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ABSTRACT
The BRAF gene is commonly involved in normal processes of cell growth and 

differentiation. The BRAF (V600E) mutation is found in several human cancer, causing 
an increase of cell proliferation due to a modification of the ERK/MAPK-signal cascade. 
In particular, BRAFV600E mutation is found in those melanoma or thyroid cancer 
refractory to the common therapy and with a more aggressive phenotype. BRAF V600E 
was found to influence the composition of the so-called tumour microenvironment 
modulating both solid (immune-cell infiltration) and soluble (chemokines) mediators, 
which balance characterize the ultimate behaviour of the tumour, making it more 
or less aggressive. In particular, the presence of BRAFV600E mutation would be 
associated with a change of this balance to a more aggressive phenotype of the 
tumour and a worse prognosis. The investigation of the possible modulation of those 
components of tumour microenvironment is nowadays object of several studies as 
a new potential target therapy in those more complicated cases. At present several 
clinical trials both in melanoma and thyroid cancer are using BRAF-inhibitors with 
encouraging results, which are derived also from numerous in vitro pre-clinical studies 
aimed at evaluate the possible modulation of immune-cell density and of specific pro-
tumorigenic chemokine secretion (CXCL8 and CCL2) by several BRAF-inhibitors in the 
context of melanoma and thyroid cancer. This review will encompass in vitro and in 
vivo studies which investigated the modulation of the tumour microenvironment by 
BRAF-inhibitors, highlighting also the most recent clinical trials with a specific focus 
on melanoma and thyroid cancer.

The wild type BRAF gene 

The BRAF (v-raf murine sarcoma viral oncogene 
homolog B1) gene is located on the long arm of 
chromosome 7 (7q34) and encodes for an 18-exon 
cytoplasmic protein, a serine/threonine protein kinase 
(B-Raf) which is recruited to the membrane upon 
stimulation by growth factors. [1, 2]. The wild type BRAF 
gene is a downstream effector within the ERK/MAPK 
signalling pathway, which regulates growth, proliferation, 
differentiation, and apoptosis in human cells. Chemical 
signaling through this pathway is essential for normal 
development before birth [2]. The BRAF gene provides 
instructions for the transmission of chemical signals 

from outside the cell to the nucleus, being the MAPK-
signaling pathway typically initiated through activation 
of a membrane tyrosine kinase receptor [3]. This signal, 
through the activation of RAS, facilitates homo- or 
hetero-dimerization of wild-type BRAF. Activated BRAF 
phosphorylates MEK, which, in turn, phosphorylates ERK, 
resulting in multiple cellular effects such as induction of 
cell proliferation and survival [3]. (Figure 1A).

The mutated BRAF gene

When mutated, the BRAF gene acquires oncogenic 
properties. Oncogenes have the potential to promote 
the transformation of normal to malignant cells [1–3]. 
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Activating mutations of BRAF lead to the constitutive 
dimerization of the BRAF protein, which in turn activates 
the RAF-MEK-ERK signalling cascade, thus promoting 
cell proliferation while inhibiting apoptosis. The final 
result of this sequence of events is to drive cancer 
development and growth [3] (Figure 1B). Nowadays, more 
than 40 BRAF gene mutations have been identified, the 
majority of which result in changes of the kinase domain 
and the P-loop of the molecule. These mutated BRAF 
products actively phosphorylate MEK. Nearly 80% of 
these genetic alterations correspond to the hotspot T1799A 
trans-version that causes the V600E activating mutation, 
which originates from the substitution of valine with 
glutamic acid at amino acid (aa) 600 [1]. The remaining 
20% genetic alterations of BRAF account for a wide range 
of missense mutations; these reside in the glycines of the 
G-loop (exon 11) or in the activation segment (exon 15) 
near the V600. An in-frame fusion of the AKAP9 gene 
(exons 1–8) to the BRAF gene (exons 9–18), which occurs 
through a paracentric inversion of chromosome 7, has been 
preferentially recognised in radiation-induced papillary 
carcinomas, compared with BRAF point mutations 
[4]. The V600E mutation confers transforming activity 
to the cells mainly because it mimics the phosphorylation 
of T599 and/or S602 in the activation segment with the 
consequence that BRAF remains constitutively active 
in a RAS independent manner [4]. Mutational studies 
and crystallography have shown that the BRAFV600E 
mutation destabilizes the inactive conformation of the 
enzyme and produces a constitutively active kinase with a 
500-fold increased activity [5].

BRAF mutations are associated with a variety 
of clinical conditions. The cardiac-facies-cutaneous 
syndrome, a multiple congenital anomaly disorder, is due 
to BRAF, MEK, ERK or KRAS de novo mutations. Of 
note common precancerous lesions, such as melanocytic 
nevi, are characterized by a strikingly high frequency of 
BRAF-mutations, suggesting that mutational activation 
of the RAS/RAF/MAPK pathway is a critical step in the 
initiation of melanocytic neoplasia even if its presence 
alone is likely not sufficient for melanoma tumorigenesis 
[6, 7]. Moreover, several malignancies such as melanoma, 
thyroid carcinoma, and although at lower frequency, 
colorectal cancer and non-small cell adenocarcinoma 
of the lung carcinoma may harbor the BRAF V600E 
mutation. [8–14]. Several data indicate that BRAF-
inhibitors block the increase in cell proliferation induced 
by BRAFV600E mutation (Figure 1C).

The main messages of the present section are:
•	 	The	BRAF	gene	is	involved	in	proliferation,	differentiation,	
and	apoptosis	of	human	cells.	

•	 	The	 mutation	 of	 the	 BRAF	 gene	 is	 associated	 with	
several	human	malignancies.

•	 	BRAFV600E	activating	mutation	promotes	the	RAF-
MEK-ERK	 signalling	 cascade,	 thus	 stimulating	 cell	
proliferation	while	inhibiting	apoptosis.	

Aim of the present review is to describe currently 
available data regarding the role of BRAF mutations as 
well as the effects of BRAF-inhibitors in the tumor micro-
environment. Specific focus will be put on melanoma 
and thyroid cancer, which share the property of being 
associated with a high prevalence of BRAF mutations. 

The tumor microenvironment in BRAF mutated 
neoplasia 

BRAF mutation and immune cell composition of the 
tumor microenvironment

The tumor microenvironment is composed of cells 
and soluble elements surrounding the tumor [15, 16]. 
These include fibroblasts, immune cells and cells that 
comprise blood vessels. It also includes proteins and 
soluble mediators produced by the cell milieu, which 
ultimately support the tumor growth [17, 18]. At present, 
the common belief is that disease progression is promoted 
by the orchestrated interaction between malignant 
cells and their surrounding environment [17, 18]. This 
interaction is in part due to the molecular alterations of the 
mutated genes, which specifically drive the composition 
of the tumor microenvironment. In this regard, the BRAF 
V600E protein mutation was found to be associated with 
several immune-related alterations, examples of which are 
available both in melanoma and in differentiated thyroid 
cancer [1–3, 19–21]. 

Compared with the non-mutated ones, the 
microenvironment of BRAF mutated tumors is 
characterized by a twice as high density of FOXP3+ 
Regulatory T cells (Tregs), which, by inhibiting the 
anti-tumor immune response, are associated with a poor 
prognosis [22]. Accordingly, in the early stage of an 
inducible autochthonous model of mouse melanoma, an 
accumulation of Tregs occurs in the presence of mutated 
BRAF [23]. An additional mechanism of immune escape 
was demonstrated in human melanoma cells, in which 
BRAF V600E signaling impairs T cell-mediated antitumor 
responses by increasing the transcription of interleukin 
1 alpha (IL-1a) and beta (IL-1b) in cancer-associated 
fibroblasts resulting in a reduction of their ability to kill 
melanoma cells [20].

In papillary thyroid cancer, RNA sequencing studies 
revealed that the presence of BRAF mutation is associated 
with a reduced expression of immune/inflammatory 
response genes as compared with wild type-BRAF tumors 
[24]. Other immunosuppressive molecules, including 
Human leukocyte antigen G (HLA-G), were also over-
expressed in BRAF-mutated tumors [24]. Moreover, 
the Programmed death-ligand 1 (PDL-1) protein and 
its mRNA were found to be more abundant in surgical 
specimens of BRAF-mutated tumors as compared with 
benign tissue samples. This greater expression of PDL-1 
was associated with a denser infiltrate of Treg cells and 
tumor-associated macrophages [25]. Recently, a genome 
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expression profile analysis of infiltrating immune cells in 
the microenvironment the BRAF-mutated thyroid cancers 
showed an over-expression of a panel of genes involved 
in local immunosuppression processes. These included 
Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), PDL-1 and 
HLA-G genes [26]. 

The main messages of this section are:
•	 	The	presence	of	the	BRAF	mutation	deeply	influences	
the	 so	 called	 “solid	 composition”	 of	 the	 tumor	
microenvironment	of	both	melanoma	and	thyroid	cancer.	

•	 	BRAF	mutation	promotes:	i)	an	increase	in	the	density	
of	Tregs,	and	the	secretion	of	IL-1a	and	IL-1b	in	cancer	
associated	 fibroblasts	 (consequently	 inhibiting	 the	
anti-tumor	response);	ii)	a	reduction	of	the	expression	
of	 some	 immune/inflammatory	 response	 genes	 (thus	
inhibiting	 host	 defenses);	 iii)	 an	 over-expression	 of	
HLA-G	 and	 PDL-1	 and	 other	 immunosuppressive	
genes	(further	reducing	the	immune-system	response).

BRAF mutation and soluble mediators in the tumor 
microenvironment

Several studies investigated the chemokine 
milieu in tumor microenvironment and its influence 
on the progression and outcome of malignancy [27–
30]. Chemokines, an acronym derived from their pro-
inflammatory and chemotactic activity [31], and their 
receptors, do influence immune cell trafficking within 
the tumor microenvironment, thus eventually promoting 
or inhibiting tumor progression [30, 32, 33]. Some 
chemokines, after binding to their receptors expressed 
on cancer cells, facilitate tumor cell growth by recruiting 

endothelial cells, by subverting immunologic surveillance, 
by altering the tumor leukocyte profile in a way that escape 
from antitumor immune surveillance is favored, and by 
promoting metastatic processes. Other chemokines play a 
role against neoplastic progression by increasing leukocyte 
migration and by inducing long-term anti-tumor immunity 
[34–37]. The BRAF V600E mutation, by activating the 
MAPK cascade, stimulates the production of a wide 
spectrum of chemokines by cancer cells. These oncogene-
driven chemokines are responsible for the recruitment of 
immune cells and for their specific phenotype (i.e. mainly 
the myeloid lineage) [38]. 

Experimental studies, both on cancer cell lines 
and in animal models, provide strong evidence for 
a correlation between BRAF mutation and altered 
chemokine secretion in the tumor microenvironment. 
In human melanoma cells, BRAFV600E was shown to 
drive the expression of interleukin 6 (IL-6), IL-10 and 
vascular endothelial growth factor (VEGF), cytokines that, 
in	vitro, promote a tolerogenic monocyte-derived dendritic 
cell (DC) phenotype. This process would theoretically 
affect the anti-tumor function of T-cell in	vivo [39, 40]. 
BRAFV600E was also shown to sustain the constitutive 
activation of the WNT/β-catenin signaling, which in turn 
decreases the production of Chemokine C-C motif ligand 
4 (CCL4), an important chemokine for the recruitment 
of dendritic cells. Additionally, BRAFV600E was shown 
to induce expression of factors such as IL-10 and IL-1α, 
which can induce tolerogenic forms of dendritic cells and 
cancer-associated fibroblasts (CAFs), respectively [40]. 
More recently, the consequences of BRAF mutation on the 
secretion of CCL2 and chemokine (C-X-C motif) ligand 8 
(CXCL8), two chemokines with proven pro-tumorigenic 

Figure 1: (A) Representation of normal BRAF pathway. The sequence of the cascade RAF-BRAF-MEK-ERK starting from the activation 
of Thyrosin kinase receptor, regulates normal cell differentiation and proliferation. (B) When BRAFV600E mutation occurs it will increase 
the activation of MEK and ERK which induce a more higher cancer cell proliferation. (C) The treatment which a given BRAF-inhibitor 
will reduce the increased activation of MEK (and consequently of ERK) by BRAFV600E mutation reducing also tumor cell proliferation.
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effects, were also evaluated. In a mice model of malignant 
glioma, the presence of a specific BRAF mutation 
(KIAA1549) was responsible for a higher expression of 
CCL2 and of its mRNA [41]. In ovarian cancer cells, the 
BRAF V600E mutation lead to an increased expression 
of CXCL8 and of vascular-endothelial-growth-factor A 
(VEGFA) [42]. 

The effect of BRAF mutation on the secretion 
of chemokines was also investigated in human cancer 
patients. In pediatric patients with Langerhans cell 
histiocytosis, the BRAF V600E mutation was associated 
with higher serum levels of the chemokine CCL7, which 
promotes the metastatic process by inducing epithelial 
to mesenchymal transition [43]. A significant correlation 
between elevated levels of C-X-C chemokine receptor 
4 (CXCR4) mRNA and a BRAF mutation was found 
in tissue samples from patients with melanoma [44]. 
Similarly, CXCR4 levels correlate both with the degree of 
tumor aggressiveness and with BRAF status in papillary 
thyroid carcinomas [45]. Husain et al. found that, in tissue 
samples of anaplastic thyroid carcinoma, the levels of 
VEGFA, VEGFC and IL-6 increased, and were associated 
with the expression of BRAF V600E [46]. 

In view of the above data, it is likely that BRAF 
mutations largely regulate the expression and/or the 
secretion of some pro-tumorigenic chemokines in 
melanoma, thyroid cancer and other types of human tumors. 
Thus, this mutated oncogene alters the cellular and humoral 
composition of cancer microenvironment, eventually 
influencing the biological behavior of malignancy. 

The main messages of this section are:
•	 	The	presence	of	the	BRAF	mutation	also	influences	the	
“soluble”	composition	of	the	tumor	microenvironment	
(chemokine	secretion).	

•	 	The	modulation	by	BRAF	mutation	of	the	secretion	of	
several	chemokines	(IL-6,	IL-10,	VEGF,	CCL4,	IL-1α,	
CCL2,	CXCL8,	CCL7)	plays	a	role	in:	i)	influencing	
the	 recruitment	 of	 immune	 cells	 like	DC	 and	CAFs	
(counteracting	to	the	anti-tumor	function	of	T-cells)	ii)	
increasing	the	metastatic	potential	of	tumor	cells	and	
promoting	a	more	aggressive	course	of	the	tumor.

BRAF-inhibitor drugs

The discovery that most malignant melanomas 
bear an activating mutation of BRAF [1] lead to the 
development of BRAF inhibitors (Table 1). These 
drugs were specifically designed with the aim to insert 
oncogenic BRAFV600E in the ATP-binding site and 
trap it in an inactive conformation. [47] The first drug 
to be tested in humans was Sorafenib, but disappointing 
results were obtained in melanoma patients, likely due to 
its greater inhibitory effect on C-RAF rather than BRAF 
[48]. PLX4720 (Vemurafenib) showed more encouraging 
results as reported in a Phase II clinical trial, where 

a favorable response was observed in 48% of BRAF 
mutated melanoma patients. The corresponding figure in 
dacarbazine-treated controls was 5%. Thus, the drug was 
approved by FDA in 2011 and can now be prescribed in 
patients with metastatic or inoperable melanoma who bear 
a V600E mutation of the B-RAF gene [49]. Dabrafenib 
is another BRAF inhibitor tested in a phase III clinical 
trial with a 50% response rate as compared to a 6% one 
obtained with dacarbazine [50]. In 2013, the FDA approved 
Dabrafenib for the treatment of patients with advanced 
melanomas harboring the BRAFV600E mutation.

In spite of favorable therapeutic effects, these 
molecules are not free from side effects because, in wild-
type BRAF cells, Vemurafenib and Dabrafenib induce a 
paradoxical activation of the MAP kinase pathway [51]. 
This event is responsible for common side effects, which 
include development of kerato-achantomas resulting 
from the over-expression of the RAS oncogene. Although 
at lower prevalence, the development of other tumors, 
including de	novo melanomas, genital and oral mucosal 
squamo-cellular cancers and basal-cell carcinoma in 
patients treated with BRAF inhibitors was also reported 
[52]. The risk of developing a secondary cancer and 
mainly the lack of efficacy in BRAF-wild type tumors 
clearly support the contraindication of both Vemurafenib 
and Dabrafenib in patients with BRAF-wild type cancers. 
Moreover, although treatment with Vemurafenib of 
Dabrafenib produces some clinical benefit in nearly all 
patients with BRAF mutated melanomas, more than 90% 
of them develop resistance to these drugs within one year. 
Thus, the favorable effects on tumor progression-free 
survival are limited [49]. Based on these considerations, it 
seemed mandatory to search for new therapeutic strategies 
targeting the MEK-ERK-RAS pathway. With this aim, two 
new drugs, Trametinib and Cobimetinib that target MEK 
downstream from the BRAF in the MAP kinase pathway 
were developed. These drugs, mainly when combined with 
Vemurafenib or Dabrafenib, do improve both the overall 
and the progression-free survival in melanoma patients 
[53]. Interestingly, combination treatment with the two 
drugs also reduced cutaneous side effects as compared 
with the single-drug anti-BRAF therapy [54]. A recent 
study by Robert et al, reported the results of an extended 
survival analysis of the two combination trials with 
Dabrafenib and Trametinib as a first-line therapy, showing 
that long-term benefit in terms of overall survival can be 
reached in approximately one third of the patients who had 
unresectable or metastatic melanoma with a BRAF V600E 
or V600K mutation [55].

Based on the promising results obtained in 
melanoma, BRAF-inhibitors have been used also in 
other BRAF-mutated cancers, with contrasting results. 
Colorectal cancers that harbour the same BRAF(V600E) 
mutation are intrinsically resistant to BRAF inhibitors, 
due to feedback activation of the epidermal growth factor 
receptor (EGFR), although double or triple combination 
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trials gave some benefit in terms of response rate [56]. 
Similar results were provided by phase II trials on 
treatment with dabrafenib of the rare BRAF-mutated non-
small-cell lung cancers (NSCLC) in which the BRAF-
inhibitor alone gave disappointing results, whereas 
combination with the MEK-inhibitor Tramentib produced 
some benefit in terms of overall response rate [57, 58]. 
Similar evidences were reported in high grade gliomas 
treated with combined BRAF and MEK inhibitor therapy, 
although large series studies are still lacking [59].

Up to now, no MAPK/ERK pathway inhibitor 
drug is approved for the treatment of thyroid cancer [60]. 
However, Phase I and II clinical trials are ongoing to test 
the therapeutic potential of this class of drugs, alone or in 
combination with other pharmacological agents (Table 2). 
Partial results of these trials are already available. A 
Phase I study investigated treatment with dabrafenib 
and lapatinib, the latter being a dual HER2/neu and 
epidermal-growth factor-receptor (EGFR) inhibitor, in 
patients with unresectable-radioiodine refractory thyroid 
cancer (ClinicalTrials.gov Identifier: NCT01947023). In 
the first 15 enrolled patients, a 60% partial response rate 
and a median progression-free survival of 15 months was 
observed. Toxicity was reported to be acceptable [61]. 
Similar results were obtained in a Phase I clinical trial in 
which patients with several types of malignancies were 
treated with Dabrafenib (ClinicalTrials.gov Identifier: 
NCT00880321). A sub-analysis of the 14 enrolled 
thyroid cancer patients showed that 29% of them had 
a partial response, 64% experienced a 10% decrease in 
tumor burden and 50% had stable disease. The median 
progression-free survival was 11.3 months [62].	Another 
Phase I study evaluated the ability of Trametinib to 
induce re-differentiation of radioiodine-refractory BRAF 
V600E-mutated papillary thyroid carcinoma. Six out of 
10 Trametinib-treated patients experienced a restored 
radioiodine uptake at whole body scan and all of them 
were then treated with radioiodine. Two patients had 
a partial response and 4 a stable disease as assessed by 
radiographic restaging at 3 months. Serum thyroglobulin 
decreased in 4 out of 6 treated patients [63]. A Phase II 
clinical trial assessing the effectiveness of Vemurafenib 

in patients with radioiodine-refractory, BRAFV600E 
-mutated papillary thyroid cancer reported encouraging 
results in terms of best overall response, duration of 
response, and progression-free survival. These favorable 
results were observed both in previously untreated patients 
and in those who had received therapy with multi-kinase-
inhibitor drugs [64]. The overall toxicity profile was 
consistent with that reported in melanoma patients being 
treated with a BRAF inhibitor drug.

The main messages of this section are:
•	 	BRAF-inhibitor	drugs	are	an	effective	and	relatively	
safe	 anti-cancer	 therapy	 in	 patients	with	melanoma	
harbouring	the	BRAF	V600E	mutation.	

•	 	Resistance	 development	 is	 still	 an	 issue	 for	 treated	
patients	and	can	be	only	in	part	overcome	by	combining	
BRAF-inhibitors	 with	 other	 classes	 of	 anti-cancer	
drugs,	 such	 as	 MEK-inhibitors	 and	 immune	 check-
point	inhibitors.

•	 	Although	 no	BRAF-inhibitor	 has	 been	 approved	 for	
thyroid	 cancer	 therapy	 yet,	 this	 class	 of	 drugs	gave	
interesting	 results	 in	 Phase	 I	 and	 II	 clinical	 trials	
including	patients	with	thyroid	cancer.

•	 	BRAF-inhibitors	are	being	tested	also	in	other	types	of	
tumors,	like	colorectal	cancer,	adenocarcinoma	of	the	
lung	and	glioma,	with	promising	results.

BRAF-inhibitor drugs and cancer 
microenvironment

A further biological effect of BRAF inhibitors 
is related to their anti-cancer activity in the tumor 
microenvironment milieu, which, by improving the anti-
tumor activity of the patient’s immune system, limits 
cancer progression. This topic was initially investigated 
by in	vitro studies, which were subsequently translated in 
in	vivo with promising results.
In vitro experiences

Several in	 vitro studies aimed at evaluating 
the effect of different BRAF-inhibitors on immune-
infiltrating cells (T cells, lymphocytes, dendritic cell) 

Table 1: Main BRAF and MEK inhibitors and their characteristics
Name Formula Target Use
Sorafenib BAY43-9006 VEGFR, PDGFR, CRAF, BRAF inhibitor Kidney, thyroid and liver cancer
Vemurafenib PLX4720, PLX4032 BRAFV600E inhibitor Melanoma
Dabrafenib GSK2118436) BRAFV600E inhibitor Melanoma and Non small cell lung cancer
Encorafenib LGX818 BRAFV600E inhibitor
Selumetinib AZD6244 MEK1 and MEK2 inhibitor
Trametinib GSK1120212 MEK1 and MEK2 inhibitor Melanoma
Cobimetinib XL518, GDC-0973 MEK1 and MEK2 inhibitor Melanoma (with Vemurafenib)
Binimetinib (MEK162) MEK1 and MEK2 inhibitor Melanoma (with Encorafenib)
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Table 2: Clinical trials regarding BRAF-inhibitors in Thyroid cancer
Phase Drug N. trial Title Published Results Ref
1 Vemurafenib 

+ KTN3379
NCT02456701 Enhancing Radioiodine 

Incorporation Into 
BRAF Mutant Thyroid 
Cancers With the 
Combination of 
Vemurafenib and 
KTN3379

/ /

1 Dabrafenib +  
Lapatinib

NCT01947023 Dabrafenib and 
Lapatinib Ditosylate in 
Treating Patients With 
Refractory Thyroid 
Cancer That Cannot Be 
Removed by Surgery

60% partial response rate, median 
progression-free survival of 15 
months, with acceptable toxicity.

Rothenberg 
et al. 2015

1 Dabrafenib NCT00880321 A Phase I Study to 
Investigate the Safety, 
Pharmacokinetics, and 
Pharmacodynamics 
of GSK2118436 in 
Subjects With Solid 
Tumors

29% partial response rate, median 
progression-free survival of 11 
months, with acceptable toxicity.

Falchook et 
al. 2015

2 Vemurafenib NCT01286753. A Study of Vemurafenib 
(RO5185426) in 
Participants With 
Metastatic or 
Unresectable Papillary 
Thyroid Cancer Positive 
for the BRAF V600 
Mutation

Increase in best overall response, 
duration of response, and 
progression-free survival both 
in previously untreated and in 
multikinase-inhibitors treated patients

Brose, et al. 
2016

1 Dabrafenib NCT01534897 Re-differentiation of 
Radioiodine-Refractory 
BRAF V600E-mutant 
Papillary Thyroid 
Carcinoma With 
GSK2118436

Among 10 patients with radioiodine-
refractory thyroid cancer 6 patients 
(60%) demonstrated new radioiodine 
uptake on whole body scan after 
treatment with dabrafenib. All 6 were 
treated with 5.5 GBq iodine-131. 
Two patients had partial responses 
and 4 patients had stable disease on 
standard radiographic restaging at 3 
months. Thyroglobulin decreased in 
4 of 6 treated patients. One patient 
developed squamous cell carcinoma 
of the skin. There were no other 
significant adverse events attributed 
to dabrafenib.

Rothenberg 
et al. 2015

2 Vemurafenib NCT01709292 Vemurafenib 
Neoadjuvant Trial in 
Locally Advanced 
Thyroid Cancer

/ /

2 Dabrafenib + 
Trametinib

NCT01723202 Dabrafenib With or 
Without Trametinib in 
Treating Patients With 
Recurrent Thyroid 
Cancer

/ /
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of tumor microenvironment were performed. In 2010, 
Boni et al., found that treatment of melanoma cells with 
Vemurafenib (or with other MEK inhibitors) inhibited 
the MAPK pathway [65]. This inhibition increased 
the levels of the so called “Melanocyte Differentiation 
Agents” a class of epitopes that are associated with 
improved recognition by antigen-specific T lymphocytes 
[65]. Furthermore, treatment with MEK inhibitors was 
associated with an impaired T lymphocyte function, 
whereas T-cell function was preserved after treatment 
with the BRAF-inhibitor PLX4720. This represents a 
crucial aspect as, it would indicate that immune evasion 
of BRAF-mutated melanoma cells may be reversed by a 
specifically targeted BRAF inhibition without affecting 
T-cell function [65]. In a BRAF-mutated model of mouse 
melanoma, the BRAF-inhibitor PLX4720 selectively 
decreased the number of CD4+Foxp3+ Treg cells and of 
CD11b+Gr1+ myeloid-derived suppressor cells (MDSC) 
in the tumor microenvironment. On the other hand, the 
number of CD8+ effector T cells, which are inversely 
correlated with tumor growth, was preserved [66]. In a 
BRAFV600E/PTEN-driven murine model of melanoma, 
PLX4720 administration increased the expression of 

CD40 ligand and interferonγ (IFNγ) in intra-tumoral CD4 
cells. This increased expression, through the enhancement 
of T-helper 1 (Th1) effector functions, promotes CD4 cell 
infiltration and activation which, in turn, leads to tumor 
regression. In addition, PLX4720 reduced the infiltration 
of Treg cells and of CD11b(+)/Gr-1(+) myeloid cells, thus 
further inhibiting tumor growth [67]. Similar effects were 
also observed in mouse models of thyroid cancer. Indeed, 
treatment with PLX 4720 alone or in combination with 
Dasatinib (a BCR/ABL tyrosin-kynase inhibitor) [68], or 
with anti PD-L1/anti PD-1 antibodies [69] resulted in an 
increased peri-tumoral infiltration of T cells, B cells and 
macrophage/monocytes.

 The effects of BRAF-inhibitors are not limited 
to T-cells, but also involve dendritic cells. Indeed, the 
secretion of tumor-necrosis-factor α (TNF-α) and IL-12 
by dendritic cells is inhibited when they are co-cultured 
with melanoma, cells either BRAF mutated or wild-type. 
The inhibition was reverted by BRAF or MEK inhibitors, 
but only when dendritic cells were co-cultured with 
melanoma cell lines carrying a BRAF V600E mutation 
[70]. These results fit with the concept that BRAFV600E 
mutated melanoma cells modulate dendritic cells through 

2 Trametinib + 
Dabrafenib

NCT03244956 Efficacy of MEK 
(Trametinib) and 
BRAFV600E 
(Dabrafenib) Inhibitors 
With Radioactive Iodine 
(RAI) for the Treatment 
of Refractory Metastatic 
Differentiated Thyroid 
Cancer (MERAIODE)

/ /

1 Trametinib +  
Pazopanib

NCT01438554 Phase 1 Study of 
Pazopanib With 
GSK1120212 in 
Advanced Solid 
Tumors, Enriched 
With Patients With 
Differentiated Thyroid 
Cancer, Soft-tissue 
Sarcoma, and 
Cholangiocarcinoma

/ /

1 Trametinib +  
Paclitaxel

NCT03085056 Trametinib in 
Combination With 
Paclitaxel in the 
Treatment of Anaplastic 
Thyroid Cancer

/ /

2 Trametinib NCT02152995 Trametinib in 
Increasing Tumoral 
Iodine Incorporation in 
Patients With Recurrent 
or Metastatic Thyroid 
Cancer

/ /
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the MAPK pathway, because its blockade reverses the 
suppression of dendritic cell function [70]. In addition, 
Hayek et al, recently showed that BRAF-inhibitors 
(Vemurafenib and Dabrafenib) upregulate IL-1β release 
by mouse and human dendritic cells, thus resulting in 
enhanced dendritic cell-mediated anti-tumor immune 
responses [71]. Figure 2 summarize the major effects of 
BRAFV600E mutation on the solid components of the 
tumor microenvironment and how the administration of a 
BRAF-inhibitor would counteract these effects.

Moving from the action of BRAF-inhibitors on 
immune-infiltrating cells to their effect on cancer cells, it 
was demonstrated that, in BRAF-mutated melanoma cells, 
Vemurafenib enhances the presentation of tumor antigens 
[72]. This effect results from the stimulated secretion of 
interferons, which in turn induce the expression by neoplastic 
cells of major histocompatibility complex (MHC) Class I 
and Class II molecules. In 2010, Salerno et al, investigated 
the action of PLX 4270 and PLX4032 in thyroid cancer cell 
lines (bearing either the BRAF mutation or the RET/PTC 
rearrangement) and in normal thyroid cells. Both compounds 
inhibited the proliferation of BRAF mutated cell lines, but 
not of normal thyrocytes [73]. The inhibitory effect was 
also observed in RET/PTC rearranged cells although at a 
much higher concentration of the drug. Further evidence 
for the favorable effect of these drugs in BRAF-mutated 
thyroid carcinoma cells derives from the observation that 
treatment with PLX4032 and PLX4720 in BRAF-mutated 
thyroid carcinoma cells, but not in normal thyroid cells, 
decreases the phosphorylation of ERK1/2 and MAPK 
kinase (MEK)1/2. Treatment with PLX4032 and PLX4720 
also induces a G1-phase block of the cell cycle and alters 
the expression of genes involved in the control of G1-S cell-
cycle transition [73]. Of note, PLX4720, by downregulating 
the expression of genes involved in tumor progression, 
reduced cell proliferation, migration and invasiveness of 
8505c, which harbor the BRAF mutation, but not in TPC-1 
(wild-type for BRAF) thyroid cancer cells [74]. 

The anti-cancer effect of BRAF inhibitors was 
also studied in a orthotopic mouse model of anaplastic 
thyroid carcinoma, which had been obtained by injecting 
a thyroid cancer cell line in mice with severe combined 
immunodeficiency [74]. Compared with sham treated 
controls, BRAF-mutated tumor xenografts were smaller, 
less invasive and showed a lower proliferation index when 
mice received BRAF inhibitors [73, 75]. An even greater 
anti-tumor effect was observed when treatment with 
BRAF-inhibitors was combined with: i) anti PD-L1 or anti 
PD-1 antibodies [69]; ii) the BCR/ABL tyrosin-kynase 
inhibitor Dasatinib [68]; iii) proteasome inhibitors like 
Bortezomib [76]. Table 3 summarize pre-clinical studies 
as well as their main findings concerning this issue. 

The main messages of this section are:
•	 	BRAF-inhibitors	 modify	 the	 composition	 of	 tumor	
microenvironment	in	experimental	settings.

•	 	BRAF	 inhibitors	 may	 actually:	 i)	 increase	 the	
levels	 of	 “Melanocyte	 Differentiation	 Agents”	
consequently	improving	recognition	by	antigen-specific	
T	 lymphocytes	 ii)	 decrease	 the	 number	 of	 Treg	 and	
MDSC	 in	 the	 tumor	 microenvironment	 iii)	 increase	
CD40	 ligand	 and	 IFNγ	 expression	 by	 intra-tumoral	
CD4	 cells	 iv)	 increase	 peri-tumoral	 infiltration	 of	
T	cells,	B	cells	and	macrophage/monocytes	v)	reverse	
the	 BRAF-induced	 suppression	 of	 dendritic	 cell	
function	vi)	inhibit	proliferation	of	BRAF	mutated	cell	
lines,	but	not	of	normal	thyrocytes.

•	 	The	 anti-tumor	 effect	 of	 BRAF-inhibitors	 is	 even	
greater	when	they	are	used	in	combination	with	other	
classes	of	anticancer	drugs.

Translational studies

Evidence that BRAF inhibitors do play a role 
in determining the specific composition of the tumor 
microenvironment was also provided by translational 
studies [77]. These studies were mostly performed on 
biopsy samples derived from human melanomas. Two 
independent biopsy series from patients with melanoma 
who had been treated with Vemurafenib or Dabrafenib 
+ Trametinib showed that, compared with baseline, the 
expression of melanoma antigens was increased as well 
the number of infiltrating CD8+ T-cells [78]. A subsequent 
study showed that treatment with BRAF-inhibitors lead 
to an increased number of infiltrating CD8+ T-cells. This 
phenomenon was associated with a reduction in tumor size 
and an increase in necrotic areas in post-treatment biopsy 
samples [79]. Additional data [80] showed that in biopsy 
specimens from BRAF-inhibitors treated patients, the 
degree of clonality of tumor-infiltrating lymphocytes was 
greater. This observation implies that infiltrating T-cells 
are actively proliferating in response to tumor antigens 
[80]. A neutralization of myeloid-derived suppressor cells 
in the serum of patients treated with BRAF- inhibitors 
was also observed. [81]. Table 4 summarizes translational 
studies on BRAF- inhibitors of as well as their main 
findings. 

The main messages of this section are:
•	 �Data	 from	 preclinical	 models	 and	 from	 biopsy	
specimens	or	 blood	 samples	 of	 patients	 consistently	
indicate	that	a	targeted	therapy	with	BRAF	inhibitors	
(or	with	a	combination	of	BRAF	and	MEK	inhibitors)	
modifies	 the	 immune-phenotype	 of	 the	 tumor	
microenvironment.	 These	 effects	 are	 mediated	 by	 a	
variety	of	mechanisms,	including	increased	infiltration	
and	activity	of	T-cells	and	enhanced	expression	and	
presentation	of	melanocyte	differentiation	antigents.

Resistance to BRAF inhibitors

It should be highlighted that changes in the 
composition of tumor microenvironment resulting from 
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treatment with BRAF-inhibitors are not persistent. The 
escape phenomenon contributes, at least in part, to the 
high rate of patients who, after an initial response to these 
drugs, soon develop resistance to therapy and experience 
clinical progression. Several mechanisms have been 
suggested as possible cause of resistance to BRAF/MEK 
inhibitors. These include EGFR and platelet-derived 
growth factor receptor-β overexpressin [82], increased 
expression of the gene encoding the COT kinase [83], 
mutation of downstream MEK1 kinase [84], NRAS 
mutations [85], increased expression of tyrosine kinases 
receptor and amplification or alternative splicing of 
the BRAF gene [86, 87]. Also alterations in the tumor 
microenvironment seem to have a role in the development 
of resistance to BRAF/MEK inhibitors. Resistance to 
BRAF inhibitors was demonstrated in an autochthonous 
mouse model of melanoma and was associated, in the 

tumor microenvironment, with the restoration of MDSC, 
which, previously, had been reduced by treatment with 
BRAF inhibitors [66]. BRAFi-resistant melanomas are 
also characterized by an increased expression of PD-
L1 due to an increased MAPK signaling [78]. Several 
attempts were made for solving the problem of resistance 
to BRAF-inhibitors, which mainly involved adding other 
pharmacological compounds to BRAF-inhibitors. For 
example, co-treatment with MEK inhibitors partly reversed 
the expression of PD-L1, due to an increased MAPK 
signaling, which characterizes melanoma cell lines with 
acquired resistance to BRAF inhibitors [88]. In BRAF-
inhibitors-treated patients who develop drug resistance, 
the decreased expression of melanoma’s antigens and the 
reduced number of infiltrating CD8 T-cell parallels the 
patients’ clinical progression. Again, this phenomenon 
was largely reversed by a second-line combination of 

Figure 2: Panel (A) Representation of the immunosuppressive microenvironment showed in BRAF mutated cancer. The presence of 
BRAF V600E mutation favors cancer growth and inhibits the patients immunological response. In detail: a) regulatory T cells (Tregs) 
infiltration is increased b) Mesenchymal derived stromal cells (MDSC) infiltration is increased c) CD8+ T lymphocytes infiltration is 
reduced d) Dendritic cells infiltration and function is reduced e) Protumorigenic chemokines CCL2 and CXCL8 secretion is increased f) 
differentiation agents surface expression is reduced g) PDL1 PDL2 surface expression is increased h) MHC Class I-II surface expression is 
reduced. Panel (B): BRAF mutated cancer immunosuppressive microenvironment can be reverted by treatment with BRAF-inhibitors. In 
detail: a) regulatory T cells (Tregs) infiltration is reduced b) Mesenchymal derived stromal cells (MDSC) infiltration is reduced c) CD8+ 
T lymphocytes infiltration is increased d) Dendritic cells infiltration and function is increased e) Protumorigenic chemokines CCL2 and 
CXCL8 secretion is reduced f) Differentiation agents surface expression is increased g) PDL1 PDL2 surface expression in reduced h) MHC 
Class I-II surface expression is increased.
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BRAF and MEK inhibitors [78]. Although, the combined 
use of BRAF and MEK inhibitors reduces the number of 
patients developing resistance, some patients still develop 
resistance even to the combined regimen, probably 
because of an activation of p21-activated kinases (PAKs) 

[89]. These data suggest that an additional therapeutic 
benefit in patients with melanoma could derive from the 
combination of BRAF and MEK-inhibitors with other 
immunomodulating agents, such as immune check-points 
inhibitors, agonists of T-cell co-stimulatory receptors, or 

Table 3: Pre-clinical studies regarding the effects on tumor microenvironment of BRAF-inhibitors

Class of Drugs Effect on 
microenvironment Type of cancer Model ref

BRAFi, MEKi Increase of Melanocyte 
Differentiation Agents Melanoma Bioptic samples of treated patients Boni et al.

BRAFi, MEKi Reduction of 
intratumoral Tregs Melanoma

Braf/Pten mouse model of inducible, 
autochthonous melanoma on a pure 
C57BL/6 background

Steinberg et al.
Ho et al.

BRAFi, MEKi Reduction of MDSCs Melanoma
Braf/Pten mouse model of inducible, 
autochthonous melanoma on a pure 
C57BL/6 background

Steinberg et al.

BRAFi, MEKi Increased dendritic 
cells activation Melanoma

co-cultured monocyte-derived human 
Dendritic cells
with melanoma BRAF mutated cell lines

Ott et al.
Hayek et al.

BRAFi Increased intratumoral 
CD8+ T cells Thyroid

 immunocompetent orthotopic mouse 
model of V600E BRAF mutated 
Anaplastic thyroid cancer

Gunda et al, 
Vanen Borre 
et al.

Melanoma
Braf(V600E)-driven mouse melanoma 
(SM1 and SM1WT1) and melanoma-
prone mice 

Knight et al.

BRAFi Increased intratumoral 
B cells Thyroid

 immunocompetent orthotopic mouse 
model of V600E BRAF mutated 
Anaplastic throid cancer

Gunda et al, 
Vanen Borre 
et al.

BRAFi Increased intratumoral 
Macrophages Thyroid

immunocompetent orthotopic mouse 
model of V600E BRAF mutated 
Anaplastic throid cancer

Gunda et al, 
Vanen Borre 
et al.

BRAFi Preserved normal cell 
viability Thyroid Normal thyrocytes (PC Cl 3) Salerno et al.

BRAFi
Increased induction of 
MHC Class I and Class 
II molecules by IFN

Melanoma Melanoma cell lines Sapkota, et al. 

BRAFi CCL2 lowering Melanoma Braf(V600E)-driven mouse melanoma (SM1 
and SM1WT1) and melanoma-prone mice Knight et al.

BRAFi CXCL8 lowering Thyroid NHT, 8505C, 8305C, BCPAP cell lines Coperchini et al.

Table 4: Translational studies demonstrating effects on tumor microenvironment of BRAF and 
MEK inhibitors
Class of Drugs Effect on microenvironment Type of cancer Model ref

BRAFi, MEKi Increase of Melanocyte 
Differentiation Agents Melanoma Bioptic samples of treated 

patients Frederick et al. 

BRAFi Reduction of MDSCs Melanoma Serum of treated patients Schilling et al. 

BRAFi Increased intratumoral CD8+ 
T cells Melanoma Bioptic samples of treated 

patients
Wilmott et al. 
Frederick, et al. 

BRAFi CXCL8 lowering Melanoma Serum of treated patients Willmott et al. 



Oncotarget6633www.oncotarget.com

chemokine/chemokine receptor inhibitors [90]. Indeed, 
these pre-clinical evidences were recently confirmed by a 
phase Ib study evaluating the efficacy of the combination 
of the anti-PD-L1 antibody atezolizumab with 
vemurafenib alone or in combination with cobimetinib in 
patients with metastatic melanoma. The results showed 
that both combination regimens were associated with 
durable tumor responses, with an overall acceptable 
toxicity [91]. Furthermore, a randomized phase 2 trial 
(NCT02130466), comparing advanced melanoma patients 
receiving dabrafenib+trametinib in combination with 
the PD-1-blocking antibody pembrolizumab or placebo 
reported similar results [92]. Although the results of these 
studies were still inconclusive, ongoing Phase III trials 
(NCT02967692 and NCT02908672) will probably provide 
additional information regarding the efficacy of a triple-
combination regimen.

The main messages of this section are:
•	 	Although	 BRAF	 and	 MEK	 inhibitors	 provide	 a	
significant	clinical	benefit	in	melanoma	patients,	late	
resistance	development	remains	a	major	clinical	issue.	

•	 	Changes	 of	 the	 composition	 of	 the	 tumor	
microenvironment	are	strictly	related	with	resistance	
to	BRAF	inhibitors.

Effects of BRAF-inhibitors on chemokines in the tumor 
microenvironment

The chemokine system is crucially involved in the 
establishment of tumor microenvironment. A close link 
also exists between the presence of a BRAF mutation and 
the secretion of chemokines by resident and infiltrating 
cells. Several studies, both in melanoma and in thyroid 
cancer, were aimed at evaluating the potential effect of 
BRAF-inhibitors on the secretion of chemokines. Because 
CCL2 has an important role in tumor progression and 
metastasis, this chemokine was identified as a potential 
therapeutic target in cancer [93]. Early studies in mice 
showed that PLX4720 downregulated the expression of 
the CCL2 gene and of its protein, both in BRAF (V600E)-
mutated melanoma xeno-graphs and in de	novo occurring 
melanomas. Lowering CCL2 was followed by a reduction 
of tumor growth [21]. Upon development of resistance 
to BRAF-inhibitors, human melanoma cell lines further 
increase their production of CCL2. Similarly, an increase 
in the serum levels of CCL2 occurs in melanoma patients 
after extended vemurafenib treatment, and is associated 
with a poor clinical response [94]. In 2016 Vergani, et al., 
showed that CCL2 was significantly upregulated both 
at the transcript and at protein level in BRAF-inhibitor 
resistant cell lines compared with matched sensitive 
cells [94]. In addition, the serum levels of CCL2 were 
higher in patients experiencing a short-term response to 
BRAF-inhibitor treatment as compared with long-term 
responders. Taken together these results suggested that 
CCL2 could be viewed as a potential prognostic factor 

and an index for resistance to therapy in patients with 
melanoma [94]. 

A study in patients with different types of cancer, 
including melanoma and thyroid cancer, demonstrated 
that the serum concentrations of another chemokine, 
CXCL8, were predictive of tumor burden and extent of 
disease [95]. CXCL8 is the most studied chemokine in 
human cancer in view of its multiple pro-tumorigenic 
properties, which span from induction of cell growth to 
promotion of metastatic processes [96, 97]. Data on this 
chemokine regard both melanoma and thyroid cancer. 
Sanmamed et al, reported that patients with metastatic 
melanoma receiving the PD-1 inhibitor ipilimumab show 
a decrease or an increase in the serum levels of CXCL8 in 
relation to a good or poor clinical response, respectively 
[95]. Based on these findings, CXCL8 received increasing 
attention in melanoma patients as an important prognostic 
tool for estimating patient’s tumor burden and disease-free 
survival [38, 98]. 

With specific regards to thyroid cancer, CXCL8 
was the first chemokine shown to be secreted by normal 
human thyroid cells [99–101]. Since then, several 
studies reported that CXCL8 is also secreted by a wide 
variety of cancer cell lines including those derived from 
well-differentiated papillary, medullary, and anaplastic 
thyroid cancer [102–104]. Experimental evidence 
demonstrates that thyroid cancer cells produce larger 
amounts of CXCL8 as compared with normal thyroid 
cells. In particular, among thyroid cancer cells harboring 
different oncogenic mutations, those bearing the BRAF 
V600E mutation secrete the highest amounts of CXCL8 
[105]. In the tumor microenvironment, the inhibition of 
CXCL8 by different compounds (metformin, phenformin, 
interferons, AICAR,) was proved to exert beneficial 
anti-tumor effects [100, 106–109]. A recent study by our 
group showed that the BRAF-inhibitor PLX4720 reduced 
CXCL8 secretion in several BRAFV600E mutated thyroid 
cancer cell lines (8505C, 8305C, BCPAP), but not in 
RET/PTC rearranged ones (TPC1) [110]. Importantly, 
PLX4720 was able to reduce the migration of thyroid 
cancer cells, but this effect occurred only in those cells 
in which PLX4720 also inhibited the secretion of CXCL8 
(the BRAF V600E mutated ones). In RET/PTC rearranged 
cells, PLX4720 did not inhibit CXCL8 secretion and had 
no effect on cell migration. [110]. These results highlight 
the concept that PLX4720, by inhibiting the secretion of 
CXCL8, eventually produces relevant anti-tumor effects. 
Figure 3 summarizes the possible consequences of BRAF-
inhibition on the chemokine system (Figure 3).

Taken together, experimental data in melanoma and 
in thyroid cancer suggest that BRAF-inhibitors not only 
exert direct effects on neoplastic cells, but also display 
an indirect anti-cancer action. The latter is mediated by a 
reduced secretion of CXCL8 by neoplastic cells, which in 
turn results in a lower aggressiveness of the tumor. This 
recently identified inhibition of chemokine secretion by 
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PLX4720 (and potentially by other BRAF inhibitors) 
implies that our knowledge on the anti-cancer effects in 
cancer of these drugs is still incomplete. Immunotherapy 
is currently regarded as the future for cancer cure, and in 
this view targeting the chemokine/chemokine receptor 
system might represent a new frontier for the use of BRAF 
inhibitor drugs.

The main messages of this section are:
•	 �The	 modulation	 by	 BRAF-inhibitors	 of	 chemokines	
secreted	in	the	tumor	microenvironment	(in	particular	
of	CCL2	and	CXCL8)	ultimately	affects	the	biological	
behavior	 of	 cancer	 cells	 (reducing	 cell	 growth	 and	
migration).	

CONCLUSIONS

BRAF gene mutations are commonly associated 
with a more aggressive behaviour of melanoma or 
thyroid cancer. Data in the literature support the concept 
that, at least in part, this aggressive behavior results from 
changes in tumor microenvironment. In this setting, 
BRAF mutations play a complex role by: i) directly 
increasing cancer cell proliferation, ii) influencing the 
immune cell composition of tumor microenvironment, 
thus creating local immune-suppression, which favors 
the tumor immune-escape, iii) inducing a greater 
secretion of pro-tumorigenic chemokines (CXCL8, 
CCL2), which in turn promotes cancer cell proliferation, 

Figure 3: Schematic description of the direct and indirect effects of a given BRAF-inhibitor (PLX4720) in cancer. 
The presence of the BRAFV600e mutation in cancer cells leads to an increase in cell proliferation, metastasis and patients mortality. The 
administration of the BRAF-inhibitor PLX4720 exert both direct and indirect effect in cancer. Direct effect: PLX4720 inhibits the molecular 
pathway switched on by the BRAFV600e mutation, consequently cell proliferation, metastasis and patients mortality are reduced; Indirect 
effect: PLX4720 inhibits the secretion of pro-tumorigenic chemokines in normal surrounding and cancer cells, which in turn, leads to a 
reduction of cell proliferation, tumor angiogenesis, EMT and metastatic potential.
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angiogenesis and metastatization. In this context, 
BRAF-inhibitors could represent a useful therapeutic 
strategy for treatment-refractory patients with either 
melanoma or thyroid cancer. Indeed, experimental 
evidence indicates that BRAF-inhibitors directly reduce 
the proliferation and viability of cancer cells, and 
indirectly prevent the metastatic process by modulating 
the chemokine milieu in the tumor microenvironment. 
Translational studies also support the anti-cancer 
effect of BRAF inhibitors resulting from changes in 
the immunophenotype of tumor microenvironment. 
Clinical trials performed both in melanoma and thyroid 
cancer patients showed encouraging results when 
BRAF-inhibitors were tested alone or in combination 
with other drugs. The development of immunotherapy 
strategies focused on the tumor microenvironment of 
BRAF-mutated tumors will hopefully provide new tools 
for a personalized treatment of patients with melanoma 
or refractory thyroid cancer. 
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