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As a common neurophysiological phenomenon, voluntary muscle fatigue is
accompanied by changes in both the central nervous system and peripheral muscles.
Considering the effectiveness of the muscle network and the functional corticomuscular
coupling (FCMC) in analyzing motor function, muscle fatigue can be analyzed by
quantitating the intermuscular coupling and corticomuscular coupling. However, existing
coherence-based research on muscle fatigue are limited by the inability of the coherence
algorithm to identify the coupling direction, which cannot further reveal the underlying
neural mechanism of muscle fatigue. To address this problem, we applied the time-
delayed maximal information coefficient (TDMIC) method to quantitate the directional
informational interaction in the muscle network and FCMC during a right-hand stabilized
grip task. Eight healthy subjects were recruited to the present study. For the muscle
networks, the beta-band information flow increased significantly due to muscle fatigue,
and the information flow between the synergist muscles were stronger than that
between the synergist and antagonist muscles. The information flow in the muscle
network mainly flows to flexor digitorum superficialis (FDS), flexor carpi ulnar (FCU), and
brachioradialis (BR). For the FCMC, muscle fatigue caused a significant decrease in
the beta- and gamma-band bidirectional information flow. Further analysis revealed that
the beta-band information flow was significantly stronger in the descending direction
[electroencephalogram (EEG) to surface electromyography (sEMG)] than that in the
ascending direction (sEMG to EEG) during pre-fatigue tasks. After muscle fatigue, the
beta-band information flow in the ascending direction was significantly stronger than that
in the descending direction. The present study demonstrates the influence of muscle
fatigue on information flow in muscle networks and FCMC. We proposes that beta-
band intermuscular and corticomuscular informational interaction plays an adjusting role
in autonomous movement completion under muscle fatigue. Directed information flow
analysis can be used as an effective method to explore the neural mechanism of muscle
fatigue on the macroscopic scale.
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INTRODUCTION

Voluntary muscle fatigue is a common physiological
phenomenon in daily life. It is usually defined as a decrease
in the ability of the neuromuscular system to generate voluntary
force during movement (Vollestad, 1997; Wang et al., 2017).
Muscle fatigue research is of great significance in many fields,
such as clinical analysis of neuromuscular diseases (Greig
and Jones, 2010), sports medicine (Darvishani et al., 2019),
and rehabilitation medicine (Arnall et al., 2002). With the
development of non-invasive acquisition technology, the
evaluation and prediction of muscle fatigue according to the
characteristics of surface electromyography (sEMG) signals have
been extensively studied (Bonato et al., 2001; Cifrek et al., 2009;
Venugopal et al., 2014). However, it has been demonstrated that
muscle fatigue is accompanied by changes in the central nervous
system (Tanaka et al., 2011). Although changes in motor unit
recruitment mediated by central mechanisms can be indirectly
reflected in sEMG signals, it is difficult to analyze the neural
mechanisms behind muscle fatigue at a systemic level by the
single sEMG-based method.

Constructing muscle networks to analyze the synergistic
characteristics between muscles has become a new method
to explore the neuromuscular control mechanism recently
(Boonstra et al., 2015; Kerkman et al., 2020; Houston et al., 2021).
Muscle networks analysis quantifies the functional connectivity
between motion-related muscles and is able to identify the
frequency characteristics of specific muscles that are regulated by
common neural inputs. Therefore, muscular networks analysis
can reveal the characteristics of functional separation and
integration for the neuromuscular system, which is suitable
for analyzing the neuromuscular control mechanism behind
muscle fatigue. On the other hand, it has been reported that
the coupling relationship between scalp electroencephalogram
(EEG) and sEMG in a specific frequency band can reflect
the functional coupling between the motor cortex and effector
muscles (Gwin and Ferris, 2012; Mehrkanoon et al., 2014). This
coupling between EEG and sEMG was defined as functional
corticomuscular coupling (FCMC). More and more studies verify
the role of FCMC in different frequency bands during different
force output tasks, providing important ideas to further reveal the
underlying neural mechanism of muscle fatigue.

Recently, some researchers have used the coherence method
to analyze the difference in FCMC during pre- and post-
muscle fatigue (Yang et al., 2009; Siemionow et al., 2010; Tuncel
et al., 2010; Wang et al., 2017). Studies based on muscle
networks also mainly use coherence method to construct muscle
networks (Kerkman et al., 2020; Houston et al., 2021). However,
neurophysiological signals such as EEG and sEMG have been
shown to be nonlinear and complex (Popivanov and Dushanova,
1999; Stam, 2005). The coherence method has some limitations in
the comprehensive analysis of functional coupling. Additionally,
autonomous movement is a result of the cerebral cortex driving
muscle actions and the coupling between the motor cortex and
effector muscles is directional (Mima et al., 2001; Witham et al.,
2011). The information flow in the ascending (sEMG to EEG)
and descending (EEG to sEMG) directions in FCMC has been

shown to play a key role in neural information transmission
for motor control and sensory feedback (Baker, 2007; Yang
et al., 2018; Chen et al., 2019). As a normal neurophysiological
phenomenon induced by voluntary movement, muscle fatigue
inevitably leads to changes in the information interaction
within the motor nervous system. Evaluation of the difference
in information flow in different frequency bands for muscle
networks and FCMC before and after muscle fatigue is helpful to
better understand the functional mechanism of neural pathways
underlying muscle fatigue. However, the coherence method
cannot identify the direction of coupling, which limits its further
application in this field.

The main aim of this work was to explore the motor
regulation mechanism of the nervous system behind muscle
fatigue by quantifying the information flow for muscle network
and FCMC. Our previous research has demonstrated the
effectiveness of the maximal information coefficient (MIC)
and its improved algorithm (time-delayed maximal information
coefficient, TDMIC) in FCMC research (Liang et al., 2020,
2021). TDMIC algorithm has been proved to be able to
accurately identify the strength and direction of information
flow between short-length nonlinear systems, so it is more
suitable for the analysis of functional coupling between complex
neurophysiological signals. The present study applied TDMIC
to quantitatively analyze the changes of intermuscular- and
corticomuscular-information flow with 30% steady-state grip
during pre- and post-muscle fatigue tasks. To the best of
our knowledge, this is the first study to analyze the directed
information flow in muscle network and FCMC during pre-
and post-muscle fatigue, providing a new perspective for
understanding the neural mechanisms of muscle fatigue.

MATERIALS AND METHODS

Subjects and Motor Task
Eight healthy right-handed subjects (seven males and one
female; aged: 21–25 years) were recruited to the present
study. All subjects were right-handed and assessed using the
Edinburgh Inventory. All subjects gave informed consent prior
to participation. The study was performed in accordance with
the Declaration of Helsinki following approval by the Ethics
Review Committee of the Affiliated Hospital of Hebei University
(HDFY-LL-2020-091).

Prior to the experiment, each subject performed three
maximum voluntary contractions (MVCs) with a right-hand
grip, and 30% of the average MVC value (Avg_MVC) before
fatigue was taken as the target force for the experiment. Subjects
used an electronic grip to perform the pre-fatigue task with
30% Avg_MVC of the right-hand grip for 30 s. Each subject
repeated five blocks of the pre-fatigue task with 90-s breaks to
avoid muscle fatigue. Each experiment included a 2-s preparation
and a 30-s steady-state force output stage, as shown in Figure 1.
Subsequently, the subjects performed the maximum grip strength
continuously until ultimate endurance (i.e., muscle fatigue task).
After this task, the subjects immediately performed a post-fatigue
task; that is, maintaining 30% MVC of the right-hand grip for
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FIGURE 1 | Experimental setting. (A) Synchronous recording of the subjects’ EEG and sEMG. (B) The electrode position on the FDS, FCU, FCR, BR, and ED.
(C) The experimental paradigm. During the pre-fatigue task, the interval between each block was 90 s; during the post-fatigue task, this interval was 30 s.

30 s, similar to the pre-fatigue task. It should be noted that each
subject repeated three blocks of the post-fatigue task with 30-
s breaks to ensure completion of the experiment with muscle
fatigue. After the experiment, the MVC values for the subjects
were measured again to evaluate the impact of muscle fatigue on
the ability to produce the maximum voluntary force.

Data Recording and Preprocessing
Subjects sat comfortably on a chair, with the upper arm naturally
placed vertically, the elbow angle maintained at 90◦, and the right
forearm placed on a support parallel to the ground. A 40-channel
NeuroScan system (Neuroscan, Australia) was used to collect
EEG and sEMG data simultaneously. Based on the international
10–20 system, the EEG signals from 32 scalp positions were
recorded, with the binaural mastoid as a reference. EEG signals
from the C3, C4, Cz, Pz, and Fz electrodes placed over the
sensorimotor cortex were selected for subsequent analysis. To
record the sEMG signal, bipolar Ag/AgCl electrodes (2 cm
between the two poles) were attached to the skin above the flexor
digitorum superficialis (FDS), flexor carpi ulnar (FCU), flexor
carpi radialis (FCR), brachioradialis (BR), and extensor digitalis
(ED) muscles of the right hand. Subjects washed their hair before
the experiment and cleaned the skin with scrub where EMG
electrodes were attached. The impedance of all electrodes was
maintained below 5 K�. Subjects were advised to avoid blinking,
swallowing, and turning their heads as much as possible during
the experiment. EEG and sEMG were sampled at 1,024 Hz.

Only data from the steady-state force output stage of the
experiment were included for further analysis. The 2–29 s data
were selected for subsequent analysis to avoid the influence
of large changes in grip strength at the start and end of the
action. Each subject obtained four 28-s length epochs during

pre- and post-fatigue for the right-hand grip. For EEG signals,
50 Hz power frequency interference was removed and a band-
pass filtering (2–100 Hz) was performed. For sEMG signals,
the data were band-pass filtered (5–500 Hz) and a notch filter
was used to remove 50 Hz power frequency interference. After
filtering, each epoch was cut into non-overlapping segments
with a length of 1,000 ms. Then the EEG segments with
obvious artifacts, such as blinking and neck rotation, were
rejected by visual inspection. The corresponding sEMG segment
was discarded. Next, independent component analysis (ICA)
was used to remove artifacts such as electromyography and
electrooculogram. ReMAE was used to further remove EMG
artifacts from EEG signals (Chen et al., 2020). EEG and sEMG
data in the beta (14–30 Hz) and gamma bands (31–45 Hz) were
selected for further analysis. The EEG data recorded from C3 and
the rectified sEMG data were used for further FCMC analysis.

Data Analysis
Time-Delayed Maximal Information Coefficient
The MIC algorithm was proposed by Reshef et al. (2011) to
measure the correlation between time series. MIC searches for
the maximum mutual information by traversing all possible grid
divisions of variables X and Y with a sample size n in the finite
dataset D and regularizes it:

MIC (D) = max
xy<n0.6

{
M (D)x,y

}
= max

xy<n0.6
{

max(I(D,x,y)
log min{x,y}

}
(1)

where, I(D,x,y) represents the mutual information of the two
variables when the grid is divided into x-by-y. The computational
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workload can be reduced by setting xy< n0.6:

I(D, x, y)=
∑
x∈X

∑
y∈Y

p(x, y) log(
p(x, y)
p(x)p(y)

) (2)

where, p(x, y) is the joint probability density function of X
and Y, and p(x) and p(y) are their marginal probability density
functions, respectively.

Since the MIC is symmetrical:

MIC (X,Y) = MIC (Y,X) (3)

As a result, the MIC algorithm cannot identify the coupling
direction. To solve this problem, we introduced a time delay
parameter and propose the following TDMIC algorithm (Liang
et al., 2021):

TDMIC = MIC (X,Y, τ ) = max
xy<B(n)

{
max(IG(X,Y,τ )

log min{x,y}

}

= max
xy<B(n)


max(

∑
xt

∑
yt−τ

p(xt,yt−τ ) log( p(xt ,yt−τ )
p(xt )p(yt−τ )

))

log min{x,y}

 (4)

Similar to the time-delay mutual information method (TDMI),
the time-delay symbol at which TDMIC reaches its peak was
used to infer the direction of information flow between X and
Y (Vastano and Swinney, 1988; Li et al., 2018).

To estimate the total information flow intensity over a
period of time, the cumulated information flow within a
certain delay D can be calculated using the following formula
(Hinrichs et al., 2008)

CTDMIC =

D∑
i=1

TDMIC (k, i) (5)

Here, delay D was set to 40 data points and k was set to 1.

Wavelet Transform
Considering that EEG and sEMG are both non-stationary
and complex signals, wavelet transform with multi-resolution
analysis characteristics can be used to capture more time-varying
frequency information for EEG and sEMG during muscle fatigue
(Karlsson et al., 1999, 2000; Liang et al., 2020). Therefore, the
Morlet wavelet transform was used to obtain time-frequency
energy maps for EEG and sEMG. represents the time series
of channel i at time t, and the corresponding Morlet wavelet
transform can be calculated as:

Wxi
(
t, f
) ∫

xi(λ)φ∗t,f (t − f )dλ (6)

where, φt,f
∗ is the conjugate complex number for the

mother wavelet function φt,f
∗; φt,f (λ) = A · ei2π f (λ−t) · e

−(λ−t)2

2σ2 ;
A = (σ

√
2)−

1
2 is the standardization factor, where σ = 8

2π f .
Additionally, to quantitate the influence of muscle fatigue on

EEG and sEMG wavelet energies, the cumulated wavelet energy
in the beta (14–30 Hz) and gamma (31–45 Hz) bands were

calculated separately. On the other hand, the beta- and gamma-
band average wavelet energy of EEG and sEMG during pre- and
post-muscle fatigue were used as the new time series for further
muscle network and FCMC analysis. The procedure for EEG and
sEMG data analysis as shown in Figure 2. Data were preprocessed
and analyzed off-line in the MATLAB environment (R2018b, The
MathWorks, Inc., Natick, MA, United States).

Statistical Analysis
In the present study, the permutation test was used to evaluate
the significance of TDMIC (Schreiber and Schmitz, 2000). The
specific implementation details are consistent with those of our
previous research (Liang et al., 2020). To examine the effect of
muscle fatigue on the cumulated wavelet energy and MIC, paired-
sample t-tests were conducted. To compare the difference in
cumulated information flow in different frequency bands and
directions before and after muscle fatigue, a three-way repeated-
measures analysis of variance (rANOVA) was performed with
task (2 levels: pre-fatigue and post-fatigue), direction (2 levels:
EEG to sEMG and sEMG to EEG), and frequency band (2 levels:
beta and gamma) as the intra-subject factors, and the CTDMIC
value was the dependent variable. The significance level was set to
0.05 (α = 0.05). All statistical analyses were conducted in SPSS/PC
version 20.0 (SPSS Inc., Chicago, IL, United States).

RESULTS

Influences of Muscle Fatigue on EEG,
sEMG, and MVC
All subjects completed the experimental tasks as required.
Table 1 shows the MVC values during the pre- and post-fatigue
tasks for all subjects. In comparison with the pre-fatigue task,
we can see that the MVC for each subject was significantly
decreased after the muscle fatigue task (average reduction of
MVC: 12.3± 1.11 kg, p = 0.000).

Figure 3 shows typical examples of original EEG and sEMG
signals during pre- and post-muscle fatigue. As observed, the
amplitude of the sEMG signal was significantly increased due
to muscle fatigue but the amplitude of the EEG signal did not
change significantly. In addition, we recorded the tracking target
force performance before and after muscle fatigue, as shown in
Figure 3C. The ability of the subject to track the target force
before fatigue was better than that after fatigue, with an obvious
jitter in the grip curve after muscle fatigue.

The grand averages of the wavelet time–frequency maps for
EEG and sEMG are shown in Figure 4. For EEG, the wavelet
energy was mainly distributed in the frequency ranges of 16–21
and 31–45 Hz during the pre-fatigue task. During the post-fatigue
task, the wavelet energy was mainly distributed in the frequency
ranges of 14–30 and 30–45 Hz; the energy was stronger and
over a wider range. For sEMG, the wavelet energy was mainly
distributed in the 10–20 Hz frequency band during both the
pre- and post-fatigue tasks, but the energy intensity was stronger
after muscle fatigue.

We further quantitated the difference in cumulated wavelet
energy between the two muscle states. Figure 4 shows the grand
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FIGURE 2 | The procedure for EEG and sEMG data analysis. In the data segmentation phase, the 2–29 s data were selected for subsequent analysis.

average of the cumulated wavelet energy for EEG (Figure 5A)
and sEMG (Figure 5B) in the beta and gamma bands during
pre- and post-fatigue tasks. It can be seen from Figure 5A that at
the five selected electrode positions (C3, Cz, C4, Pz, and Fz), the
EEG wavelet energy after muscle fatigue was significantly higher
than that before muscle fatigue (in the beta band, C3: p = 0.012,
Cz: p = 0.013, C4: p = 0.027, Pz: p = 0.019, Fz: p = 0.015; in
the gamma band, C3: p = 0.036, Cz: p = 0.017, C4: p = 0.030,
Pz: p = 0.016, Fz: p = 0.016). The EEG wavelet energy in the
beta band was significantly higher than that in the gamma band
regardless of the state of the muscle (C3: p = 0.000, Cz: p = 0.000,
C4: p = 0.000, Pz: p = 0.000, Fz: p = 0.000). Similarly, as shown
in Figure 5B, the sEMG wavelet energy were also significantly
increased due to muscle fatigue (in the beta band, FDS: p = 0.035,
FCU: p = 0.031, FCR: p = 0.028, BR: p = 0.041, ED: p = 0.030; in the
gamma band, FDS: p = 0.020, FCU: p = 0.035, FCR: p = 0.033, BR:
p = 0.043, ED: p = 0.024). The sEMG wavelet energy in the beta
band was significantly higher than that in the gamma band during
both the pre- and post-fatigue tests (pre-fatigue: FDS: p = 0.003,

TABLE 1 | maximum voluntary contractions for all subjects.

Subject Avg_MVC (kg) 30%MVC (kg)

Pre Post* Pre

S1(M) 39.8 27.6 11.9

S2(M) 43.6 30.6 13.1

S3(M) 41 28.8 12.3

S4(M) 39.2 27.8 11.8

S5(M) 39.5 25.4 11.9

S6(M) 43 31 12.9

S7(M) 39.7 26.5 11.9

S8(F) 30 19.5 9.0

M denotes male; F denotes female. *p < 0.001.

FCU: p = 0.004, FCR: p = 0.006, BR: p = 0.023, ED: p = 0.043;
post-fatigue: FDS: p = 0.032, FCU: p = 0.039, FCR: p = 0.028, BR:
p = 0.022, ED: p = 0.030).

The Influence of Muscle Fatigue on
Muscle Network
As shown in Figure 6, before muscle fatigue, information flow
mainly exists among FDS, FCU, FCR, and BR, and mainly
flows to FDS and FCU. Compared with pre-fatigue, Muscle
network in the beta band was more tightly connected after
fatigue and the Stronger information flow were mainly to FDS,
FCU and BR. It’s worth noting that the connection between ED
and other muscles were significantly increased after fatigue. As
shown in Figure 7A, Compared with pre-fatigue, the beta-band
intermuscular connectivity were significantly increased after
muscle fatigue (p = 0.034). There was no significant difference
in the strength of intramuscular coupling in gamma band before
and after fatigue. It was also observed that the strength of
intermuscular information flow in beta band was stronger than
that in gamma band before and after fatigue (p = 0.000). In
addition, as shown in Figures 7B,C, the beta-band information
flow among FDS, FCU, FCR, and BR were significantly stronger
than that between ED and these muscles (pre-fatigue: p = 0.040;
post-fatigue: p = 0.035).

The Influence of Muscle Fatigue on
FCMC
As shown in Figure 8, the beta- and gamma-band MIC values
to FDS was the strongest, followed by the FCU, BR, FCR, and
ED (p < 0.05). The MIC values in the beta and gamma bands
were also significantly decreased due to muscle fatigue (in the
beta band, FDS: p = 0.018, FCU: p = 0.021, FCR: p = 0.033, BR:
p = 0.016, ED: p = 0.040; in the gamma band, FDS: p = 0.006,
FCU: p = 0.008, FCR: p = 0.023, BR: p = 0.031, ED: p = 0.025).
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FIGURE 3 | Typical examples of (A) raw EEG signals (C3), (B) raw sEMG signals (FDS), and (C) force performance during pre- and post-fatigue tasks. The red
dotted line represents the target force.

Additionally, the MIC value in the beta band was significantly
higher than that in the gamma band during both the pre- and
post-fatigue tasks (p = 0.000).

Furthermore, we compared the cumulated bidirectional
information flow in FCMC in the beta and gamma bands
during the pre- and post-fatigue tasks, as shown in Figure 9.
During the pre-fatigue task, the beta-band information flow
in the descending direction (EEG to sEMG) was significantly
higher than that in the ascending direction (sEMG to EEG)
[F(1,7) = 20.33, p = 0.003, Bonferroni], while in the gamma band,
the information flow in the ascending direction was significantly
higher than that in the descending direction [F(1,7) = 6.33,
p = 0.04, Bonferroni]. In comparison with the pre-fatigue task,
the bidirectional information flow in the beta and gamma bands
was significantly decreased during the post-fatigue task [beta
band, ascending direction: F(1,7) = 7.94, p = 0.026, Bonferroni;
beta band, descending direction: F(1,7) = 35.31, p = 0.001,
Bonferroni; gamma band, ascending direction: F(1,7) = 13.24,
p = 0.008, Bonferroni; gamma band, descending direction:
F(1,7) = 7.41, p = 0.030, Bonferroni]. In particular, we observed
that both the beta- and gamma-band information flow in the
ascending direction were significantly higher than those in
the descending direction during post-fatigue tasks [beta band:
F(1,7) = 49.74, p = 0.000, Bonferroni; gamma band: F(1,7) = 5.93,
p = 0.045, Bonferroni].

DISCUSSION

Muscle fatigue caused by voluntary movement is a common
neurophysiological phenomenon. The purpose of the present
research was to quantitatively analyze the influence of muscle
fatigue on the information flow in muscle networks and FCMC
using the improved MIC algorithm (TDMIC) and to explore the
inner neural mechanism of muscle fatigue induced by voluntary

movement. Our results show that muscle fatigue caused an
increase in the strength of information flow in the muscle
network and a decrease in the strength of information flow in
the FCMC. In particular, for FCMC, we found that during the
post-fatigue task, both the beta- and gamma-band information
flow in the ascending direction were stronger than that in the
descending direction, which was different from the stronger beta-
than gamma-band information flow in the descending direction
during the pre-fatigue task.

The EEG oscillation activity in the beta and gamma bands is
related to the function of the sensorimotor cortex, and changes in
the amplitude and spectral energy of the sEMG signal are also
often used to assess muscle fatigue (Baker, 2007; van Duinen
et al., 2007; Yang et al., 2009; Tuncel et al., 2010; Wang et al.,
2017). Considering that even in the steady-state force output
task, both the EEG and sEMG are time-variant, we used wavelet
transform to analyze the energy changes of EEG and sEMG
during the pre- and post-fatigue tasks. Benefiting from the trade-
off in time–frequency resolution, wavelet transform has proven
to be an effective method for analyzing non-stationary neural
signals (Karlsson et al., 1999; Lu et al., 2011). It can be seen from
the EEG wavelet time–frequency maps that the wavelet energy
was mainly distributed in the beta and gamma bands. The EEG
oscillating activity in these two frequency bands was generally
considered to be related to the submaximal contractility task.
Additionally, the fatigue task resulted in the diffusion of the EEG
time–frequency energy band, which may be related to the non-
linear adjustment of the cortex caused by muscle fatigue. Jing
et al. used functional magnetic resonance imaging (FMRI) to
demonstrate that the cortex experiences nonlinear modulation
during muscle fatigue (Liu et al., 2002). Subsequent statistical
analysis shows that muscle fatigue led to an increase in EEG and
sEMG energy in the beta and gamma bands, which is consistent
with previous reports (van Duinen et al., 2007; Yang et al., 2009;
Berchicci et al., 2013; Wang et al., 2017). Since muscle fatigue
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FIGURE 4 | The grand averages of the wavelet time–frequency maps for (A) EEG (C3) and (B) sEMG (FDS) during the pre- and post-fatigue tasks.

results in decreased motor neuron activation in the motor cortex,
increased energy in sensorimotor cortex regions (C3, C4, Cz,
Fz, and Pz were selected in the present study) may indicate
that more motor neurons in the central nervous system were
recruited to process signals in order to maintain the established
motor tasks and compensate for changes in the central and
peripheral states. Similarly, for submaximal contraction, due to
the decrease in force generation capacity during muscle fatigue,
the increases in sEMG amplitude and energy were considered
to reflect increased recruitment of additional motor units to
maintain the strength level (Liu et al., 2003; Yang et al., 2009).
Recently, Schlink et al. (2021) observed that fatigue induces
altered EMG activation patterns in the medial gastrocnemius.
They confirmed that this may be a protective mechanism of the
neuromuscular system to avoid muscle injury by distributing the

muscle load more broadly. This was also reflected in our sEMG
wavelet time–frequency map.

The frequency characteristics of the coupling between sEMGs
have been proved to reflect relevant information about the
regulation of the neuromuscular system (Boonstra et al., 2015;
Laine and Valero-Cuevas, 2017; Houston et al., 2021). In
this study, consistent with previous studies, the information
interaction of muscle network during motor task was mainly
expressed in the beta and gamma bands, and the information flow
in beta band was the strongest (Kattla and Lowery, 2010). This
result may be related to the 30% MVC steady-state force output
task paradigm. The intermuscular coupling in the beta band was
proved to be correlated with the steady-state force output and
could reflect the cooperative control strategy for the muscles
under the common task (Kilner et al., 1999). Furthermore, we
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FIGURE 5 | The grand averages of the beta- and gamma-band cumulated wavelet energy for (A) EEG and (B) sEMG during the pre- and post-fatigue tasks.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

FIGURE 6 | Average muscle networks pre- (A) and post-muscle fatigue (B). The arrows indicate the stronger information flow direction, and the edge width is
positively correlated with the strength of information flow. The average values of beta- and gamma-bands TDMIC before fatigue were used as display thresholds
respectively to make network topology diagrams.

observed that muscle fatigue resulted in significantly increased
information interaction and tighter connections between muscles
in the beta band. This is consistent with previous studies based on
hand fatigue tasks leading to increased intermuscular coupling
(Danna-Dos Santos et al., 2010; Kattla and Lowery, 2010). The
difference was that directed information flow analysis provided

further directional information about the interactions between
task-related muscles. Specifically, this study observed that due
to muscle fatigue, the stronger information flow mainly flows
to the synergistic muscles (i.e., FDS, FCU, and BR). Moreover,
the information interaction between antagonistic muscles (i.e.,
ED) and other muscles also increases, which is mainly manifested
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FIGURE 7 | The grand averages of the information flow for muscle network. (A) Comparison of average information flow strength in beta- and gamma-bands before
and after fatigue. (B,C) Comparison of information flow strength between different muscles before and after fatigue. ∗p < 0.05.

FIGURE 8 | The grand averages of the beta- and gamma-band cortico-muscular connectivity during the pre- and post-fatigue tasks for FDS, FCU, FCR, BR, and
ED. ∗p < 0.05, ∗∗p < 0.01.

as information flow from ED to other muscles. The increase in
information interaction reflects the enhancement of coordination
between task-related muscles, and to a certain extent reflects
the adjustment of the control strategy for the neuromuscular
system to maintain the level of the force output under the state

of muscle fatigue. Additionally, this study observed that the
information interaction between ED and other muscles (i.e., FDS,
FCU, FCR, and BR) was weaker than that among these muscles.
This difference in information interaction may be related to
different muscle functions. In the process of grip task, ED is the
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FIGURE 9 | The grand average CTDMIC values under different conditions. (A) Comparison of the CTDMIC values between pre- and post-fatigue tasks under different
conditions. (B) Comparison of the CTDMIC values between the EEG to sEMG and the sEMG to EEG directions under different conditions. *p < 0.05, **p < 0.01.

antagonistic muscle for motor, while the other four muscles are
the synergistic muscles. The observed differences in the strength
of information interaction also provide evidence for the idea that
antagonistic and synergistic muscles have different motor control
mechanisms in the neuromuscular system. This is also consistent
with previous researches (Kattla and Lowery, 2010).

Extensive studies have indicated that during the weak
contraction task in limbs, the FCMC in the beta band is related
to the control of steady-state force output (Conway et al.,
1995; Mima et al., 2001), while that in the gamma band is
related to the output of dynamic force and the integration of
sensory information (Mima and Hallett, 1999; Omlor et al.,
2007; Mehrkanoon et al., 2014; Liang et al., 2020). We observed
significant beta- and gamma-band FCMC during sustained
submaximal muscle contraction tasks, which is consistent with
previous studies on the coupling between beta and gamma bands
during submaximal muscle contraction (Mehrkanoon et al., 2014;
Liang et al., 2020; Xie et al., 2020). In particular, the strongest
cortico-muscular coupling was observed to the FDS muscle. One
possible explanation for this phenomenon is that FDS plays an
important role in the grip task. On the other hand, stronger
cortico-muscular coupling in the distal muscles has also been
demonstrated (Artoni et al., 2017). Further statistical analysis
shows that the fatigue task caused a significant decrease in
FCMC in the beta and gamma bands, which is consistent with
the results of previous studies using the coherence method to
analyze changes in corticomuscular coupling caused by muscle
fatigue (Yang et al., 2009; Siemionow et al., 2010; Tuncel et al.,
2010). FCMC reflects the informational interaction between the
sensorimotor cortex and effector muscles, which was observed
to be weakened by muscle fatigue in the present study. The

weakening of FCMC can lead to a decrease in voluntary motor
ability, which further led to a decrease in the subjects’ MVC and
grip stability performance in the present study. The weakening
of FCMC may be caused by a variety of mechanisms such as an
inhibitory effect on the spinal motor neurons of the descending
path or a decline in the information transmission function of
the neuromuscular junction (Yang et al., 2009). Unfortunately,
the possible mechanisms involve the directional specificity of
information transmission in FCMC, which cannot be further
effectively demonstrated by the coherence method since it lacks
the ability to recognize coupling direction.

Increasing evidence indicates that FCMC may be
simultaneously affected by both descending motor control
commands and ascending sensory feedback information, thereby
forming an oscillating sensory–motor loop (Mima et al., 2001;
Witham et al., 2011; Campfens et al., 2013; Yang et al., 2018; Xie
et al., 2020). Muscle fatigue caused by repetitive movements is
a normal neurophysiological process which naturally involves
changes in the transmission of motor control information in the
nervous system. Unfortunately, previous studies on the effect of
muscle fatigue on FCMC do not discuss this further. The results
of statistical analysis performed in the present study show that
before muscle fatigue, the strength of information flow in the
beta band was significantly higher in the descending direction
than that in the ascending direction, while this observation
was the opposite in the gamma band. This may be related to
the different roles of FCMC in different frequency bands for
neural communication and interaction between the central
nervous system and the effector muscles. The beta rhythm
synchronous oscillation is generally considered to involve the
transmission of descending motor control information and

Frontiers in Neuroscience | www.frontiersin.org 10 September 2021 | Volume 15 | Article 750936

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-750936 September 7, 2021 Time: 11:59 # 11

Liang et al. Information Flow for Muscle Fatigue

be responsible for the maintenance and output of steady-state
force in submaximal contraction tasks (Baker, 2007; Lemon,
2008). In the experimental paradigm of the present study, the
stability of the grip was better during the pre-fatigue task, and
the transmission of the descending control information was
dominant during the continuous steady-state force output in
the beta band. The beta-band results are consistent with those
of previous studies on steady-state force output tasks (Mima
et al., 2001; Chen et al., 2019). The synchronized oscillation
of the gamma rhythm is considered to be related to the
generation of dynamic forces and the integration of information
such as attention, vision, and proprioception (Omlor et al.,
2007; Mehrkanoon et al., 2014), which may also explain our
observation that the ascending information flow in the gamma
band was dominant.

Following the occurrence of muscle fatigue, the strength of
the bidirectional information flow in the beta and gamma bands
decreased significantly, which is consistent with the decrease in
FCMC caused by muscle fatigue. The decrease in the descending
information flow also provides partial evidence for the above-
mentioned muscle fatigue leading to inhibitory effects on the
descending path. Previous studies on the motor cortex using
transcranial magnetic stimulation have also confirmed that
muscle fatigue leads to a decrease in excitatory input from the
motor cortex to the effector muscles (Taylor and Gandevia,
2001; Sogaard et al., 2006). Another study also confirmed the
influence of muscle fatigue on proprioception (Voight et al.,
1996). The observed decrease in the ascending information flow
may reflect a decline in the transmission function of sensory
feedback information, thus affecting the subjects’ proprioception.
In particular, unlike during the pre-fatigue task, we found that
during the post-fatigue task, both the beta- and gamma-band
information flow in the ascending direction were higher than
those in the descending direction. This change may be related
to the active adaptation of the sensory motor nervous system
to muscle fatigue. As muscle fatigue progressed, the information
transmission of the descending motor pathway for the subjects
was inhibited and the production of voluntary force was reduced;
however, relatively more sensory feedback information needed
to be integrated to dynamically adapt to the decrease in grip
stability. Chen et al. (2019) previously reported that the beta
rhythm oscillations can regulate the information transmission
between the sensorimotor cortex and effector muscles. Therefore,
it is reasonable to suggest that in order to complete the target
force task, the beta-band information flow between the cortex
and effector muscle may be dynamically adjusted as the task
environment changes (e.g., caused by muscle fatigue in the
present study). In essence, the changes in information interaction
are also a guarantee that the subjects complete autonomous
movements in the state of muscle fatigue.

CONCLUSION

This research focused on the influence of muscle fatigue on
information flow in muscle networks and FCMC. In this
study, we found different connection patterns of synergistic

and antagonistic muscles in the muscle network. Furthermore,
muscle fatigue resulted in an increase in information flow
in the muscle network and a significant decrease in the
bidirectional information flow in the FCMC. Additionally,
bidirectional information flow in FCMC showed different
frequency specificity before and after muscle fatigue. We
demonstrate that quantitating the information flow in muscle
network and FCMC can help to explore the neural mechanisms
of muscle fatigue. At the same time, we confirm that the dynamic
adjustment of the beta-band information flow in the muscle
network and in the FCMC is very important for maintaining
the stable force output level, especially under the condition
of muscle fatigue.
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