 1 h in 2% OsO4 buffered to pH 7.4 with veronal
acetate. Next, the samples were rapidly dehydrated through a graded series of ethanol and routinely embedded in Epon (Driesen et al., 2009). Ultra-thin sections were
counterstained with uranyl acetate and lead citrate prior to examination in a Philips CM 100 electron microscope.
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cancer (Corbeil et al., 2020). Recently, late endosomes associated
with the NR and nuclear localization of EV-derived proteins was
observed in cancer cells, mesenchymal stromal cells in cultures,
and in breast cancer patient biopsies (Rappa et al., 2017; Santos
et al., 2018). Rappa et al. (2017) reported that the proportion of
cells with NR-associated late endosomes increased and the
proportion of cells without NR structures decreased upon
exposure to EVs. This observation might also be an indication
that EV-loading of the endosomal compartment regulates NR-
biogenesis, thereby supporting the “pushing in” mechanism of
NR formation. Santos et al. (2018) reported that the VOR-
complex, composed of vesicle-associated membrane protein-
associated protein A (VAP-A), oxysterol-binding protein-
related protein 3 (ORP3), and the small GTPase Rab7, is
essential for the localization of the late endosomes in the NR
and the nuclear transfer of the ER-derived components. As a
result of these findings, the VOR complex may become a novel
drug target to impair the intercellular communication in the
cancer microenvironment. Indeed, itraconazole treatment
disrupts the VOR complex and inhibits EV-mediated pro-
metastatic morphological changes and migratory properties of
colon cancer cells (Santos et al., 2021).

1.3.3 Function of the NR in Signalling
An early hypothesis by Franke and Schinko (1969) stipulated that
the invaginated shape of the nucleus was induced by intracellular
changes in ion concentration. More recently, however, evidence
has been forwarded for the reverse phenomenon, i.e., that the
invaginations of the nucleus function as regulators of intra-
nuclear ion concentrations.

Since the NR is in a continuum with the luminal space of the
ER, it can function as a calcium store (Somlyo et al., 1985;
Gerasimenko et al., 1995; Lui et al., 1998a; Lui et al., 1998b;
Echevarría et al., 2003; Lui et al., 2003; Marius et al., 2006). Upon
stimulation, calcium can be quickly released into the nucleoplasm
from the nuclear envelope and the NR. Like the nuclear
membrane, the NR also contains IP3-receptors (Echevarría
et al., 2003; Lui et al., 2003; Guatimosim et al., 2008) and
ryanodine-receptors (Marius et al., 2006; George et al., 2007;
Guatimosim et al., 2008), indicating that these invaginations are
functional in delivering calcium from the NR into the
nucleoplasm. Because of the structural organization of the NR,
calcium can easily be released into all regions of the nucleoplasm
and induces a fast overall response throughout the whole
nucleoplasm. As such, this is a potential mechanism for a
differentially regulated calcium metabolism in distinct sub-
compartments of the nucleoplasm (Phair and Misteli, 2000).
An indication of a differentiated response in each of the sub-
compartments of the nucleus is given by the non-homogenous
occurrence of the IP3 receptor and ryanodine-receptor in the NR
(Lui et al., 2003; Marius et al., 2006; George et al., 2007;
Guatimosim et al., 2008) and by the dynamic behavior of the
NR (Lui et al., 1998a; Lee et al., 2006).

Calcium in the nucleus plays an important role in the process
of apoptosis (Nicotera and Rossi, 1994) and the shuttling of
proteins across the nuclear envelope (Stehno-Bittel et al., 1995;
Perez-Terzic et al., 1996). Also, gene transcription through the

activation of cAMP response elements (Hardingham et al., 1997;
Chawla et al., 1998), Elk-1 (Pusl et al., 2002) or the direct binding
of calcium to nuclear transcription factors (Dobi and Agoston,
1998), is based on changes in intra-nuclear calcium
concentration. However, the necessity of a NR as a functional
calcium store is to be cell- and tissue-specific, as in neurons
nuclear calcium signals can be independent of the presence of a
NR in neurons (Bezin et al., 2008).

The concept of the NR playing a role in signaling pathways is
also supported by data of Storch et al. (2007), who hypothesized
that the α smooth muscle actin (α-SMA) filaments found in
tubular invaginations in the nucleus is essential in
mechanotransduction during mechanical stress, because α-
SMA is localized closely to the ONM of the tubular
invaginations and is continuous with the cytoplasmic actin
filaments.

1.3.4 Function of the NR in Cell Differentiation
The role of the NR in cell differentiation has largely been deduced
from the large variety in the frequency of invaginations in
differentiated versus undifferentiated cells (Johnson et al.,
2003). Apparently, undifferentiated or cancerous cells (Section
1.4) contain a more extensive NR than fully differentiated cells.
Johnson and coworkers (Johnson et al., 2003) revealed that the
MDA-MB-231 cell line, a very aggressive, highly dedifferentiated
human mammary epithelial tumor cell line, contains much more
cells with nuclear invaginations (90%) compared to other cell line
types such as of non-transformed (MCF-10A: 25%) or mildly
dedifferentiated human mammary epithelial cells (MCF-7: 9%),
colorectal epithelial cells (SW-480: 14% cells with invaginations),
or fibroblast cells (NIH-3T3: 3% and WI-38: 9%). A possible
explanation for this phenomenon could be that highly
proliferative cells need more nucleo-cytoplasmic transport for
exchange of mRNA and proteins in and out of the nucleus. As
described above, the NR provides the extranuclear envelope
surface that is necessary for such additional nucleo-
cytoplasmic transport.

Differences in the organization and extent of the NR in
relation to the state of differentiation are clearly visible when
studying electron microscopy images of hematopoietic cells in
vivo. Macrophages, mast cells, T-lymphocytes, and
B-lymphocytes, show different organizations of these nuclear
pockets consisting of type II NR structures (Figure 5). This
diversity of nuclear invaginations likely reflects their
functionality, as Skinner and Johnson (2017) described that
the diverse morphology of nuclei has clear functional impacts.
The theory that the NR functions in cell differentiation is also
supported by the finding of a specific type of nuclear membrane
invaginations in HL-60myeloid leukemia cells. Olins et al. (1998),
Olins and Olins (2009) reported nuclear envelope-limited
chromatin sheets which are invaginations consisting of sheets
of chromatin covered at both sides with INM (although the
presence of type I NR is not excluded). These structures are
considered to play a role in cell differentiation, although their
function is still to be solved.

Finally, a specific NR organization is observed during the
differentiation stages of mono-nuclear Hodgkin cells to multi-
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nucleated Reed-Sternberg cells in classical Hodgkin’s lymphoma
(Contu et al., 2018; Bienz et al., 2020). Impressive lamin A/C
intranuclear septa are seen in bi- to multi-nucleated Reed-
Sternberg (RS) cells, where lamin staining showed
internal lamin A/C structures, subdividing the nuclei into two
or more smaller compartments. These results show that this
specific lamin A/C spatial organization may be instrumental in
the transition from mononuclear Hodgkin to bi- and multi-
nucleated Reed-Sternberg cells. Contu et al. (2018) therefore
concluded that the technology of 3D analysis of lamins in
classical Hodgkin’s lymphoma holds the potential for
becoming a predictive tool in the clinical management of this
complex disease.

1.3.5 Function of the NR in Other Cellular Processes
Next to the role of the NR in providing structural support for the
nucleus, nucleocytoplasmic transport, calcium signalling, and cell
differentiation, evidence points towards a role in transcription,
DNA repair, and lipid metabolism.

Microscopic co-localization studies have often associated NR
invaginations with sites of active transcription of ribosomal genes,

including nucleoli. Combined with the NPCs and cytoplasmic
core in type II NR this suggests a role for the NR in facilitating
nuclear export of rRNA (Drozdz and Vaux, 2017). In addition,
the NR has been found to be closely associated with several
repressive complexes and heterochromatin, implying a role of the
NR in chromatin organization and transcription regulation
(Legartová et al., 2014; Jorgens et al., 2017). Next, histone-
deacetylase inhibitor trichostatin A cell treatment induced a
higher NR abundance, in support of a role of the NR in
general RNA export and increased gene expression (Galiová
et al., 2008). Furthermore, the NR is associated with DNA
lesions induced by γ-radiation, indicating a role in DNA
repair (Legartová et al., 2014). The NR also might be involved
in the exclusion of extrachromosomal circular DNA (eccDNA),
which mostly arises from non-coding DNA during DNA damage
repair. In young and healthy cells, the eccDNA relocalizes to the
NPCs along nuclear actin and is excluded from the nucleus
through functional NPCs. In aging and age-related disorders,
eccDNA exclusion declines, which could be explained by amongst
others a reduction of functional NPCs and deregulated nuclear
actin. As the NR shortens the distance between the nucleolus and

FIGURE 5 | NR invaginations in human hematopoietic cells at the electron microscopy level. (A)Macrophage. (B)Mast cell. (C) T-lymphocyte. (D) B-lymphocyte.
Scale bars indicate 1 μm. Human hematopoietic cells were cultured for at least 48 h in a culture dish after which the medium was discarded. Next, the cells were shortly
rinsed with PBS and subsequently fixed at room temperature with 3% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) supplemented with 0.5 mM CaCl2 for at least
24 h. The cells were then postfixed with 2% OsO4 in cacodylate buffer (pH 7.4) containing 1.5% potassium ferricyanide at 48°C for 1 h. After a short rinse in
cacodylate buffer, the cells were further dehydrated in graded ethanol series before embedding in epon. Ultra-thin sections were counterstained with uranyl acetate and
lead citrate prior to examination in a Philips CM 100 electron microscope.
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the nearest NPC, it potentially facilitates the exclusion of eccDNA
from rDNA within the nucleolus (Qiu et al., 2021).

Another cellular process that is associated with the NR, is lipid
metabolism. Type I NR has been found to associate with luminal
lipid droplets (LDs) in hepatocytes (Ohsaki et al., 2016). These
NR-associated luminal LDs accumulate as a result of ER stress
and turn into nucleoplasmic LDs by escaping into the
nucleoplasm. The molecular mechanism related to this is likely
associated with the lamin deficiency in type I NR, which make the
membrane weak and prone to disruption when the luminal LDs
grow larger (Sołtysik et al., 2019; Fujimoto, 2022). The
nucleoplasmic LDs recruit CCTα, which is pivotal in PC
synthesis, as described above. These findings suggest a role of
the NR in lipid metabolism, specifically to regulate PC synthesis
in accordance with ER stress levels (Sołtysik et al., 2019).

1.4 The NR in Disease
Several pathologies, such as laminopathies, cancer, (reversible) heart
failure, and Alzheimer’s disease are associated with an altered NR
abundance. Strikingly, in these conditions the amount of A-type
lamins throughout the nucleus is generally decreased (Ausma et al.,
1996;Moss et al., 1999;Wu et al., 2009) or the organization of lamins
or lamin-associated proteins is disturbed (Gonzalez-Alegre, 2004).
Next to cells with ill-processed lamins, cardiac cells from hibernating
myocardium (reversible heart failure) regularly demonstrate tubular
invaginations of the nuclear envelope, occasionally engulfing
contractile elements (Figure 6).

Laminopathies are rare diseases, mainly caused by mutations
in the A-type lamin gene (LMNA). In cells with these mutations a
variety of nuclear abnormalities can be observed. These include
nuclear herniations, honeycomb-like structures, and even donut-
shaped nuclei. In addition, in some laminopathies, a dramatic
increase of NR structures can be observed. The farnesylation-
status of the CaaX-motif of prelamin A plays an important role in
the appearance of invaginations of the nuclear envelope
(McClintock et al., 2006; Verstraeten et al., 2006). When
farnesylated prelamin A accumulates, as in restrictive
dermopathy (Navarro et al., 2004, Navarro et al., 2005;
Verstraeten et al., 2006), or when mutant farnesylated lamin
accumulates, as in Hutchinson-Gilford Progeria Syndrome

(HGPS) (McClintock et al., 2006), more tubular invaginations
are formed compared to cells of healthy individuals. Also,
naturally ageing cells contain more progerin/prelamin A (Caron
et al., 2007; McClintock et al., 2007), and demonstrate a more
abundant NR (McClintock et al., 2007) compared to cells of young
individuals. Lamins can be isoprenylated through an alternative
pathway, using geranylgeranyltransferase (Kuipers and van den
Elsen, 2007). When HGPS cells are treated with both a
farnesyltransferase inhibitor and a geranylgeranyltransferase I
inhibitor, the number of nuclear abnormalities and tubular
invaginations decline drastically (Varela et al., 2008). These
findings confirm the importance of lamin farnesylation in NR
formation. However, also other lamin A mutants have been shown
to increase the NR tubule abundance (Drozdz and Vaux, 2017).

Recently, Alzheimer’s disease and associated tauopathies were
suggested to be acquired neurodegenerative laminopathies
because of the relation between B-type lamin dysfunction in
mediating neuronal death. Studies by Frost (2016), Frost et al.
(2016) reported an expansion of the NR and reduction of lamin
B1 levels in neurons of tau transgenic Drosophila and
postmortem human Alzheimer’s disease brains. Dysfunction of
B-type lamins in adult neurons impact heterochromatin
formation, cell cycle activation, and neuronal survival.
Furthermore, an accumulation of polyadenylated RNAs within
and adjacent to tau-induced NR has been reported, possibly
driven by lamin dysfunction and NR formation (Cornelison
et al., 2019). The exact functional consequences of the NR in
tauopathies warrants further investigation, including the effect on
nuclear calcium signaling, which is of high importance for
synaptic activity in neurons.

As already briefly described, in cancer both type I and II NR
are observed. Tumor cells in which type II NR could be observed,
sometimes in combination with type I NR, include Ehrlich ascites
tumor cells (Wessel and Bernhard, 1957; Bernhard, 1958;
Yasuzumi and Sugihara, 1965; Burns et al., 1971), Yoshida
(Locker et al., 1968) and Novikoff hepatoma cells (Babai et al.,
1969), human oviduct tumor cells (Bourgeois et al., 1979), human
epidermoid carcinoma cells (Bourgeois et al., 1979), neoplastic-
Burkitt tumor cells (Epstein and Achong, 1965), leukemic
leukocytes (McDuffie, 1967; Schuurmans Stekhoven and

FIGURE 6 | (A) Cardiomyocyte (human ventricular hibernating myocardium; reversible heart failure in vivo) demonstrating tubular invaginations of the nuclear
envelope. Scale bar indicates 5 μm. (B) Cardiomyocyte nucleus (human ventricular hibernating myocardium; reversible heart failure in vivo) demonstrating tubular
invaginations of the nuclear envelope. Scale bar indicates 2 μm. (C)Cardiomyocyte (human ventricular myocardium from dilated cardiomyopathy) demonstrating a large
invagination of the nuclear envelope, engulfing contractile elements. Scale bar indicates 2 μm. Samples were prepared as described for Figure 4.
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Holland, 1986), splenic lymphosarcoma ascites tumor cells
(Levine et al., 1968), pancreatic carcinoma cells (Kamei, 1994),
and breast cancer cells (Bussolati et al., 2007).

In ascites AH 602 hepatoma cells (Hoshino, 1961), Ehrlich
ascites tumor cells (Yasuzumi and Sugihara, 1965) and Novikoff
hepatoma cells (Babai et al., 1969; Karasaki, 1970), type I NR, in
combination with type II NR, were found to form thin canaliculi.
These invaginations of the INM are covered with a layer of
heterochromatin, and the lumen is an extension of the
perinuclear space, and not of the cytoplasm like in double
membrane invaginations (Hoshino, 1961; Yasuzumi and
Sugihara, 1965; Babai et al., 1969; Karasaki, 1970).

Viruses that induce type II NR include parapox viruses
stomatitis papulosa and orf (Pospischil and Bachmann, 1980)
and herpes simplex virus (Stannard et al., 1996). After the
infection with the virus, the type II NR occurs, although also
type I NR is described after virus infections (Severi et al., 1988;
Nassiri et al., 1998; Buser et al., 2007; Camozzi et al., 2008;
Hamirally et al., 2009). This induction of a higher amount of NR
after virus infections can be caused by lamin reorganization, since
virus infection causes the reorganization of the nuclear lamina
through either phosphorylation or dephosphorylation of lamins
(Radsak et al., 1991; Scott and O’Hare, 2001; Muranyi et al., 2002;
Reynolds et al., 2004; Marschall et al., 2005; Park and Baines,
2006; Leach et al., 2007; Morris et al., 2007; Mou et al., 2007;
Camozzi et al., 2008; Lee et al., 2008; Hamirally et al., 2009;
Stiekema et al., 2020). This reorganization leads to an uneven
thickness of the nuclear lamina, possibly leading to lobulation of
the nuclear membrane and the formation of invaginations of the
INM (Reczko and Boegel, 1962; Anisimová et al., 1973; Bachmann
et al., 1979; Pospischil and Bachmann, 1980; Stannard et al., 1996;
Braunagel et al., 1998; Hamirally et al., 2009). Villinger et al. (2015)
even described extremely complex type I NR in HCMV infected
cells and categorized the INM invaginations in first, second and
third order infoldings. First order infoldings would be formed
following initial lamin disruption. Next, second order infoldings
could originate by invaginations into first order infoldings. Finally,
third order infoldings could be form by invaginations of
perinuclear space into second order infoldings. Also, the

accumulation of specific viral proteins, together with modulated
lamin proteins, can initiate the formation of invaginations of the
nuclear membrane (Muranyi et al., 2002; Milbradt et al., 2007;
Camozzi et al., 2008; Villinger et al., 2015).

The data described above for all these pathologies emphasize
that the processing of lamins plays an essential role in the
formation of NR structures.

Medication for the treatment of certain diseases may also have an
effect on the organization of the NR. A recent study showed that
autophagy induction as a result of DNA damage induced by DNA-
damaging agents used in chemotherapy is also associated with NR
formation. Autophagy led to the removal of genotoxin-induced
micronuclei-like structures and protected the cell against
genotoxin-induced cell death. The autophagic receptor P62/
SQSTM1 was found to be clustered in the genotoxin-induced NR,
suggesting a role of NR formation in pro-survival autophagy (He
et al., 2021).

Statins, also known as HMG-CoA reductase inhibitors, are a
class of lipid-lowering medications that reduce risk for illnesses
related to atherosclerosis and mortality in those who are at high
risk of cardiovascular disease. When treated with lovastatin,
CHO cells exhibited two types of NR invaginations, i.e., type II
NR (Figures 7A,B) identical to the invaginations seen in cells
which over-express lamin A (Figures 3F,G), and type I NR
(Figures 7A,C). The latter are not seen in cells that over-express
lamin A. In these cells, the single membrane invaginations have a
smaller diameter (208 ± 26 nm) than the double membrane
invaginations (326 ± 26 nm). The formation of nuclear
invaginations as a results of lovastatin treatment has been
reported before in patient fibroblasts (Verstraeten et al., 2006).

In conclusion, the pleiomorphic NR is a highly flexible
structure involved in many cell biological processes, both in
normal and diseased cells and tissues. Although multiple
hypothesis have been formed, the exact formation of the NR
remains to be elucidated. It is not unlikely that multiple
mechanisms are involved, since many different proteins seem
to be involved in NR formation. Specifically, the processing of
lamins is of high importance. Similar to the formation, exact

FIGURE 7 | The effects of lovastatin treatment on the nucleus of CHO-cells at the electron microscopy (EM)-level. (A) EM recording of two types of tubular
invaginations in CHO cells treated with lovastatin. Type I invaginations are marked by a single arrow, type II by a double arrow. Scale bar indicates 0.5 μm. (B) Detailed
recording of type II NRin CHO cells treated with lovastatin. Scale bar indicates 0.1 μm. (C) Detailed recording of a type I NR in CHO cells treated with lovastatin. Scale bar
indicates 0.1 μm. Ultrathin sections from fibroblasts of CHO cells were studied by electron microscopy (for sample preperations, see Figure 5) for nuclear
membrane invaginations after 18 h of incubation with 40 μM of lovastatin (see also Verstraeten et al., 2006).
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mechanisms related to the wide variety of functions ascribed to
the NR warrant further investigation.
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