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Abstract: In this paper, a new kind of graphene double-ribbon bend structure, which can support two
edge graphene surface plasmons (EGSPs) modes, is proposed. In this double-ribbon bend, one edge
mode can be partly converted into another one. We attribute the mode conversion mechanism to the
interference between the two edge plasmonic modes. Based on the finite element method (FEM),
we calculate the transmission and loss of EGSPs propagating along this graphene double-ribbon bend
in the mid-infrared range under different parameters.

Keywords: surface plasmon polaritons; edge mode; graphene; mode conversion

1. Introduction

Graphene, due to its unique mechanical, electrical and optical properties [1–4], is a promising
candidate for nanoscale photonic applications in infrared frequencies. Surface plasmons (SPs)
supported by graphene has recently attracted intensive attention driven by maturing state-of-the-art
nanofabrication technology. Compared to SPs in noble metals, graphene surface plasmons (GSPs) exhibit
even stronger mode confinement and relatively longer propagation distance, with an additional unique
ability to be tunable by adjusting gate voltage or chemical doping concentration [5–9]. GSPs brings
many unique phenomena such as negative refraction [10,11], cloaking [12,13], and superlens [14,15].
Its extraordinary features are applied to a series of optical devices such as absorbers [16,17],
modulators [18–20], and sensors [21,22].

The graphene ribbons can support both waveguide GSPs (WGSPs) modes and strongly confined
edge GSPs (EGSPs) modes. EGSPs are the fundamental modes, which are strongly localized along
the graphene edge, show a larger effective refractive index and stronger field confinement [23].
EGSPs modes are firstly observed experimentally in a patterned graphene nanoribbon on Al2O3

substrates [24]. The width of the graphene ribbon is inversely proportional to the wave vectors of
EGSPs and EGSPs modes show cut-off behavior [25]. Conventional straight ribbon waveguides,
including multilayer nano-ribbon [26], ribbon resonators with rings [27] and wrings [28], are studied in
detail. A graphene bending ribbon waveguide is proposed to explore the spatial coupling between the
edge modes [29]. Furthermore, edge modes supported by bending ribbon waveguide spatially split
with the strongly confined symmetric (anti-symmetric) mode, which shifts to the exterior (interior)
edge of the incidence [30].
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In the paper, we propose a new kind of double-ribbon bend that supports two EGSPs. Based on the
finite element method (FEM), we firstly discuss the dispersion relation of EGSPs for this double-ribbon
bend. We calculate transmission and loss of edge modes with different bending angles under Fermi
level, separation distance, incidence wavelength, bending radius and double-ribbon width. The mode
conversion is due to interference between the two EGSPs, and the loss of double-ribbon originates
from the absorption loss and bending loss. The period of the mode conversion by simulation is in
accordance with the theoretical results.

2. Structure and EGSPs Dispersion

The SPs supported by individual graphene nano-ribbons has been discussed very frequently.
Plasmon interaction and hybridization in pairs of neighboring aligned ribbons are shown to be strong
enough to produce dramatic modifications in the plasmon field profiles [31]. What will happen if there
are two paralleled bending ribbons? Inspired by these edge modes study, we propose a new kind of
bend structure with two paralleled graphene ribbons with an interval of D. When the two edges of two
ribbons come closer to each other, they will bring out two of edge modes with opposite parity [31].

As illustrated in Figure 1a, a pair of paralleled graphene ribbon bends with a separation interval
of D is deposited on the SiO2 substrate, and these two bending ribbons are of equal width. Figure 1b
is the sectional view of Figure 1a. The dielectric above is air. The relative dielectric constant of SiO2

substrate is 2.25. The radius and the width of the double-ribbon bend are R and W, respectively.
The thickness of the graphene double-ribbon bend is 1 nm. The bending angle of the structure is
denoted by θ. Here, we only discuss the condition when D is smaller than 20 nm, where the ribbons
structure supports the two EGSPs modes.
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Figure 1. The top-view (x-y plane) illustration (a) and sectional (x-z plane) profile (b) of the designed
structure. Z-component of the magnetic field distribution for SEM mode in x-z plane (c) and AEM
mode (d).

As is known, there is only one edge mode in a semi-infinite graphene sheet. When two semi-infinite
paralleled graphene sheets are closed to each other, the two semi-infinite edge modes will be mutually
coupled into two edge modes. Here, as width of the bending ribbon structure is much bigger than
separation distance (W >> D), we can consider the two graphene ribbons as two semi-infinite sheets,
and the coupling happens at the internal edge of the double-ribbon bend (near the blue region showing
in Figure 1a). Here, the surface conductivity of graphene, σG, is obtained using the Kubo formula [32]

σG =
ie2E f

π}2(ω+iτ−1)
+ ie2

4π} In[
2E f−(ω+iτ−1)}
2E f +(ω+iτ−1)} ] +

ie2kBT
π}2(ω+iτ−1)

In[exp(−
E f

kBT ) + 1] (1)
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In Equation (1), h̄, e and kB represent reduced Planck’s constant, the electron charge and Boltzmann’s
constant respectively. Equation (1) shows that σG depends on the Fermi levels Ef, the momentum
relaxation time τ, temperature T, and the photon frequency ω. Fermi energy level is shown in
Equation (2)

E f = }V f (πn)1/2 (2)

where n is the charge carrier concentration, the Fermi velocity Vf is 106 m/s. The permittivity εG of
graphene is governed by

εG = 1 +
iσGη0

k0d
(3)

where η0 (≈377 Ω) is the impedance of air, τ is chosen as 0.5 ps, the thickness of graphene d is 1 nm,
and the temperature T = 300 K. Due to graphene’s particular characteristics, εG can be tuned by
modifying the gate voltage or doped by chemical doping.

We choose COMSOL Multiphysics based on the finite element method (FEM) to conduct modes
analysis of GESPs mode for our double-ribbon bend and all simulation in the paper will be conducted
by FEM [28]. Figure 1c,d plot GESP modes’ z-component of magnetic field in the x-z plane, when the
incident wavelength is 6 µm, Ef = 0.2 eV, D = 10 nm and W = 200 nm. Z-component of magnetic field in
Figure 1c is symmetrical, which can illustrate the symmetric EGSPs mode (SEM); and that of Figure 1d
is anti-symmetrical, which can illustrate the anti-symmetric EGSPs mode (AEM).

The differences between the real parts of effective refractive indexes for the two edge modes can
be obtained by

∆ne f f = Re(n1) −Re(n2) (4)

In Equation (4), Re(n1) and Re(n2) represent the real part of two EGSPs’ effective refractive
index respectively. Figure 2 shows the dispersion relation of the two EGSPs’ modes. It implies that
Re (n1), Re (n2), and ∆neff is related to the following parameters: Fermi levels Ef, wavelengths λ,
and separation distance D. Figure 2a shows the real parts of the effective refractive index (Re(neff)) of
the SEM (black line) and AEM (red line) mode both decrease with increasing Ef; but the exact opposite
is for the difference ∆neff between two EGSPs’ modes (blue line), when λ = 6 µm and D = 10 nm. As
can be seen in Figure 2b, when the incident wavelengths are 5, 6, 7, and 8 µm (plotted in pink, yellow,
blue, and green lines) respectively, ∆neff firstly rises then decreases with increasing Fermi level Ef under
the same wavelength. And the ∆neff is larger when λ is increasing from 5 to 8 µm under the same Ef.
Figure 2c shows when separation distance D = 10, 12 and 14 nm (plotted in pink, yellow and blue lines),
∆neff firstly rises then decreases with increasing Fermi level Ef under the same separation distance D.
The ∆neff is larger when D is decreasing from 14 to 10 µm under the same Ef.
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Figure 2. (a) the Re(neff) of SEM (black line) and AEM (red line), the difference (∆neff) (blue line) between
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under different D.

3. Mode Conversion and Simulations Results

Due to the interference between the SEM and AEM mode, mode conversion happens when one
mode is propagating along with our proposed structure. We define a periodic variation angle θT,
which is used to analyze the interference process between the SEM and AEM [30,33,34]. The positive
integer k represents the order of the conversion period

2θT ·R · ∆ne f f = kλ(k = 1, 2, 3 . . .) (5)

To further investigate the mode conversion mechanism between two EGSPs, we calculate bending
loss, total losses and the mode distribution, under different bending angles θ, Fermi levels Ef, separation
distances D, wavelengths λ, and bending radii R, respectively. Here, the SEM is coupled into the
bottom port of the double-ribbon bend as shown in Figure 1a, and propagates along the two ribbons
structure. The initial parameters are: D = 10 nm, R = 300 nm, λ = 6 µm and W = 200 nm. We define the
conversion efficiency P, which represents the ratio between the transmission of the converted mode
and the total transmission at the output

P =
T2

T1 + T2
(6)
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where T1 and T2 represent the transmission of SEM and AEM in respectively. P reaches the maximum,
which means conversion efficiency between SEM and AEM is highest, and P reaches minimum,
which means SEM propagates along our proposed structure without mode conversion.

Figure 3 shows the periodic conversion between two EGSPs’ modes under different Fermi levels
(Ef = 0.3, 0.4, 0.6, 0.8, and 1 eV). The SEM’s transmission is plotted in the black line and AEM’s is
in the red line. The blue ones represent the conversion efficiency P, in Figure 3a–e. It is found that
SEM is partly converted to AEM with different bending angles (ranging from 0◦ to 130◦). The mode
conversion happens due to the interference between the SEM and AEM. The three lines have the
same change periods with a bending angle under the same Ef. The variation amplitude of SEM’s
declines with bending angle, but those of AEM and P are nearly unchanged. θt is the conversion
period, when the bending angle is θt/2, P reaches the maximum; and when the bending angle is θt, P
reaches the minimum. It is found that when Ef is 0.3, 0.4, 0.6, 0.8, and 1 eV, θt is 54.6◦, 54◦, 57.8◦, 62.4◦,
and 67◦ respectively, which is accordance with Equation (5). The theoretical value θT of the conversion
period is 54.5◦, 54.8◦, 58.6◦, 64◦, and 69◦, respectively. The maximum of conversion efficiency P is
15.40%, 13.92%, 11.86%, 8.68%, and 5.80%, respectively, and the conversion efficiency P decreases with
increasing Ef.

Because of graphene absorption loss and bending radiation loss, SEM’s transmission decreases
gradually. Here, we define the total losses LT, which is calculated by

LT = 1− T1 − T2 −R1 −R2 (7)

where R1 and R2 are the reflectivity of SEM and AEM for our proposed structure. LT consists of
absorption loss and bending loss. Here, we define this absorption loss of per unit length for a straight
double-ribbon waveguide as normalized absorption loss La. The normalized total loss Lt is derived
from the total loss LT over the actual propagation length (i.e., the center arc length of this double-ribbon).
The normalized bending loss Lb is defined by the difference between Lt and La.

Figure 3f shows the total loss LT vs. bending angle under different fermi levels. LT increases with
increasing bending angles under the same Ef, because larger bending angles mean larger propagation
loss of EGSPs. LT decreases with increasing Ef under the same bending angles. The three normalized
losses Lt, La and Lb are plotted by cyan, orange, and olive lines respectively in Figure 3g, they all
decrease with increasing Ef. Figure 3h shows the imaginary parts of the effective refractive index for
SEM and AEM are almost the same, and Im(neff) decreases with increasing Ef for both SEM and AEM.
Larger Im(neff) causes a bigger normalized absorption loss La, which can explain that La decreases with
increasing Ef in Figure 3h. When bending angels are 27.3◦ and 54.5◦, the magnetic field distributions
Hz are shown in Figure 3i,j under Ef = 0.3 eV. It is found that when bending angle is 27.3◦, SEM can
be partly converted into AEM (P = 15.40%), so magnetic field distributions Hz at the output is the
superposition of AEM and SEM; when bending angle is 54.5◦, SEM can propagate through the bending
structure without mode conversion, so magnetic field distributions Hz at the output is symmetrical.

The solid line and dashed line represent the theoretical value θT and simulation value θt for
conversion period respectively, under different Ef, in Figure 4. The conversion period firstly decreases
and then increases with increasing Ef. It is found that the theoretical value θT matches very well with
the simulation results.

Periodical mode conversion between SEM and AEM under different separation distances (D = 10,
12, and 14 nm) is shown in Figure 5a–c. Other parameters are as follows: Ef = 0.6 eV, R = 300 nm,
λ = 6 µm, and W = 200 nm. It is also found that SEM is partly converted to AEM varying with different
bending angles. The transmission of two EGSPs and P both have the same changing period with
bending angle (ranging from 0◦ to 90◦) under the same D when D is 10, 12, and 14 nm, θt is 58◦,
65.7◦, and 74◦. The theoretical value θT, which is obtained by Equation (5), is 59.2◦, 68.0◦, and 78.4◦.
θt decreases with increasing D. That is because ∆neff increases with increasing D under the same Ef in
Figure 2b. Meanwhile, the maximum conversion efficiency Pmax respectively are 6.1%, 9.2%, and 13.5%,
and increases with increasing D.
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Figure 5. (a–c) The transmission and conversion efficiency P of the graphene ribbon bends vs. bending
angle under different D. (d) total loss of proposed structure vs. bending angle under different D. (e) the
normalized loss (Lt, La and Lb) under three different D. (f) Im(neff) of SEM and AEM varying with D.
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As illustrated in Figure 5d, the total loss LT is plotted in red, green, and blue lines when the
separation distance D is chosen as 10, 12, and 14 nm. It is found that total loss LT increases with
increasing bending angle under the same separation distance D, but LT is almost the same under
the same bending angle. LT is a litter larger for smaller D, which is shown in the insert of Figure 5e.
As shown in Figure 5e, the normalized loss Lt, La, and Lb are plotted in cyan, orange, and olive lines,
respectively. Lt and La decrease a little with increasing D. Lb barely changed with it. The reason is that
Im(neff) of SEM decreases slightly with increasing D, but the opposite is true for AEM, which is shown
in Figure 5f. So the absorption loss of SEM decreases slightly with increasing D, but the opposite is true
for AEM. The absorption loss mainly originates from SEM’s propagation loss. So when D is increasing,
Lt, La and total loss LT decreased a little due to the absorption loss difference between SEM and AEM.
The proposed double-ribbon bend has the same curvature under three separation distances D, so Lb is
also the same.

As shown in Figure 6a–d, periodic conversion between two EGSPs also happens under different
wavelengths (λ = 5, 6, 7 and 8 µm). Other parameters are as follows: Ef = 0.6 eV, D = 10 nm, R = 300 nm,
and W = 200 nm. The transmission of two EGSPs and the conversion efficiency P both have the same
change period with bending angles under the same wavelength. It is can be seen in Figure 6a–d that
when the wavelength is λ = 5, 6, 7 and 8 µm, θt is 54.9◦, 57.8◦, 63.5◦, and 69.1◦. Theoretical value θT is
54.4◦, 58.6◦, 64.4◦ and 70.1◦ based on Equation (5). The maximum conversion efficiency Pmax is 15.40%,
11.86%, 8.40%, and 4.96%, respectively. As illustrated in Figure 6e, the total loss LT is plotted in pink,
yellow, blue, and green lines when the wavelength is 5, 6, 7, and 8 µm, respectively. It is found that
total loss LT enhances with increasing bending angle under the same wavelength λ because of the
absorption loss of EGSPs. LT decreases with increasing wavelength λ under the same bending angle.
As shown in Figure 6f, the normalized loss Lt, La and Lb are plotted in cyan, orange and olive lines,
respectively. They all decrease with increasing λ. As shown in Figure 6g, Im(neff) of SEM decreases
with increasing λ, AEM does just the opposite. It’s worth noting that the proportion of SEM is much
larger than AEM’s, the downtrend for Im(neff) of SEM will play a dominating role in the absorption
loss. Thus, La declines with increasing λ.

As shown in Figure 7a–d, periodical couplings between SEM and AEM are presented by four
bending radii: 300, 400, 500, and 600 nm, respectively. Other parameters are as follows: Ef = 0.6 eV, D =

10 nm, λ = 6 µm, and W = 200 nm. The transmission of two EGSPs and the conversion efficiency share
the same converting period. When R is 300, 400, 500 and 600 nm, θt is 57.8◦, 43.3◦, 35.0◦, and 29.0◦.
The theoretical angel θT obtained by Equation (5) is 58.6◦, 44.4◦, 33.9◦, and 29.6◦. The maximum of
conversion efficiency Pmax is 6.06%, 3.45%, 2.22%, and 1.55%, respectively.

Figure 7e shows that the total loss LT of the double-ribbon bend varying with different bending
angles under different R: 300 nm (pink line), 400 nm (yellow line), 500 nm (blue line), and 600 nm
(green line). LT increases not only with increasing bending angles under the same R, but also increases
with increasing R under the same bending angle. Because a longer propagating length will be obtained
by a larger bending angle under the same R and larger R under the same bending angle, so does the
absorption loss. As can be seen in Figure 7f, the normalized loss Lt and Lb both decrease with increasing
R, but the normalized loss La is nearly unchanged with R. Because the Ef, D, and λ is the same, Im(neff)
of AEM and SEM is the same, the normalized absorption loss La is accordingly unchanged with
R. Because a larger R has a smaller curvature and lower bending radiation loss, Lb decreases with
increasing R and so does Lt. To improve the mode conversion, gain medium can be added to reduce
the absorption loss [35].
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so does the absorption loss. As can be seen in Figure 7f, the normalized loss Lt and Lb both decrease 

Figure 7. (a–d) The transmission and conversion efficiency of the graphene ribbon bends vs. bending
angle; (e) total loss of proposed structure vs. bending angle; (f) the normalized loss (Lt, La and Lb)
under different R.

4. Conclusions

In this paper, we propose a new kind of double-ribbon bend that supports two EGSPs and focus
on the conversion between two EGSPs. Using FEM, we prove the period of the conversion between
two EGSPs is determined by a separation distance, incidence wavelength, and bending radius, and the
period of the conversion can be also tuned by the Fermi level. The mode conversion originates from
the interference between the two edge plasmonic modes. The loss of double-ribbon bend consists
of the absorption loss and bending loss, and the effects of parameters on loss are also discussed.
Our double-ribbon bend may provide a new perspective to understand the conversion relationship
between two EGSPs.
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