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Abstract
Enterovirus A71 (EV-A71) is an important nonpolio enterovirus that causes severe neurological complications. In
1998, Taiwan experienced an EV-A71 outbreak that caused 78 deaths. Since then, periodic epidemics of EV-A71
associated with newly emerging strains have occurred. Several of these strains are known to be recombinant;
however, how these strains arose within such a short period of time remains unknown. Here, we sequenced 64 full-
length genomes from clinical isolates collected from 2005 to 2016 and incorporated all 91 Taiwanese genomes
downloaded from the Virus Pathogen Resource to extensively analyze EV-A71 recombination in Taiwan. We found
that the B3 subgenotype was a potential recombinant parent of the EV-A71 C2-like and C4 strains by intratypic
recombination. Such B3-similar regions were also found in many cocirculating coxsackieviruses belonging to
Enterovirus A species (EV-A) through a series of intertypic recombinations. Therefore, locally enriched outbreaks of
cocirculating viruses from different genotypes/serotypes may facilitate recombination. Most recombination
breakpoints we found had nonrandom distributions and were located within the region spanning from the
boundary of P1 (structural gene) and P2 (nonstructural) to the cis-acting replication element at P2, indicating that
specific genome reassembly of structural and nonstructural genes may be subject to natural selection. Through
intensive recombination, 11 EV-A71-like signatures (including one in 3A, two in 3C, and eight in 3D) were found to
be present in a variety of recently cocirculating EV-A viruses worldwide, suggesting that these viruses may be
targets for wide-spectrum antiviral development.

Introduction
Enterovirus A71 (EV-A71), a member of the nonpolio

enterovirus family, belongs to the Enterovirus A species
(EV-A) of Picornaviridae1. Notably, infection with EV-
A71 in children under 5 years of age sometimes leads to
severe neurological complications (e.g., brainstem
encephalitis, meningitis, and acute flaccid paralysis) and

even death owing to cardiopulmonary failure1–3. EV-
A71 is a nonenveloped small RNA virus with a positive,
single-stranded RNA genome1. The viral genome can
be directly translated into a polyprotein consisting of
the structural (P1) and nonstructural (P2 and P3)
regions; this polyprotein is subjected to a series of
proteolytic cleavages to generate functional proteins,
including structural proteins (VP1–4) functioning in
capsid assembly and nonstructural proteins (2A–C,
3A–D) required for viral replication1. Based on
the nucleotide sequence of the VP1 protein, EV-A71
is classified into seven genotypes (A–G)4–6. Genotypes
B and C can be further divided into subgenotypes
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from B0 to B5 and from C1 to C5, respectively7. Out-
breaks caused by these variable genotypes have been
reported8.
In 1969 and the early 1970s, EV-A71 genotype A

caused outbreaks in the United States of America
(USA). However, genotype A did not recur until 2008,
and the intervening worldwide epidemics were found to
be caused by other genotypes8. From the 1970s to the
late 1980s, genotype B dominated and led to outbreaks
in the USA, Japan, Australia, and Europe. In the late
1980s, the prevalent genotype changed to genotype C,
which is currently active outside the Asia-Pacific region.
However, after the 1975 Bulgaria and 1978 Hungary
outbreaks, no severe outbreaks occurred until 19977,8;
since then, several EV-A71 outbreaks have accompanied
fatal hand–foot–mouth disease (HFMD) cases in var-
ious countries in the Western Pacific region, and the
threat continues8. Thus, EV-A71 has been selected by
the World Health Organization as one of the top five
viruses in the post-polio eradication era9. These recent
outbreaks were associated with newly emerging strains,
including the recombinant B3, B4, C2, and
C4 subgenotypes7,8. Notably, recombination is believed
to play a more important role than that of mutations in
the evolution of EV-A717,10. Although clinical trials of
the EV-A71 vaccine are currently ongoing11, novel
vaccine-resistant strains might appear as a result of
recombination. Therefore, characterization of the
mechanisms of viral recombination remains essential.
In Taiwan, EV-A71 has become a long-term pathogen

and can be traced back to as early as 19803; however, the
first severe outbreak occurred in 1998, and Taiwan
experienced the most severe EV-A71 outbreak on record.
In a subsequent outbreak in 2000–2002, 846 severe cases
and 129 deaths were reported2,3. Thus, enterovirus
infection has been evaluated as an important infectious
disease in Taiwan. From 1989 to 2009, physicians and
hospitals used sentinel surveillance systems to monitor
highly infectious diseases; now, computerized systems
carry this responsibility. Additionally, a laboratory-based
virological surveillance system was established in 2000
to focus on influenza virus and enterovirus infections3,
and reporting of severe cases is now mandatory in
Taiwan.
Here, we evaluated the evolution and recombination

of different genotypes of EV-A71 and several cocircu-
lating EV-A viruses in Taiwan based on full-genome
sequence analyses. Our results provide insights into the
crucial role of the similar nonstructural regions via a
series of recombination events associated with various
serotypes, which may be triggered by the emergence of
the temporal EV-A71 B3 strain. These results may
facilitate the development of wide-spectrum antivirals
against cocirculating EV-A strains.

Results
Molecular epidemiological analysis of EV-A71 from 2005 to
2016 in Taiwan
We summarized epidemiological reports of enterovirus

infections from the Taiwan Centre for Disease Control in
Fig. 1. More than 1000 enterovirus infection cases have
been reported annually since 2005 in Taiwan, and both
EV-A and EV-B viruses were common (Fig. 1a). No
dominant serotype has been observed since 2005, and EV-
A71 infections (Fig. 1a, marked in red) had a lower pre-
valence than those of the other cocirculating types, except
in 2012. However, most severe cases were associated with
EV-A71 infections (Fig. 1b), and much higher numbers of
severe cases were reported in 2005, 2008, 2011, and 2012,
correlated with EV-A71 outbreaks12,13.
Sixty-four clinical isolates collected from 2005 to 2016

were sequenced to investigate EV-A71 recombination.
Yearly counts are presented in Table 1. For the purpose of
recombination analysis, all of the 91 full-length genomes
isolated from Taiwan were downloaded from the Virus
Pathogen Resource (ViPR) and subjected to the following
examinations. A maximum likelihood (ML) tree was
inferred using all Taiwanese genomes and published
reference sequences with known subgenotypes (EV-A71
A, B0–B5, and C1–C5; Fig. 1c). The genotype distribution
of the Taiwanese strains is summarized in Table 1. Except
for one C5 strain collected in 2007, all our clinical isolates
belonged to the B5 and C4 subgenotypes. The B5 and
C4 subtrees are shown in Fig. 1d, e, respectively. The
B5 strain showed a ladder-like distribution in the phylo-
genetic tree (Fig. 1d). The strains collected in each year
formed a distinct clade, and the consecutive replacement
of the older clades with the more recent clades indicated
the continuous evolution of the B5 strain after its diver-
gence from the B4 strain. However, the most recent
B5 strains seemed to represent a new branch (Fig. 1d,
upper), which is further discussed in Fig. 2b. The EV-A71
C4 strains collected in different years also belonged to
different clades (Fig. 1e). In contrast, these clades showed
a scattered distribution, meaning that multiple lineages of
the C4 strain may coexist and be transmitted over time.
Interestingly, a periodic switching between the EV-A71

C4 and B5 strains occurred in Taiwan during the years from
2005 to 2016 (Table 1). To elucidate whether this genotype
switching may be caused by the transmission of different
EV-A71 strains from other countries, the VP1 genes of
genomes collected worldwide were obtained from ViPR and
phylogenetically analyzed (Fig. 2a). The details of each
analyzed sequence can be found in Supplementary Table 1.
Since B5 and C4 were the dominant circulating EV-A71
strains in Taiwan, we examined their relationships with the
same strains circulating in nearby countries, including
China, Cambodia, Thailand, and Vietnam (Fig. 2b, c). In the
B5 tree, most sequences came from Taiwan; indeed, Taiwan
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Fig. 1 (See legend on next page.)
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has been the only country to suffer from EV-A71 outbreaks
caused by the B5 strain. Sequences from other countries
collected at similar times formed clusters with Taiwanese
sequences (Fig. 2b, marked in red). For example, Taiwanese
strains in 2003 (TW/2003) were closely related to strains
from Malaysia in the same year. TW/2011-13 were clus-
tered together, but they also clustered with two Vietnam/
2012-13 strains and one China/2009 strain. In contrast, the
new B5 branch may be derived from recent sequences
found in Thailand. Two TW/2015 strains were closely
related to the Thailand/2012–14 strains (Fig. 2b, upper),
and the older Thailand strains (before 2012) were within the
other cluster containing the TW/2003 strains rather than

that containing the TW/2007-11 strain (Fig. 2b, lower).
Thus, the B5 strain may have first been transmitted from
Taiwan to Thailand, where the virus independently evolved.
Later, the locally evolved Thailand B5 strain was transferred
back to Taiwan. Regarding the C4 strain, Taiwanese strains
isolated after 2005 showed higher similarity to those iso-
lated from China (Fig. 2c). Unlike that of the B5 strains, a
scattered distribution of the C4 strains was observed
(Fig. 2c). This result indicated that their genetic clades were
not correlated with isolation year, despite the close rela-
tionships between strains from Taiwan and China in
similar isolation years. Considering the different anti-
genicities of the B5 and C4 strains, which could alter herd
immunity13, genotype switching in Taiwan may be related
to the frequent transmission of different strains outside the
Taiwan region.

Interconnection of circulating EV-A71 by intratypic
recombination
Recent EV-A71 outbreaks have been characterized by an

association with newly emerging subgenotypes8. Both the
C2 and C4 strains are recombinogenic and carry partial
genomes derived through intertypic recombination with
coxsackievirus (CV)-A8 and CV-A16, respectively13,14.
Furthermore, the B4 strain is an example of intratypic
recombination within EV-A71 genotype B13. The emer-
gence of various EV-A71 strains within a decade may be
attributable to regionally enriched, large-scale outbreaks
that can increase the risk of coinfection, a key requirement
for recombination15. To examine this possibility, we eval-
uated Taiwanese full-genome sequences that consisted of a
variety of genotypes/subgenotypes (Table 1) and explored
the relationships among these newly emerging strains. EV-
A71 and prototype CV (including types A2–A8, A10, A12,
A14, and A16) sequences of EV-A were compared to reveal
their recombinogenic properties. Breakpoints in EV-A71
recombination are usually located in the P2 and P3
regions16. Therefore, we first reconstructed ML phyloge-
netic trees of the P1, P2, and P3 regions (Fig. 3a–c,
respectively). Possible recombination events were revealed
by changes in the tree positions of analyzed sequences in
the subgenomic phylogenies17.
In the phylogenetic tree constructed via the P1 region

and rooted with the oldest strain (CVA2-Fleetwood),
distinct clades representative of each genotype/sub-
genotype were observed, and all sequences of prototype

Table 1 Taiwanese genomes of EV-A71 analyzed in this
study

Year Counts (genotype) of

sequences acquired in this

study

Counts (genotype) of

sequences downloaded from

ViPR

1986 6 (B1)

1998 6 (C2)

1999 1 (B4)

2000 1 (B4)

2001 1 (B4)

2002 1 (C4)

2003 1 (B5)

2004 11 (C4)

2005 9 (C4) 5 (C4)

2007 1 (C5) 1 (B5), 1 (C5)

2008 9 (B5) 19 (B5), 3 (C2-like), 1 (C4)

2009 2 (B5)

2010 5 (C4) 1 (C4)

2011 2 (B5), 2 (C4) 8 (B5), 6 (B4), 4 (C4)

2012 28 (B5), 2 (C4) 10 (B5), 1 (C2)

2013 1 (B5) 1 (C2)

2014

2015 2 (B5), 1 (C4)

2016 2 (C4)

Total 64 91

(see figure on previous page)
Fig. 1 Enterovirus surveillance reports in Taiwan since 2005 and phylogenetic tree of Taiwanese EV-A71 full-genome sequences.
a Percentages of enterovirus infections since 2005, including EV-A71 (marked in red), six CV types (A2, A4, A5, A6 A10, and A16 in different colors), EV-
B (purple), and other species (gray) in Taiwan. EV-B included CV types (B1–6 and A9) and echovirus types 3, 6, 11, 18, and 30. Counts of total cases
reported in each year are also shown in parentheses. b Counts of severe complications are further summarized. c Compressed ML tree of Taiwanese
strains in various subgenotypes (A, B0–5, and C1–5). Significant bootstrap support values greater than 70% are indicated at major nodes. d B5 and e
C4 subtrees are shown. The tip labels of the 63 strains in B5 and C4 sequenced in this study are colored in red
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Fig. 2 ML tree of the VP1 gene in Taiwanese and worldwide EV-A71 strains. a Compressed tree, including Taiwanese and worldwide strains.
Significant bootstrap support values greater than 70% are indicated by asterisks at the major nodes. Strains isolated from Taiwan, China, Cambodia/
Thailand/Vietnam, and other countries are marked in different colors. b B5 and c C4 subtrees are shown
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Fig. 3 Intratypic recombination revealed by cross-genotypic patterns in ML trees of subgenomic EVA-71 sequences. Cross-genotypic
patterns are found in the compressed trees of the (a P1, b P2, and c P3) regions, rooted by the oldest prototype strain (CVA2-Fleetwood), which was
isolated in 1947. Comparing to the P1 region, two reclusterings containing EV-A71 C2-like/C4 with B3 and CV-A8 with EV-A71 C in the P2 and P3
region are highlighted in blue. Through intratypic recombination, the B3 subgenotype is a potential origin of recombinants. d EV-A71 C4 and e C2-
like strains were detected by SimPlot (upper panel) and Bootscan (lower panel) analyses. Reference strains, as noted, are marked in different colors.
Numbers indicate nucleotide positions in the CDS corresponding to the viral genome
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CV appeared as an outgroup (Fig. 3a). In contrast, cross-
genotypic patterns in the CV-A and EV-A71 sequences
were identified in the P2 and P3 phylogenetic trees
(Fig. 3b, c). The inconsistency of these phylogenies
reflected recombination events. For example, CV-A8 was
reported as the recombination parent of EV-A71 C213,
and this result is reflected by their coclustering in the P3
region (Fig. 3c, highlighted in blue), indicating that the
high sequence similarity between CV-A8 and EV-A71
genotype C may have facilitated the recombination and
emergence of the EV-A71 C2 strain. Similar reclustering
also occurred in the C2-like and C4 strains. In the P2
phylogenetic tree, the C2-like strain was an outlier of
genotype C of EV-A71, and the C4 cluster was closely
related to genotype B and several prototype CVs (Fig. 3b).
The clustering pattern changed again in the P3 phyloge-
netic tree, and a new cluster containing EV-A71 B3, C2-
like, and C4 was formed. Additionally, prototypes CV-A4,
CV-A14, and CV-A16 were redistributed into the same
cluster (Fig. 3c). Given that the EV-A71 C4 strain was
regarded as a double-recombinant virus containing EV-
A71 genotype B-like P2 and CV-A16-like P3 regions and
that the B3 strain was a recombinant with a CV-A16-like
3D region14,18,19, our results suggested that the EV-A71
B3 strain may be the possible recombination parent of the
C4 strain. Similarly, the C2-like strain may be an
uncharacterized recombinant EV-A71 that also originated
from the B3 strain. These predictions were confirmed by
SimPlot analysis (Fig. 3d, e). When comparing the
C4 strain to reference strains including the EV-A71
genotypes A, B3, and C1, its 5′ region showed a higher
similarity (approximately 88%) to that of EV-A71 geno-
type C1; however, the similarity decreased at the bound-
ary of the 2A/2B coding region, and this effect was
accompanied by an increased similarity (approximately
80%) to B3 toward the 3′ half of the viral genome. The
recombinant breakpoint was mapped to approximately
nucleotide position 2881 of the coding sequence (CDS)
(Fig. 3d). The shift of predominant similarity from one
reference strain to another in different genomic regions
was also observed when we queried C2-like strain
sequences. The C2-like genome contained genotype C-
and B3-similar sequences at the 5′ and 3′ regions,
respectively. However, the breakpoint of the C2-like strain
was mapped to the downstream 2C coding region
(approximately nucleotide 3481 of the CDS), near the
structural cis-acting replication element (Fig. 3e). Since
the EV-A71 B3 strain was also the recombination parent
of the B4 strain13, our data suggested that a temporally
circulating EV-A71 strain B3 may serve as an important
intermediate leading to the emergence of diverse EV-A71
strains. Although we attempted to remove sample size
limitations in the interpretation of the phylogenetic trees
(by downloading all of the full-length genomes isolated in

Taiwan for the current study), some differences may still
exist between the published full-length genomes and the
actual viral population.

Extensive genomic recombinations among the
cocirculating enteroviruses
Various viruses belonging to EV-A continuously cocir-

culate with EV-A71 in Taiwan (Fig. 1a), and many of these
non-EV-A71 viruses are recombinant with unknown
parents16. Thus, we next examined whether EV-A71 may
be involved in the recombination of non-EV-A71 viruses
of EV-A. To prevent sampling bias, we collected all of the
historical EV-A full-genome sequences worldwide for the
following analyses. Since most recombinations in other
EV-A viruses also occur outside the P1 region16, we
evaluated EV-A71 and CV sequences in the P2/P3 coding
region. We utilized Bayesian evolutionary analysis to
specify the spatial-temporal relationships among these
sequences. When sequences spanning from P2 to the 3′
end of the viral genome were analyzed, several clusters
were observed, most of which contained clades corre-
sponding to different serotypes of EV-A and subgenotypes
of EV-A71 (Fig. 4a). One cluster of particular interest
contained the EV-A71 B3, C2-like, and C4 strains as well
as several currently circulating viruses (Fig. 4a, red rec-
tangle). The details of this cluster are shown in Fig. 4b.
Notably, this cluster was proximal to a second cluster
containing the prototype sequences of CV-A4, CV-A14,
and CV-A16, indicating a potential role of these viruses as
recombination parents. Because the evolutionary paths of
the circulating strains in phylogenies might be biased by a
series of recombination events, we emphasized the
detection of incongruous genetic clusters20. Considering
the times at which the viruses distributed in this cluster
arose, EV-A71 B3 represented the oldest strain among all
the branches and may represent the possible origin of the
other viruses (Fig. 4b). However, more genomes (parti-
cularly of historical EV-A strains) are required to
strengthen this conclusion.
We next compared the locations of these recombinant

viruses within the phylogenies constructed using either
the P2 or P3 sequence. In the P2 phylogeny, the prototype
strains of CV-A4, CV-A14, and CV-A16 were redis-
tributed to another cluster consisting of most strains of
genotype B (Fig. 4c, lower), indicating the high sequence
similarity among these viruses, which may have promoted
the emergence of the EV-A71 B3 strain through intertypic
recombination. In the EV-A71 B3-containing cluster,
currently circulating rather than prototype strains of CV-
A2, CV-A6, CV-A8, and CV-A12 were found. The
majority of currently circulating CV-A4 was distributed to
another EV-A71 C4-containing cluster, suggesting that
additional recombination events involving EV-A71 C4
may occur (Fig. 4c, upper). In contrast, all viruses mixed
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Fig. 4 Bayesian phylogenetic tree of currently circulating EV-A viruses. Bayesian phylogenetic trees based on (a) and b. P2/P3, c P2 and d P3
regions. Genotypes/subgenotypes of EV-A71 and CVs are marked in different colors. The subtrees in (b–d) contain mixed clusters, showing intra- and
intertypic recombination events among EV-A71 B3/C4 and CVs. Highlights in c represent the reclustering of the prototype CVs with EV-A71 B and of
EV-A71 C4 with the currently circulating CV-A4
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together without clear assortment in the P3 phylogeny
(Fig. 4d). This sporadic distribution indicated that most
viruses may have similar P3 regions. Thus, recombination
may occur among the cocirculating viruses in the P2
region, which could result in a common P3 region shared
by these viruses. To verify this hypothesis, SimPlot ana-
lyses were carried out to examine the recombination of
currently circulating CVs (Fig. 5). When EV-A71 B3 was
incorporated as the reference strain, a single crossover
was found in the P1/P2 boundary when CV-A2, CV-A6,
CV-A8, and CV-A12 were analyzed (Fig. 5a–d). The role
of EV-A71 C4 in the recombinant CV-A4 and an addi-
tional intertypic recombination between CV-A4 and CV-
A2 were also confirmed (Fig. 5e, f). To eliminate sampling
bias, consensus sequences of these recombinant strains
from EV-A71 B3, B5, C2-like, and C4, and CV-A2, CV-
A4, CV-A6, CV-A8, CV-A12, and CV-A16 were further
generated for comparison to the prototype strains of EV-
A71 and CVs. Eleven EV-A71-like signatures were iden-
tified in the circulating strains of EV-A71 C2-like and C4
and CV-A2, CV-A4, CV-A6, and CV-A12, but not their
prototype strains, except for CV-A4 and CV-A16
(Table 2). Thus, in addition to CV-A1614,18,19,21, CV-A4
might be another potential recombination parent of these
currently circulating viruses. Consistent with the results of
the Bayesian phylogenetic tree (Fig. 4d) and SimPlot pre-
dictions (Fig. 5), all signatures were located in the P3
region (Table 2), which might be caused by the intensive
recombinations in the P2 region. Such signatures cannot
be found in the circulating CV-A16 strain, which has been
reported to be recombinant with EV-A71 genotype A16, or
in the EV-A71 B5 strain, which evolves independently of
other viruses. Both strains carry sequences similar to those
of the EV-A71 prototype strain.

Discussion
In this study, we found that many currently circulating

EV-A strains have undergone recombination and that EV-
A71 B3 may have played a central role in this process,
based on the latest published database of EV-A full-length
genomes (Fig. 6). It is expected that more genomes will be
published and will be added to this simplified flowchart.
Through a series of intra- and intertypic recombinations,
EV-A71-like signatures were found to be widely present
in many currently circulating EV-A viruses (Table 2).
Although the impact of these signatures on viral replica-
tion remains unclear, their prevalence in various EV-A
viruses may have applications in the development of
broad-spectrum antivirals.

Role of recombination in the evolution of EV-A71
The classification of various EV-A71 strains was based

on the nucleotide sequence diversity of the VP1 gene
(genetic variation less than 12 and 19% for subgenotype

and genotype, respectively). The overall identity of amino
acid sequences among these viruses still reached 94%5. The
effects of mutations and recombinations on EV-A71 evo-
lution have been extensively discussed, and although sev-
eral VP1 amino acids are under positive selection, EV-A71
may be subjected to strong negative selection, which the-
oretically should result in a stabilized and purified virus7,10.
Thus, recombination may have played an important role in
the appearance of diverse EV-A71 strains such as B3, B4,
C2, and C4 since 199713,14,18,19. Intratypic recombinations
have also occurred in different EV species, with a higher
frequency in EV-B species than in EV-A and EV-C22. Here,
by analysis of full-genome sequences collected in Taiwan
from 1998 to 2016, we determined when and where
recombination occurred and how these events could have
led to the emergence of the different strains associated
with EV-A71 outbreaks. Although published genomes have
limited value as a proxy for the actual viral population,
several recombination events can be revealed by analyzing
the phylogenetic relationships among EV-A71 sub-
genotypes. We did not rule out the importance of
mutation during EV-A71 evolution23. Instead, a combi-
nation of both recombination and mutation may
result in the rapid switching between different EV-A71
strains within a short time period. In the future, more
genomes will be needed to decipher the evolutionary
history of EV-A71.

Extensive recombination in cocirculating viruses
Sequences with high similarity to those of the prototype

strains CV-A8 and CV-A16 were found in the EV-A71 C2
and B3/C4 strains, respectively13,14,18,19. However, con-
sidering the requirement of coinfection for recombina-
tion, it is possible to obtain the “non-self” genome from
cocirculating viruses15. In addition, as one of the countries
having cocirculation of multiple EV-A71 subgenotypes
and several EV-A viruses, Taiwan represents a good niche
for clarifying the relationships among cocirculating viru-
ses8. In this study, we proposed that the emergence of the
EV-A71 C2-like and C4 strains may be explained by
intratypic recombination with the B3 strain. Although the
presence of the B3 strain in Taiwan has not been pre-
viously documented, it was involved in the recombination
of the B4 strain, which caused severe outbreaks in the
early 2000s12,13. The intensive recombinations were not
EV-A71-specific and could also be found in several cur-
rently circulating EV-A viruses through intertypic
recombinations. Among these viruses, only CV-A2, CV-
A4, and CV-A6 have been documented in Taiwan. How-
ever, all these viruses have been reported to be common
causes of HFMD in China and are recombinogenic with
EV-A7124. Interestingly, a novel EV-A71 genotype C strain
with a mosaic genome structure has been identified in
Germany and Denmark25,26. This new strain had a
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Fig. 5 SimPlot analyses of currently circulating EV-71 and CVs. Recombination among the currently circulating CVs was examined. Using EV-A71
B3 as the reference strain, a single crossover at the P1/P2 boundary was detected by SimPlot (left panel) and Bootscan (right panel) analyses by
querying (a) CV-A2, (b) CV-A6, (c) CV-A8, and d CV-A12. The roles of (e) EV-A71 C4 recombined with CV-A2 and f intertypic recombination of CV-A2
and CV-A4 are further examined. The references used in each analysis are marked in different colors, and coding nucleotide positions corresponding
to the viral genome are indicated
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C1-like VP1 region; however, the 5′ untranslated region
and the P2/P3 region showed higher similarity to EV-A71
B3/C2-like and C4, respectively. This new EV-A71 strain
may have been generated by recombination of the locally
circulating C1 strain with the imported C4 strain that
became dominant recently27. Although intensive recom-
bination of cocirculating EV-A viruses with EV-A71 has
been observed, there are some exceptions. Both CV-A5
and CV-A10 are commonly detected by the Taiwan
enterovirus surveillance system; however, no recombina-
tion with EV-A71 has been observed. Instead, a close
relationship in the nonstructural region, possibly caused
by intertypic recombination between circulating CV-A5
and CV-A10, has been reported28. Therefore, recombi-
nation between cocirculating viruses may be more com-
mon than expected, and full-genome sequencing rather
than sequencing of VP1 only should be considered when
encountering a new epidemic.

Hot spots for recombination: functional impact of genome
reassembly
In all recombination events identified in this study,

breakpoints were mapped to the region extending from

the P1/P2 boundary to the 2C region (Fig. 6a), suggesting
the existence of recombination hot spots. Thus, recom-
bination can result in genome reassembly of the struc-
tural and nonstructural regions. The restricted location
of the breakpoints may have resulted from natural
selection. Delicate cooperation among picornavirus viral
proteins and genomes is required for productive viral
replication29. Because the genome of EV-A can be
directly translated into a polyprotein and then undergo
proteolytic cleavage, changes in the functional entities by
recombination could be deleterious to the virus. For
example, viral 3Dpol is required for viral replication and
recognizes several cis-elements throughout the gen-
ome29. In the case of EV-A71 B3, due to the presence of
the CV-A16-like 3Dpol, the virulence was decreased when
compared with those of EV-A71 B4 and CV-A16 in
mouse model infections21. Therefore, the EV-A71-like
signatures that consist of EV-A71 genotype B-like P2 and
CV-A16-like P3 regions may have been less favored and
discarded in the evolution of EV-A71 genotype B (Fig. 6a,
black rectangle). However, as we have shown here, EV-
A71-like signatures are tolerated by EV-A71 genotype C
and several CVs of EV-A, and the numbers of appropriate

Table 2 Amino acid positions of 11 signatures carried by circulating strains of recombinant EV-A viruses

Gene 3A 3C 3D

Position 39 36 95 44 76 94 134 138 368 428 451

Consensus sequence of circulating strains

EV-A71 B3 D V S H E Q T V N Q Y

EV-A71 C2-like . . . . . . . . . . .

EV-A71 C4 . . . . . . . . . . .

CVA2 . . . . . . . . . . .

CVA4 . . . . . . . . . . .

CVA6 . . . . . . . . . . .

CVA8 . . . . . . . . . . .

CVA12 . . . . . . . . . . .

CVA16 E I T T Q K V T T E F

EV-A71 B5 E . . T Q K V . T D F

Prototype strains (Strain, Country, Year)

EV-A71 A (BrCr, USA, 1970) E I T T Q K V T T E L

CVA2 (Fleetwood, USA, 1947) E I T T Q K V T T E F

CVA4 (HighPoint, USA, 1948) . . . . . . . . . . .

CVA6 (Gdula, USA, 1949) E I T T Q K A T T E F

CVA8 (Donovan, USA, 1949) . . . T . K . . T E F

CVA12 (Texas-12, USA, 1948) E I T T Q K V T T E F

CVA16 (G-10, SOA, 1951) . . . . . . . . . . .

Signatures identified from the EV-A71 B3 strain were found in consensus sequences of circulating strains in EV-A71 genotypes C2-like and C4, and CV serotypes A2, A4,
A6, and A12
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recombination acceptors could keep increasing25,26.
Because a high sequence similarity is preferred for copy-
choice recombination, as detailed in the widely accepted
model of RNA virus recombination15, the sequence
identity between the EV-A71 C4 and B5 strains should
definitely be higher than that between the EV-A71 and
EV-A viruses. Restricted recombination under natural
selection may explain why EV-A71 C4 and B5 cocircu-
lated but did not recombine, exhibiting independent
evolution. We currently have no evidence to conclude
whether recombination may be beneficial for the virus;
however, the ratio of recombinant CV-A6-associated
HFMD has increased worldwide24,30. Here, we provide
only evidence demonstrating the shared nonstructural
proteins of cocirculating EV-A viruses. Through the
establishment of sequence databases that integrate
complete sets of full-genome sequences, we might able to

predict what kinds of genome assembly and possible
recombinants might appear in the future.

Materials and methods
Specimen collection and sequencing of EV-A71
All of the 64 EV-A71 clinical specimens isolated from

2005 to 2016 were provided by the Linkou Chang Gung
Memorial Hospital, Taiwan. Regardless of the illness
diagnosed, we randomly picked clinical samples from
epidemics in this time span. To prevent contamination,
amplified viral stocks from human rhabdomyosarcoma
cells were used for full-genome sequencing. Viral gen-
omes were recovered using TRIzol LS reagent (Thermo
Fisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions. The 59 samples collected
before 2014 were sequenced by Sanger sequencing. Oligo-
(dT)20 was used to prepare poly(A)-containing viral

Fig. 6 EV-A71 exhibited intensive inter- and intratypic recombination. A simplified flowchart to illustrate several recombination events identified
in this study. The currently circulating EV-A71 B5 strain was derived from the B4 strain, which was an intratypic recombinant virus of EV-A71 genotype
B (black rectangle). The previously active EV-A71 B3 strain that carried the CV-A16-like 3D genome also exhibited intratypic recombination (blue
rectangle), resulting in the emergence of C4 (#1) and C2-like strains (#2). In addition, intertypic recombination (upper red rectangle) between EV-A71
B3 and several CVs is also shown (#3–6). EV-A71 C4-related intertypic recombination occurred in ~2009 to generate a particular CV-A2 strain (CVA2/
SD/CHN/09), which further recombined with CV-A4 to generate the currently circulating CV-A4 (#7 and #8, lower red rectangle). Breakpoints
corresponding to the coding nucleotide positions of each recombination event are indicated
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cDNA using a ReverTra Ace -α- kit (Toyobo, Osaka,
Japan). Overlapping amplicons covering the entire viral
genome were amplified by different sets of primers18,31,
and genome assembly was carried out using SeqMan
software (DNASTAR, Inc., Madison, WI, USA). The
five samples collected after 2014 were sequenced using
the Illumina HiSeq platform for next-generation sequen-
cing (NGS). NGS data preprocessing included the
removal of low-quality and host reads. Using the Taiwa-
nese B5 and C4 strains as an initial template, the
viral genomes were assembled by an iterative mapping
approach32. A total of 64 genomes obtained in this study
were deposited in GenBank with accession numbers
MG756691–MG756754.

Data collection for EV-A genomes from ViPR and
recombination analysis
Eight hundred thirty-one EV-A71 genomes worldwide

were initially retrieved from ViPR in September 2017.
Sequences with ambiguous nucleotides or without known
sampling dates and countries were removed. To reduce
redundancy, we randomly selected 10 sequences with the
same genotype and isolation year from each country. We
then collected 427 EV-A71 sequences including all Tai-
wanese strains for analysis (Supplementary Table 1).
Moreover, 780 complete CV genomes (belonging to EV-
A) were downloaded from ViPR. After data preprocessing,
351 CV genomes were collected. Details of the analyzed
sequences are shown in Supplementary Table 2. Recom-
bination between the EV-A71 and CV genomes in this
study was detected using SimPlot (version 3.5.1) with a
sliding window size of 600 nt and a step size of 20 nt33. To
identify genomic signatures associated with detected
recombination in this study, a consensus sequence for
each of the serotypes/genotypes was generated by using
the Cons tool with the default setting from EMBOSS31.

Phylogenetic tree analysis
The ML method based on the Hasegawa–Kishino–Yano

(HKY) model was performed to infer the evolutionary
history34. The percentage of replicate trees in which the
associated taxa clustered together in a bootstrap test with
1000 replicates was calculated. All positions with less than
95% site coverage were eliminated. Evolutionary analyses
were conducted in MEGA735. Furthermore, the Bayesian
phylogenetic tree was inferred by BEAST36 with BEA-
GLE37 to estimate the maximum clade credibility (MCC)
tree under the HKY model. Based on our collected
sequences, we generated 50 million Markov chain Monte
Carlo (MCMC) chains with 10% burn-in. One MCC tree
was constructed for every 25,000 chains, and a single
consensus tree was summarized from these MCC trees.
MCMC was also used in BEAST to estimate the time of
divergence for each alignment.
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