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Evaluating the impacts of population-level interventions (e.g., changes to state legislation) can be challenging
as conducting randomized experiments is often impractical and inappropriate, especially in settings where the
intervention is implemented in a single, aggregate unit (e.g., a country or state). A common nonrandomized
alternative is to compare outcomes in the treated unit(s) with unexposed controls both before and after the
intervention. However, the validity of these designs depends on the use of controls that closely resemble the
treated unit on before-intervention characteristics and trends on the outcome, and suitable controls may be difficult
to find because the number of potential control regions is typically limited. The synthetic control method provides
a potential solution to these problems by using a data-driven algorithm to identify an optimal weighted control
unit—a “synthetic control”—based on data from before the intervention from available control units. While popular
in the social sciences, the method has not garnered as much attention in health research, perhaps due to a lack
of accessible texts aimed at health researchers. We address this gap by providing a comprehensive, nontechnical
tutorial on the synthetic control method, using a worked example evaluating Florida’s “stand your ground” law to
illustrate methodological and practical considerations.

causal inference; internal validity; panel data; program evaluation; quasi-experiments

Abbreviations: COVID-19, coronavirus disease 2019; SCM, synthetic control method.

Social interventions, such as national policies, laws, or
changes to the physical environment, hold the promise of
impact on the health of populations with minimal indi-
vidual effort (1, 2). However, it is challenging to evaluate
social interventions using conventional methods for causal
inference, especially in data with few units (e.g., states,
countries). Randomization requires large samples to achieve
equivalence between groups, and regression-based methods
(e.g., propensity score estimation) can perform poorly in
small samples (3).

The main challenge is estimating what would have hap-
pened without the intervention in a specific region or popu-
lation group. Would homicide rates in Florida be different
without their “stand your ground” law (4)? Would Jena,
Germany, have had a more severe coronavirus disease 2019
(COVID-19) outbreak without early face-mask regulations
(5)? Answering these questions credibly usually requires
similar but unexposed controls.

Controlled before-after studies are often used to evaluate
social interventions (6). With repeated outcome measure-
ments from the treated unit and controls, these designs can
control for all confounders that do not vary over time. How-
ever, to produce valid results, the control(s) and the treated
unit must share the same outcome trend (7). Similarity on
covariates that are strongly predictive of future changes in
the outcome can also be important (8).

In settings with few units, none of the available con-
trols may be sufficiently similar to provide a suitable com-
parison for the treated unit. The synthetic control method
increases the possibility of finding a good match by consid-
ering weighted combinations of units, also known as “syn-
thetic controls” (9). Unlike inverse propensity for treatment
weighting (10), synthetic control weights are calculated
through optimization instead of propensity scores, which
avoids small sample bias from estimating the propensity
score based on only one treated unit (3).
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Figure 1. Simulated example with a known intervention effect. A) Raw data from a balanced panel data set with time series of an outcome Y
from a single treated unit and several potential controls. Given this data, the synthetic control method determines the unit weights that generate
the best-fitting synthetic control unit in the pre-intervention period (before the dashed vertical line). Each control unit is assigned a unit weight
ranging from zero to 1 (the sum of the weights is always 1); the numbers on the right-hand side of the plot area ref lect these weights. B) The
synthetic control outcomes are then given by the weighted sum of the outcomes among controls, which are obtained by multiplying the time-
specific outcomes in each unit with its respective unit weight, and then summing across all control units. The time series of postintervention
outcomes in the synthetic control provide an estimate of the counterfactual outcomes in the treated unit, which is then compared with the
observed data to estimate the intervention effect.

The method was introduced in 2003 by Abadie and
Gardeazabal (11) and later formalized by Abadie et al. (9,
12). Since then, it has received considerable attention in the
statistical literature (3, 13), and Athey and Imbens called
it “the most important innovation in the policy evaluation
literature in the last 15 years” (6, p. 9). Despite their potential
to enhance the evaluation of social interventions and other
health policies (5, 14–18), synthetic controls are reportedly
underused in health research compared with the social
sciences (19). We believe that one reason may be that most
texts detailing the method are aimed at a technical audience
or social scientists, which may hamper understanding of its
potential uses and pitfalls in epidemiologic research. We
address this gap by offering an accessible introduction and
comprehensive guide to synthetic control methods aimed at
applied epidemiologists.

The tutorial is organized as follows. The following section
provides an overview of the synthetic control methodology.
The subsequent sections provide details on its strengths
and limitations, data requirements, quality assessment, and
effect estimation procedures, respectively. The final section
discusses ways of handling practical and methodological
problems. We use data from an evaluation of Florida’s “stand
your ground” law, enacted in October 1, 2005, to illustrate
estimation practices and methodological considerations (4,
15). (The law extends the right to use lethal force in self-
defense to public places when threat is perceived.) The data
and code to reproduce our analyses is available online (20).

OVERVIEW OF THE SYNTHETIC CONTROL METHOD

The synthetic control method (SCM) is an analytical ap-
proach that can be applied in controlled before-after studies.

Controlled before-after designs use panel data—repeated
measurements of an outcome variable (e.g., homicide rates)
in multiple units (e.g., US states) over time—to evaluate the
effects of an intervention, event, or policy by comparing
outcomes in exposed versus unexposed units (treated and
control units, respectively). These designs require compa-
rable control units. For example, if an intervention is deliv-
ered only in Florida due to a state-specific policy change,
then the remaining US states without similar policies may
serve as potential control units. Alone these unexposed
states may not provide good matches for Florida on char-
acteristics that may confound the association between the
intervention and the outcome (e.g., systematic differences in
trends in homicide rates, and other factors such as climate,
population density, levels of poverty, and crime), but com-
bined they can better approximate Florida and potentially
control for such confounding. SCM exploits this observa-
tion by weighting and combining information from a set
of potential control units into a “synthetic control unit”
that better matches the treated unit in the pre-intervention
period (9).

SCM uses an optimization algorithm tailored specifi-
cally for panel data with a single treated unit and multiple
potential control units. We provide further details below but
illustrate the general idea in Figure 1. In Figure 1A, we have
used the algorithm to construct a synthetic control unit using
time-series data from a single treated unit and a set of control
units. Its objective is to construct a synthetic control that best
matches the treated unit in terms of trends in the outcome
(and other covariates) during the pre-intervention period to
control for differences in pre-intervention characteristics and
time trends. The resulting synthetic control unit, illustrated
in Figure 1B, is then used to estimate the counterfactual
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outcomes (i.e., what would have happened in the absence
of the intervention).

WHEN IS THE SYNTHETIC CONTROL METHOD
APPROPRIATE?

SCM was developed for evaluating interventions that
occur at the aggregate level, in a distinct unit (e.g., a state,
country, age group), and a clearly differentiated point of time
(12). For example, a state-specific change to the regulation
of opioids is a policy intervention that occurs in a discrete
geographical region (i.e., the state) with an implementation
time point (i.e., the passing of the policy or legislation). This
specificity allows evaluators to define exposed and unex-
posed geographical regions as treated and potential control
units, respectively, and define the pre- and postintervention
period. Not all interventions have exposed and unexposed
regions or a clear starting point. For example, the COVID-19
pandemic raises difficult questions about which regions are
affected by the “intervention” and when they were affected
due to diffuse and gradual contamination. In this case, SCM
may not be the most appropriate methodology.

Advantages of the synthetic control method over
alternative evaluation methods

SCM has 3 main strengths. First, it provides data-driven
and formal criteria for selecting controls, which may reduce
researcher bias compared with manually selecting control
unit(s) (21). Second, it may help reduce the risk of bias in
policy evaluations. Its potential benefits can be easily seen
within the context of the difference-in-differences frame-
work (7), which is a widely used analytical approach in con-
trolled before-after studies of social interventions (6). Like
synthetic controls, difference-in-differences uses panel data
on exposed and unexposed groups or units (e.g., regions),
but valid difference-in-differences estimation relies on the
assumption that both groups’ outcomes would have followed
the same trend in absence of the intervention (the parallel
trends assumption). While the assumption cannot be directly
assessed, a standard validity check is to test for between-
group differences in pre-intervention trends in the outcome
(21). SCM formally incorporates this idea by reweighting
the controls to match on pre-intervention trends in the treated
unit, thus increasing the likelihood that the parallel trends
assumption holds (22). Third, SCM offers estimates of the
shape of the effect over time as it constructs a time series for
the synthetic control unit for the full postintervention period
(9). This is an advantage over another popular alternative
for evaluation of social interventions, the interrupted time-
series design, which requires making prespecified modeling
assumptions about the shape of the intervention effect over
time (i.e., an impact model) (23).

Since its initial development, SCM has also become in-
creasingly flexible. Different estimation strategies and gen-
eralizations have been proposed to accommodate a variety of
data settings, including more flexible estimation strategies for
settings with one treated unit (17, 24–26), multiple treated
units (27–31), and staggered adoption dates (22, 32, 33)

(Table 1). This paper focuses on the original version of
the method, but interested readers may consult Table 1 and
associated references for more information about alternative
approaches.

Contextual sources of bias

Even if a synthetic control closely matches the treated
unit, contextual sources of bias also need to be considered
when determining the appropriateness of SCM. These are
the same biases that can affect most controlled before-after
studies, including: 1) impacts on pre-intervention outcomes
due to the anticipation of the intervention before the inter-
vention is officially implemented (34); 2) impacts on con-
trol regions (35) (i.e., contamination/spillover effects); and
3) co-interventions or other postintervention events that do
not have equivalent impact on the outcomes in the synthetic
control and treated unit, confounding the effect of the inter-
vention of interest (15). We further discuss bias related to
statistical issues below.

DATA REQUIREMENTS

The outcome(s)

There are no strict requirements on the outcome variable
for using SCM other than that it should be (approximately)
continuous, and repeated measures for the outcome must
be available (see the next section). The method can handle
outcomes with fixed upper or lower bounds (e.g., non-
negative count data) (17). This means that most aggregate
epidemiologic measures, such as mortality counts, rates,
or prevalences, should be compatible with SCM. However,
some aspects of the outcome may influence how SCM
is most appropriately employed. We discuss these issues
further below.

The outcome data in our example is monthly homicide
rates (for all ages) spanning from January 1999 to December
2014, which we obtained at the state level from the Centers
for Disease Control and Prevention’s Wide-Ranging Online
Data for Epidemiologic Research database.

Temporal information

SCM requires sequential measures in the outcome before
and after the intervention in both the treated unit and pool of
potential control units in the form of a balanced panel data
set, which means that all units in the data need to be observed
over the same time period (e.g., 1999–2014) without any
missing values within that period. There are no fixed limits
for the number of data points required in the pre- or postin-
tervention period, which is a product of the time period and
time intervals of measurement (e.g., days, months, years).
The method can be applied with only one pre-intervention
time point, but it is usually more credible if it can be
shown that the synthetic control matches the treated unit on
outcome trends in a longer pre-intervention period (9).

We note 2 contextual factors to consider when deciding
on an appropriate study period: 1) Events or interventions in
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Table 1. Estimation Strategies for Synthetic Controls and Similar Designs Under Different Data Settings

Estimation Strategya

Data Settinga

One Treated Unit, Several
Potential Controls

Many Treated Units With the
Same Adoption Date, Many

Controls

Several Treated Units With
Staggered Adoption Dates

Balancingb The (canonical) synthetic control
method; elastic net regression;
Bayesian structural
time-series modeling

Propensity score weighting based
on covariates and
pre-intervention outcomes;
synthetic control methods for
micro-level data; trajectory
balancing

Synthetic control method applied
separately to each treated unit
(pooled estimates)

Outcome modelingc Interactive fixed effects
regression (“generalized
synthetic control method”)

Difference-in-differences
(matching on pre-intervention
trends); interactive
fixed-effects regression
(“generalized synthetic control
method”)

Interactive fixed effects
regression (“generalized
synthetic control method”)

Doubly robust estimationd The augmented synthetic control
method

Synthetic difference-in-
differences; penalized
synthetic control method for
disaggregated data

Pooled augmented synthetic
control method with staggered
adoption

a The estimators are categorized according to typical data setting and estimation strategy. Each cell contains the name of a method. (See
text for references; the table is not intended to be exhaustive.)

b Balancing refers to estimators that use weights to achieve balance on pre-intervention outcomes and (if applicable) covariates.
c Outcome modeling refers to strategies that directly model postintervention outcomes (e.g., regression).
d Doubly robust estimation refers to methods that combine both strategies.

the “pre” period that vastly change the characteristics of the
outcome (e.g., its trend or level) may warrant the use of a
shorter time window than the full available data period, as
such events may not be desirable to match on; and 2) if the
expected effect is gradual or delayed, the “post” period needs
to be sufficiently long for the effect to have time to mani-
fest (3).

Covariates

The use of covariates is optional (8), but including a set
of covariates that are predictive of the postintervention out-
comes in absence of the intervention can potentially improve
causal inference (3, 8), especially if the pre-intervention
period is too short to match on underlying trends using
outcome data alone. The covariates may be time-invariant
or time-varying (in the latter case, data from each time point
can be entered as a separate covariate to enable SCM to
match on covariate trends).

The covariates are typically pre-intervention character-
istics that are hypothesized to affect the postintervention
outcomes that would have been realized in absence of the
intervention (e.g., risk factors or sociodemographic fac-
tors). The appropriateness of covariates can, for instance, be
assessed using graphical methods, such as logic models and
directed acyclic graphs (36), in combination with subject-
matter knowledge. As an illustration, we present a logic

model for our analysis of Florida’s “stand your ground” law
in Web Figure 1 (available at https://doi.org/10.1093/aje/
kwab211), which we used to determine appropriate covari-
ates. Detailed information about the data is presented in Web
Table 1. Briefly, we consider unemployment rates, Republi-
can voters, urbanicity, alcohol consumption, firearm owner-
ship rates, age and racial composition, violent crime rates,
and incarceration rates as covariates. The SCM algorithm
contains an automated determination of variable importance
that prioritizes a good match on strong predictors of the
untreated potential outcomes over weak predictors as they
are assumed to give rise to a more convincing synthetic
control (9). This algorithm further allows for data-driven
selection of appropriate covariates.

The donor pool

SCM requires a set of unexposed units to make up a
suitable “donor pool” of potential controls. Control units in
the donor pool are described as potential controls because
being included in the donor pool does not mean that the
algorithm will include them in the synthetic control unit.

Although there must be more than one potential control
unit to construct a weighted average, there are no other
fixed specifications for the number of potential control units
needed in the donor pool. A suitable donor pool should
comprise units that: 1) share the same definition of a unit
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as the treated unit (e.g., distinct geographical region); 2) are
not exposed to the intervention (or any similar intervention)
during the study period; and 3) do not experience other
isolated events that cause large temporary shocks during
the pre-intervention period that are not predictive of the
postintervention outcomes (e.g., a terrorist attack) (3, 9).

In our example, we included all 15 US states (i.e., equiv-
alent geographical regions to Florida) that did not enact
similar laws (i.e., are unexposed) during the study period:
Arkansas, Connecticut, Delaware, Hawaii, Iowa, Maine,
Maryland, Massachusetts, Nebraska, New Jersey, New York,
North Dakota, Ohio, Rhode Island, and Wyoming. To avoid
matching on a large temporary shock, we also excluded
deaths caused by the 9/11 terrorist attack from the September
2001 data in New York.

CONSTRUCTING THE SYNTHETIC CONTROL UNIT

SCM uses optimization to determine the best set of weights
for the controls given the available data. Software for run-
ning the optimization is available for Stata (StataCorp LLC,
College Station, Texas), R (R Core Team, R Foundation
for Statistical Computing, Vienna, Austria), and MATLAB
(MathWorks, Inc., Natick, Massachusetts) (9). In our exam-
ple, we use the original “Synth” package for R in com-
bination with the “Multivariate Synthetic Control Method
Using Time Series” package, the latter of which runs a
more numerically stable optimization (37, 38). For technical
details, see Abadie et al. (9) and Abadie and Gardeazabal
(11).

The optimal weights w∗
i are determined by minimizing the

distance between the synthetic control and the treated unit
using a variable importance–weighted mean squared error
function (9, 12). The weights are constant across the study
period and constrained to be nonnegative and sum to 1. The
constraints restrict the method to only allow for estimates
based on interpolation within the empirical distribution of
the data among controls (9, 24) (details below). The function
that SCM aims to minimize can be expressed as:

K∑
k=1

vk

(
X1k −

N∑
i=2

Xikw∗
i

)2

, (1)

where each variable k is assigned an importance weight vk;
X1k represents the value of the variable k in the treated unit
(indexed by i = 1), and Xik represents the values among
controls, which, when summed together with the weights w∗

i ,
give rise to the distribution of the variables in the synthetic
control unit. The variables in the matching vector X are
the ones that SCM will try to match on, which means that
the weights are determined so that the weighted average,∑N

i=2Xikw∗
i in equation 1, is as similar as possible to X1k

given the variable weights vk. The contents of X can be
the value of the outcome variable at each pre-intervention
time point, some combination of pre-intervention outcomes
(e.g., the average of the pre-intervention outcomes, a vector
of moving averages, etc.), and other covariates (9) (see
Covariates, above).

The function of the variable weights vk is to assign higher
priority to strong predictors of the outcome variable, allow-
ing for greater imbalance on weak predictors (9). This fea-
ture allows for more effective use of the available data,
as a perfect balance can typically not be achieved on all
variables in small samples (11). The variable weights can
be manually specified (e.g., all variables can be given equal
weight or assigned a relative importance weight based on
previous research). However, the typical approach in SCM is
to use a data-driven subroutine to estimate the strength of the
correlation between the variables entered into the matching
procedure and the pre-intervention outcomes in the treated
unit (11).

Technically, the algorithm runs a nested optimization
to also find the optimal variable importance weights that
minimize the distance between the treated unit and syn-
thetic control on a chosen set of pre-intervention outcomes
(see Appendix to Abadie and Gardeazabal (11) for details).
This set can be the entire pre-intervention time series (9)
or a cross-validation subset of the pre-intervention period
(12). Entering all pre-intervention outcomes into both the
matching vector X and variable importance routine can
lead to overfitting and will always result in variable impor-
tance weights that exclusively prioritize good fit on the pre-
intervention outcomes over other covariates, and is hence
not recommended (39). To avoid this issue, Abadie et al.
(9) entered outcomes from 1975, 1980, and 1988 in their
matching vector X and used yearly data from the entire
“pre” period (1970–1988) to determine variable importance
in a study of a tobacco tax reform in California on cigarette
sales. Given that X contains outcome data from a subset of
the time points used to determine variable importance, we

Table 2. The Unit Weights That the Synthetic Control Method’s
Optimization Algorithm Assigned to Each Control State to Construct
a Synthetic Florida for Evaluating Florida’s “Stand Your Ground”
Law

State Unit Weight

Arkansas 0

Connecticut 0

Delaware 0.02

Hawaii 0.03

Iowa 0

Maine 0

Maryland 0.26

Massachusetts 0.12

Nebraska 0

New Jersey 0.14

New York 0.35

North Dakota 0

Ohio 0

Rhode Island 0.08

Wyoming 0

Am J Epidemiol. 2021;190(12):2700–2711
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Table 3. Covariate Balance Between Florida, Synthetic Florida, and the Unweighted Sample Average of All 15 States in the Donor Pool,
Before the Implementation of Florida’s “Stand Your Ground” Law, January 1999–September 2005

Floridaa

All Control Statesb

Real SyntheticVariable

Mean % Ratec Mean % Ratec Mean % Ratec V

State-level covariatesd

Ethanol consumptione 2.92 2.45 2.60 0

Unemployment 7.62 5.60 5.71 0

Republican voters 50.5 39.1 47.3 0

Urban population 89.3 88.2 74.7 0.22

Firearm ownership 28.4 18.1 31.3 0

Population over age 15 years 71.5 70.3 70.5 0

Black or African-American
population

15.5 17.4 9.51 0

Violent crimes 770 521 363 0

Incarcerations 465 342 320 0

Homicides by yearf

1999 6.12 5.87 5.32 0.09

2000 5.87 5.65 5.02 0.02

2001 5.90 6.04 5.35 0.11

2002 6.04 5.80 5.42 0.25

2003 5.90 6.11 5.51 0

2004 5.93 5.50 5.00 0.08

2005 5.36 5.89 5.50 0.23

Abbreviations: V, variable importance weight.
a Real: observed values from Florida. Synthetic: values from synthetic Florida (a weighted average of the 15 control states using the weights

in Table 2, estimated using the synthetic control method).
b Unweighted average of the 15 control states used in the synthetic control analysis.
c Per 100,000 person-years.
d The covariates ref lect state-specific averages of yearly data from 1999 to 2004, except for unemployment, which was averaged using

monthly observations from January 1999 to September 2005; urban population, which ref lects a single measurement from 2000; and Republican
voters, which is an average of the 2000 and 2004 US presidential elections. See Web Table 1 for data sources and details.

e Gallons per capita, 21 years or older.
f Monthly homicide rates per 100,000 population were averaged from January to December within each state and year (January to September

in 2005). The rates are expressed per 100,000 person-years in the table.

refer to this strategy as a partial overlap approach. In a later
paper examining the economic impacts of the reunification
of Germany, they used data from 1971–1980 in the match-
ing vector X (a training period) and used pre-intervention
outcomes from 1981–1990 (validation period) to determine
variable importance (i.e., a cross-validation approach) (12).
This part of SCM is arguably the one where the analyst is
given the greatest flexibility in terms of model specifica-
tion. It is therefore important to present sensitivity analyses
to demonstrate the robustness of the results to alternative
specifications (see, e.g., Bonander (16) for examples) or to
leave out a portion of the pre-intervention period for cross-
validation to assess the quality of the model (21).

In our example, we use a partial overlap approach and
enter yearly averages of homicide rates from 1999–2005 into

the matching vector X in addition to the covariates listed in
Covariates, above, and use monthly homicide data from the
entire pre-intervention period (January 1999 to September
2005) to determine variable importance. The resulting syn-
thetic control for Florida consists primarily of New York,
Maryland, New Jersey, and Massachusetts (their optimal
unit weights, as determined by our SCM specification, are
presented in Table 2).

ASSESSING SYNTHETIC CONTROL FIT

The quality of the synthetic control can be assessed by
examining the covariate balance between the treated unit
and the synthetic control and how well the outcomes in the

Am J Epidemiol. 2021;190(12):2700–2711



2706 Bonander et al.

0.3

0.4

0.5

0.6

0.7

0.8

2000 2002 2004 2006 2008 2010 2012 2014
Time, months

2000 2002 2004 2006 2008 2010 2012 2014
Time, months

M
on

th
ly

 H
om

ic
id

e 
R

at
e

A)

–0.1

0.0

0.1

0.2

0.3

Fl
or

id
a 

– 
Sy

nt
he

tic
 F

lo
rid

a

B)

Figure 2. Outcomes and effect estimates from the synthetic control analysis. A) Homicide rates per 100,000 person-months in Florida (black
lines) and synthetic Florida (gray lines) from January 1999 to December 2014. B) Pointwise difference in outcomes between Florida and synthetic
Florida. The vertical line marks the implementation of Florida’s “stand your ground” law in October 2005. Predictions based on spline regression
models were added to the plot after estimation to enhance visualization of the signal in the data and estimated effects.

synthetic control unit fit those in the treated unit during the
pre-intervention period.

Balance check

Balance checks for synthetic controls are similar to those
typically performed for covariate balancing methods (e.g.,
propensity score weighting) (10). We tabulate covariate val-
ues in Florida together with unweighted and weighted means
from the donor pool in Table 3. We also include the vari-
able importance weights produced by SCM for reference;
greater imbalance is to be expected on covariates with low
weights. In our case, SCM prioritizes balance on urbanicity
in addition to the pre-intervention outcomes included in the
matching vector.

Pre-intervention fit

Pre-intervention fit can be assessed by plotting the time
series of the observed outcomes in the treated unit versus the
outcomes in the synthetic control (Figure 2A) or by plotting
their difference (Figure 2B). In our example, the difference
is concentrated around zero throughout the “pre” period,
which implies a reasonably good fit. Systematic deviations
from zero, such as diverging pre-intervention trends, would
imply that there is cause for concern. Leaving out a portion
of the pre-intervention period for cross-validation can also
help assess the risk of bias. In our case, leaving out the last
third of the period from the training period gives rise to
similar results as the main analysis, and the synthetic control
matches the treated unit closely in the left-out period (Web
Figure 2).

Am J Epidemiol. 2021;190(12):2700–2711
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USING SYNTHETIC CONTROLS TO EVALUATE THE
INTERVENTION

Point estimation

Once a suitable specification for the synthetic control has
been obtained, estimates can be calculated as any contrast
between the postintervention outcomes in the treated unit
and the synthetic control. Typical choices involve calculating
time-specific differences and plotting the temporal evolution
of the estimated effect (Figure 2B) or taking the difference
or percentage change over the entire postintervention period.
To obtain any of these, the first step is to calculate the esti-
mated counterfactual for each postintervention time point t:

̂Y1t(0) =
N∑

i=2

Yitw
∗
i , (2)

where Yit is the time-specific outcome in unit i (i = 1
is the treated unit, and the rest are controls), and w∗

i is
the unit weight assigned to each control unit by SCM. In
our example, the average “post” period difference is 1.14
homicides per 100,000 person-years (equivalent to a 22%
increase).

Statistical inference

Obtaining valid inference statistics (i.e., P values and
confidence intervals) can be challenging in panel data due
to serial correlation (40), especially when there are few
treated units (41). In large samples, one can typically use
cluster-robust standard errors to handle this problem, but
these methods tend to work poorly in small samples (42)
(e.g., with fewer than 40 units, which is typical for SCM).
Inference for SCM is further complicated by the constraints
placed on the weights (43), which causes a type of bias
that leads to nonnormal sampling distributions for effect
estimates (44, 45) (regularization bias). As a consequence,
it is difficult to derive general variance estimators (e.g.,
confidence intervals) for effect estimates based on SCM
(43, 45). The typical alternative in such settings is to use
the bootstrap, but this method tends to perform poorly with
a single treated unit (22, 28). There are currently no best
practice recommendations for how to perform statistical
inference for SCM estimates, although the topic is an active
area of research (43, 45–47).

As an alternative, Abadie et al. (9) proposed assessing
the significance of the estimated effects by estimating the
effects of hypothetical interventions that “occur” at the same
time as the intervention of interest in each control unit,
and to compare these so-called “placebo effect” estimates
with the actual effect estimate. This procedure is compli-
cated by the fact that the quality of the pre-intervention
fit may differ between each unit. However, the evidence
for a causal effect is strengthened if the effect estimate is
larger in the actual treated unit than in control units with
placebo counterfactuals of comparable pre-intervention fit.
To assess this, Abadie et al. (9) suggested quantifying a
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Figure 3. Results from the placebo analysis comparing estimated
effects in Florida to placebo effects from other, untreated states. Size
of the estimated (placebo) effects standardized by pre-intervention fit
in all states in the data (ordered from largest to smallest). The data
ref lect the state-specific ratio between the postintervention and pre-
intervention root mean squared prediction error (RMSPE). See text
for further detail.

standardized and directionless effect measure that accounts
for pre-intervention fit. The measure can be calculated as
follows: For each control unit i, shift the treated unit into
the control group and run an equivalent synthetic control
analysis to the one in the treated unit and store the estimated
counterfactuals ̂Yit(0) (see equation 2). Then calculate the
squared prediction error at each time point t by squaring the
difference between the observed outcomes and the outcomes
in the synthetic control in each unit (including the treated
unit):

eit = (
Yit − ̂Yit(0)

)2
. (3)

Next, calculate the period-specific averages of eit for the
pre-intervention and postintervention periods within each
unit; let ei,T0 and ei,T1 denote these quantities, respectively.
The standardized effect measure is then given by ri =√

ei,T1/
√

ei,T0 (the ratio between the postintervention and
pre-intervention root mean squared prediction error), which
gives a measure of the size of the effect relative to pre-
intervention fit. The size of ri in the treated unit can then
be compared with those based on the placebo studies among
controls. After running this test on our data, we find that
Florida has the largest ri of all states in the sample (Figure 3),
which implies that it is unlikely to find an equally large
effect estimate elsewhere in the data when the synthetic
control analyses exhibit equivalent pre-intervention fit. This
result can also be expressed as a permutation-based P value
by dividing the rank of the treated unit (1 (the highest in
Figure 3)) by the number of units in the data (16 in total):
1/16 = 0.0625 (see Abadie et al. (9) for a fuller explanation
and Abadie (3) for additional discussion about the interpre-
tation of these P values)).
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Figure 4. Toy data illustrating the potential appropriateness of the synthetic control method depending on the position of the treated unit
compared with the units in the donor pool (“untreated”) with respect to the outcome. The vertical line marks the start of a hypothetical intervention.
Each panel represents a different scenario: A) The treated unit and donor pool are similar (no reason to suspect interpolation bias with respect
to the outcome dimension); B) the treated unit is outside the range of the pre-intervention outcomes in the donor pool (a synthetic control unit
cannot be identified); C) the treated unit is within the range of the outcome data, but strong interpolation will be required from units with much
higher outcomes (interpolation bias may occur); D) the treated unit is positioned at a void within the convex hull, and strong interpolation from
units with both much lower and much higher pre-intervention outcomes will be required (interpolation bias may occur).

We describe a recently proposed method for estimating
confidence intervals for synthetic controls in Web Appendix
1 for readers who prefer conventional statistical inference
(45). Our replication file contains R code to apply both
approaches (20).

OVERCOMING PRACTICAL AND METHODOLOGICAL
ISSUES

This section describes common practical and method-
ological issues and offers recommendations to address them.

The treated unit is outside the convex hull of the donor
pool data

SCM only allows for interpolation within the empirical
distribution of the control data. To construct a synthetic

control that approximates the treated unit, the treated unit’s
values on the variables included in the matching procedure
must therefore fall within the range of the corresponding
variables among the controls. Only allowing for interpola-
tion prevents bias due to unrealistic estimates far from the
empirical support of the data (48). In the SCM literature, this
feature is typically referred to as the convex hull condition
(3). While the condition extends to covariates, the biggest
problems tend to arise if the treated unit has lower or higher
values on the outcome variable than any of the available
controls. The problem can be easily detected by inspecting
the outcome data (Figure 4A; Figure 4B).

The convex hull condition can be relaxed by modifying
the constraints on the unit weights (see, e.g., Bonander (17)
and Doudchenko and Imbens (24)) or by subtracting the
within-unit average of the pre-intervention outcomes from
the time-specific outcomes in each unit (3). In the latter case,
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the algorithm will match on pre-intervention trends rather
than trends and levels (similar to difference-in-differences
estimation). It is then important to consider whether the
outcome trend conveys the same information regardless of
its level. See Abadie (3) and Hazlett and Xu (28) for further
discussion about these modifications.

Excessive interpolation

While SCM protects against extreme counterfactuals
obtained via extrapolation, excessive interpolation may also
be a cause for concern (9) (Figure 4C; Figure 4D). Again,
it is advisable to inspect the raw data to analyze the degree
of interpolation required to construct the synthetic control
and—if deemed necessary—conduct sensitivity analyses
to assess the robustness of the results to the exclusion of
controls that differ greatly from the treated unit (12). Recent
work by Abadie and L’Hour (30) provides another solution
that involves penalizing dissimilar units in the optimization
so that they are less likely to contribute to synthetic control.

Noisy outcome data and overfitting

The original SCM algorithm was developed for time
series that are measured with a minimal degree random fluc-
tuations between time points (“noise”) (e.g., gross domestic
product) (9). However, epidemiologic data may exhibit noise
even in large populations (e.g., if the disease in question is
rare). If SCM overfits to noise rather than the underlying
trend, the results may be biased (49, 50). The data in our
example may be characterized as noisy (Figure 2), and it is
therefore important to assess whether our main results are
sensitive to overfitting.

At least 2 strategies can be employed to handle noisy
outcome data: filtering and de-biasing. Filtering involves
trying to remove noise in the pre-intervention outcomes
before SCM optimization (49, 51). In our case, the estimate
changes from a 22% to 24% increase when we prefilter
the pre-intervention outcomes using the method described
by Fried (52). However, prefiltering the data adds another
modeling step to the analysis that may increase the risk
of misspecification bias. De-biasing instead involves sub-
tracting an out-of-sample estimate of the bias from the
effect estimate (44, 50). For details, see Web Appendix 1;
the inference method described there uses de-biasing as a
necessary step to construct valid confidence intervals.

Additional robustness and falsification checks

Causal inference in SCM relies heavily on the absence
of other confounding events in the postintervention period,
including in the treated unit itself and in units that contribute
to the synthetic control. It is therefore important to assess
the risk of bias due to such events or other issues in the
data. In Web Appendix 2, we discuss how placebo studies
(12), manual restriction of the donor pool (15), and negative
control outcomes (53) can be used to assess the robustness
of the results in SCM studies.

CONCLUDING REMARKS

We have presented a nontechnical tutorial to introduce
SCM and discuss its main strengths and limitations. If
used correctly, the method can provide valuable evidence
about the effects of health interventions and policies (3,
6). We hope that this tutorial can raise awareness about
SCM, including its limitations, and thereby enable more
widespread and credible implementation of the method in
epidemiologic research.
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