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Summary

The Escherichia coli K-12 nrf operon encodes a peri-

plasmic nitrite reductase, the expression of which is

driven from a single promoter, pnrf. Expression from

pnrf is activated by the FNR transcription factor in

response to anaerobiosis and further increased in

response to nitrite by the response regulator pro-

teins, NarL and NarP. FNR-dependent transcription is

suppressed by the binding of two nucleoid associ-

ated proteins, IHF and Fis. As Fis levels increase in

cells grown in rich medium, the positioning of its

binding site, overlapping the promoter 210 element,

ensures that pnrf is sharply repressed. Here, we

investigate the expression of the nrf operon promoter

from various pathogenic enteric bacteria. We show

that pnrf from enterohaemorrhagic E. coli is more

active than its K-12 counterpart, exhibits substantial

FNR-independent activity and is insensitive to nutri-

ent quality, due to an improved 210 element. We also

demonstrate that the Salmonella enterica serovar

Typhimurium core promoter is more active than pre-

viously thought, due to differences around the tran-

scription start site, and that its expression is

repressed by downstream sequences. We identify

the CsrA RNA binding protein as being responsible

for this, and show that CsrA differentially regulates

the E. coli K-12 and Salmonella nrf operons.

Introduction

The Escherichia coli K-12 nrf operon encodes the NrfA

periplasmic formate-dependent nitrite reductase, which

is responsible for reducing nitrite to ammonium ions to

support bacterial growth under anaerobic conditions

(Darwin et al., 1993). In addition to its role in anaerobic

respiration, the NrfA nitrite reductase can also reduce

the toxic molecule nitric oxide (NO) and contributes to

the ability of E. coli and Salmonella enteric serovar

Typhimurium to detoxify NO anaerobically (Poock et al.,

2002; Gilberthorpe and Poole, 2008; Mills et al., 2008;

van Wonderen et al., 2008). As enteric bacteria are

exposed to both nitrite and NO, during their transition

through the mammalian gastrointestinal track, this

makes the NrfA nitrite reductase an important enzyme

in the anaerobic environment of the gut.

Transcription of the E. coli K-12 nrf operon is driven

from a single promoter (pnrf) and expression is induced

by the global transcription activator protein, FNR, in the

absence of oxygen (Page et al., 1990; Tyson et al.,

1994). FNR binding to a single DNA site, centred at

position 241.5 (i.e., between positions 241 and 242

relative to the transcription start site, 11), is sufficient

for maximal pnrf induction (Tyson et al., 1994; Browning

et al., 2002). However, FNR-dependent activation is

suppressed by the binding of two nucleoid-associated

factors, IHF (integration host factor) and Fis (factor for

inversion stimulation). The nrf promoter contains three

DNA sites for IHF (IHF I to III) and three DNA sites for

Fis (Fis I to III) (see Figs 1 and 2) (Browning et al.,

2002; Browning et al., 2005; Browning et al., 2006).

Binding of IHF to IHF I and Fis to Fis I both repress

FNR-dependent transcription, whilst the occupancy of

IHF III has a stimulatory effect (Browning et al., 2002;

Browning et al., 2005; Browning et al., 2006) (Fig. 1).

The nrf promoter is also regulated in response to nitrite

and nitrate ions by the two homologous response regu-

lators, NarL and NarP (Tyson et al., 1994; Darwin et al.,

1997; Wang and Gunsalus, 2000). Both NarL and NarP

bind to the same site positioned at 274.5 and their

association with pnrf displaces IHF from IHF I, resulting
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in nitrite-dependent activation and maximal pnrf expres-

sion (Fig. 1) (Browning et al., 2002; Browning et al.,

2005; Browning et al., 2006). In addition, expression

from pnrf is repressed when cells are grown in rich

medium (Page et al., 1990; Tyson et al., 1997). This

repression is mediated by Fis binding to Fis I. As the

cellular concentration of Fis surges under nutrient rich

conditions, this results in greater occupancy of Fis I,

shutting down pnrf expression irrespective of other envi-

ronmental cues (Ball et al., 1992; Browning et al.,

2005).

During their evolution, bacterial pathogens are

exposed to the particular environmental conditions within

their host organism. Over time, their genomes accumu-

late mutations, many of which will have no effect, whilst

others can change protein function or gene regulation.

To understand how this process has shaped the expres-

sion of the nrf operon, we have examined the nrf operon

promoters from a number of different enteric pathogens

(Fig. 2), particularly focusing on the enterohaemorrhagic

E. coli (EHEC) and Salmonella enteric serovar Typhimu-

rium promoters. Using this approach, we have uncov-

ered differences in the regulatory strategies used at

these promoters in these organisms and identify the

global regulator, CsrA, as an additional regulator of this

complex operon in enteric bacteria.

Results

Analysis of nrf operon promoters from pathogenic E. coli

and Salmonella enterica strains

Previously, we generated the E. coli K-12 pnrf53 pro-

moter fragment, which carries the nrf promoter sequen-

ces from 2209 upstream of the transcription start site

(11) to 1131 downstream (Figs 1 and 2). This fragment

contains all the necessary DNA sequence required for

anaerobic and nitrite induction (Tyson et al., 1994). The

alignment of pnrf53 DNA sequence with the correspond-

ing nrf operon sequences from different enteric patho-

gens indicated that there are some base pair

differences in the transcription factor binding sites, the

core promoter regions and translational initiation signals

at many of the promoters, with sequence differences

being particularly extensive for the S. enterica serovar

Typhimurium promoter (Fig. 2). As these differences

could affect the expression of the nrf operon in these

bacteria, we generated similar pnrf53 promoter frag-

ments for EHEC, uropathogenic E. coli (UPEC), enter-

oaggregative E. coli (EAEC), enteropathogenic E. coli

(EPEC), Shigella flexneri and S. enterica serovar Typhi-

murium (Fig. 2 and Supporting Information Table S1)

(Browning et al., 2006). All fragments were cloned into

the low copy number lac expression vector pRW50

(Lodge et al., 1992), to generate lacZ transcriptional

fusions, and transformed into our wild-type Dlac E. coli

K-12 strain, JCB387. The expression of b-galactosidase

in JCB387 cells, carrying each promoter, was then

determined when cultures were grown in minimal

medium aerobically, anaerobically and anaerobically in

the presence of nitrite. Results in Fig. 3 show that

expression from all pnrf derivatives was induced by

anaerobiosis and further increased in the presence of

nitrite. Most pnrf53 derivatives displayed similar expres-

sion levels to the E. coli K-12 promoter, however, the

EHEC promoter, pnrf53 EHEC, was more active anae-

robically, whilst, the S. enterica serovar Typhimurium

promoter (pnrf53 STM) was less active, as previously

demonstrated (Browning et al., 2006; Browning et al.,

2010). As the pnrf53 EHEC promoter possesses a sin-

gle base pair difference in its 210 promoter element

(TATACT) (Fig. 2), which improves its resemblance to

the 210 consensus sequence (TATAAT) (Browning and

Busby, 2016) and is a considerable distance from the

Fig. 1. Organization of the E. coli K-12 pnrf53 promoter fragment.
The figure shows a schematic representation of the E. coli K-12 pnrf53 promoter fragment and the important elements involved in its
regulation. All numbering is in relation to the transcription start of pnrf (11). The FNR and NarL/NarP binding sites are represented by
inverted arrows, whilst the IHF and Fis binding sites are depicted by boxes. The central base pair of each DNA binding site is given, the
transcription start site is indicated by an arrow and the location of the nrfA ATG initiation codon is shown. Expression from pnrf is completely
dependent on FNR-dependent activation, which is repressed (2ve) by IHF and Fis binding to IHF I and Fis I, respectively, and stimulated
(1ve) by IHF binding to IHF III. NarL/NarP counteract the repressive effects of IHF, bound to IHF I, by displacing IHF from the promoter
region. The location of the weak acsP1 promoter is indicated by an arrow (Browning et al., 2002, 2005).
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Fig. 2. Alignment of the nrf promoter sequences from different enteric bacteria.
The figure shows the sequence of the E. coli K-12 pnrf53 fragment from positions 2209 to 1131, aligned with the nrf promoter regions from
EHEC, UPEC, EAEC, EPEC, S. flexneri (SFX) and S. enterica serovar Typhimurium (STM). The location of the transcription start site for
pnrf53 is indicated by lower case text. The location of FNR and NarL/NarP binding sites are represented by inverted arrows, whilst IHF and
Fis binding sites are depicted by boxes. The CsrA binding sequences and GGA motifs in the E. coli K-12 and S. enterica serovar Typhimurium
leader sequences are highlighted by grey boxes. The insertion of sequences within the upstream promoter region of S. enterica serovar
Typhimurium promoter is indicated. Differences between the pnrf53 fragment and other promoters are highlighted in black. The extended 210
consensus sequence (TGnTATAAT) is aligned with the pnrf 210 promoter elements (Browning and Busby, 2016) and the location of the
p 1 102A and p 1 104A substitutions, introduced into the pnrf53 and pnrf53 STM promoter fragments, respectively, is indicated by an arrow.
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FNR biding site, we examined whether expression was

still completely dependent on FNR, by determining the

promoter activity of constructs in the Dfnr strains,

JRG1728 and JCB387 Dfnr. Results in Table 1 show

that, whilst the majority of pnrf53 derivatives possessed

little promoter activity in JRG1728, the pnrf53 EHEC

promoter displayed considerable FNR-independent

activity in both JRG1728 and JCB387 Dfnr. In support of

this Western blots, using anti-NrfA antiserum and whole

cell lysates from aerobically grown cells, detected con-

siderably more NrfA protein in EHEC strain EDL933

than in the E. coli K-12 strains RK4353 and MG1655

(Supporting Information Fig. S1). Thus, the improvement

of the pnrf EHEC 210 element allows some NrfA

expression to occur in the absence of FNR and in the

presence of oxygen. Note that amino acid sequences of

the EHEC FNR, Fis and various RNA polymerase subu-

nits are either identical or extremely similar to those of

E. coli K-12 (Supporting Information Fig. S2).

The EHEC pnrf promoter is insensitive to nutrient

quality

The E. coli K-12 nrf promoter is repressed in rich

medium, being down-regulated by Fis binding to Fis I

(Page et al., 1990; Tyson et al., 1997; Browning et al.,

2005). To determine if the pnrf EHEC promoter was sim-

ilarly regulated, we examined its promoter activity in the

narL narP strain JCB3884 in minimal and rich media.

Note that strain JCB3884 was used in this experiment

to remove any effects that NarL or NarP activation have

on promoter activity. Results in Table 2 show that

expression from the pnrf53 and pnrf53 STM promoter

fragments was similarly repressed in rich medium

growth conditions (5.8- and 6.7-fold respectively). How-

ever, expression from the pnrf53 EHEC promoter frag-

ment was relatively insensitive to medium composition,

showing only a 2.2-fold decrease. Thus, we conclude

that improvement of the 210 element makes the EHEC

promoter less sensitive to nutrient quality.

Previously, we demonstrated that mutations that dis-

rupt Fis binding to Fis I relieved repression under nutri-

ent rich conditions (Browning et al., 2005). As this 210

element base change in the EHEC promoter lies just

outside the Fis I binding site (Fig. 2), we used gel retar-

dation assays to examine the binding of Fis to the E.

coli K-12 and EHEC pnrf97 promoter fragments, which

Fig. 3. Expression of nrf promoters from different enteric bacteria
in strain JBC387.
The figure shows the b-galactosidase activities of wild-type JCB387
cells carrying pRW50, containing pnrf53 promoter fragments from
various enteric bacteria (see Fig. 2). Cells were grown aerobically
and anaerobically in minimal salts medium and where indicated
2.5 mM sodium nitrite was added. b-galactosidase activities are
expressed as nmol of ONPG hydrolysed min21 mg21 dry cell
mass, each activity is the average of three independent
determinations and standard deviations are shown.

Table 1. Expression of nrf promoters from different enteric

bacteria in JRG1728 and JCB387 Dfnr strains.

b-Galactosidase activitya

Promoterb JCB387 JRG1728 JCB387 Dfnr

pnrf53 5119 6 46 54 6 2 36 6 1
pnrf53 EHEC 8140 6 177 412 6 15 296 6 13
pnrf53 UPEC 5200 6 216 71 6 3 ndc

pnrf53 EAEC 5568 6 142 51 6 2 nd
pnrf53 EPEC 5564 6 72 55 6 1 nd
pnrf53 SFX 5298 6 112 65 6 6 nd
pnrf53 STM 2435 6 36 69 6 1 55 6 1

a. b-galactosidase activities were measured in the JCB387 and two
Dfnr stains, JRG1728 and JCB387 Dfnr, carrying pRW50 containing
different pnrf53 fragments. Cells were grown anaerobically in mini-
mal salts medium and b-galactosidase activities are expressed as
nmol of ONPG hydrolysed min21 mg21 dry cell mass. Each activity
is the average of three independent determinations and standard
deviations are shown.
b. The first column lists the pnrf53 fragments used.
c. nd: not determined.

Table 2. Repression of pnrf promoters from different enteric

bacteria in rich medium.

b-Galactosidase activitya

Promoterb Minimal medium Rich medium Ratioc

pnrf53 3254 6 320 562 6 19 5.8
pnrf53 STM 1121 6 107 168 6 5 6.7
pnrf53 EHEC 4766 6 327 2146 6 153 2.2

a. b-galactosidase activities were measured in the narL narP strain
JCB3884, carrying pRW50 containing different pnrf53 promoter
fragments. Cells were grown anaerobically in either minimal salts
medium or rich medium (Lennox broth plus 0.4% glucose). b-
galactosidase activities are expressed as nmol of ONPG hydro-
lysed min21 mg21 dry cell mass, each activity is the average of
three independent determinations and standard deviations are
shown.
b. The first column lists the pnrf53 fragments used.
c. The ratio column indicates the fold repression for each promoter
in rich medium.
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both carry pnrf DNA sequences from 287 to 110 (Figs

4A and 5A). Results in Fig. 4A show that both pnrf97

fragments bound purified Fis similarly, with Fis I being

occupied first and lower affinity Fis sites at higher con-

centrations, as previously observed in gel retardation

and DNase I footprinting experiments (Browning et al.,

2002; 2005). Thus, we conclude that differential Fis

binding is not the reason why the EHEC nrf promoter

can bypass repression under nutrient rich growth

conditions.

As it is likely that the improvement of the EHEC pnrf

210 element is responsible for this alteration in regula-

tion, we examined the binding of purified FNR and

RNA polymerase to each pnrf97 promoter fragment.

Note that in this experiment FNR carries the DA154

substitution, which renders FNR active under aerobic

conditions (Wing et al., 2000). As expected, FNR

bound to each fragment, producing a single shifted

species (Fig. 4B). The inclusion of 25 to 100 nM RNA

polymerase resulted in super-shifted RNA polymerase/

FNR/DNA complexes for the pnrf97 EHEC fragment

(Fig. 4B; lanes, 11 to 13). However, similar complexes

were not detected at these concentrations of RNA poly-

merase for the E. coli K-12 pnrf97 fragment (Fig. 4B)

and were only observed at high concentrations of

500 nM (Fig. 4C; lane 5). Thus, as expected, RNA

polymerase binds more strongly to the EHEC pnrf pro-

moter in the presence of FNR. To investigate the effect

of Fis on these complexes, we first pre-incubated end-

labelled pnrf97 fragments with purified Fis and/or FNR

before adding RNA polymerase. Note that for the E.

coli K-12 pnrf97 fragment RNA polymerase was used

Fig. 4. Gel retardation assays using
pnrf97 promoter fragments. The figure
shows gel retardation assays of pnrf97
fragments from E. coli K-12 and EHEC,
with purified Fis, FNR DA154 and RNA
polymerase.
A. End-labelled pnrf97 fragments were
incubated with increasing concentrations
of purified Fis protein: lanes 1–5, pnrf97
EcoRI-HindIII fragment; lanes, 6–10,
pnrf97 EHEC EcoRI-HindIII fragment.
The concentration of Fis protein in each
reaction was: lanes 1 and 6, no protein;
lanes 2 and 7, 50 nM; lanes 3 and 8,
100 nM; lanes 4 and 9, 150 nM; lanes 5
and 10, 200 nM.
B. End-labelled pnrf97 fragments were
incubated with purified FNR DA154 and
increasing concentrations of purified
RNA polymerase: lanes 1–8, pnrf97
EcoRI-HindIII fragment; lanes 9–16,
pnrf97 EHEC EcoRI-HindIII fragment.
The concentration of FNR protein in
each reaction was: lanes 1, 6–8, 9 and
14–16, no protein; lanes 2–5 and 10–13,
2.7 mM. The concentration of RNA
polymerase in each reaction was: lanes
1, 2, 9 and 10, no protein; lanes 3, 6, 11
and 14, 25 nM; lanes 4, 7, 12 and 15,
50 nM; lanes 5, 8, 13 and 16, 100 nM.
C. End-labelled pnrf97 fragments were
incubated with purified Fis, FNR DA154
and RNA polymerase: lanes 1–7, pnrf97
EcoRI-HindIII fragment; lanes 8–14,
pnrf97 EHEC EcoRI-HindIII fragment.
The concentration of Fis was: lanes 1, 3,
5, 7, 8, 10, 12 and 14, no protein; lanes
2, 4, 6, 9, 11 and 13, 200 nM. The
concentration of RNA polymerase in
each reaction was: lanes 1–4 and 8–11,
no protein; lanes 5–7, 500 nM; lanes
12–14, 200 nM. The concentration of
FNR protein in each reaction was: lanes
1, 2, 7–9 and 14, no protein; lanes 3–6
and 10–13, 2.7 mM.
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at a concentration of 500 nM, whilst for pnrf97 EHEC a

concentration of 200 nM was used. Results detailed in

Fig. 4C, confirm that Fis and FNR can bind simultane-

ously to each promoter fragment (lanes, 4 and 11) and

that FNR facilitates the binding of RNA polymerase

(lanes, 5 and 12). When the E. coli K-12 pnrf97 pro-

moter fragment was pre-incubated with Fis and FNR

and then challenged with RNA polymerase, we were

able to detect super-shifted species (lane, 6). However,

the diffuse nature of these complexes suggests that

they are unstable during electrophoresis and that

Fis interferes with RNA polymerase binding. Con-

versely, for the pnrf97 EHEC fragment, stable RNA

polymerase-containing complexes were detected when

both FNR and Fis were present in the reaction mix

(lane, 13), indicating that Fis has less effect on the

ability of RNA polymerase to bind to the EHEC pro-

moter. Thus, we conclude that the EHEC pnrf promoter

can bypass this repression as its improved 210 ele-

ment allows RNA polymerase to out compete Fis when

binding at the EHEC nrf promoter.

We note that for the E. coli K-12 pnrf97 promoter frag-

ment, RNA polymerase shifted species were observed in

the absence of FNR (Fig. 4C: lane 7). The pnrf97 frag-

ment contains the weak divergent acsP1 promoter (Fig.

1), which is totally repressed by FNR binding (Browning

et al., 2002; 2005) and, therefore, the complexes

observed are due to occupation of the acsP1promoter at

the higher RNA polymerase concentrations used for this

fragment. Note that in vitro transcription experiments con-

firmed that FNR supresses transcription from acsP1,

whilst activating transcription from pnrf (Supporting

Fig. 5. Expression of pnrf97 promoter fragments from different enteric bacteria.
A. The panel shows a schematic representation of the E. coli K-12 pnrf53 and pnr97 promoter fragments. The location of FNR and NarL/NarP
binding sites are represented by inverted arrows, whilst IHF and Fis binding sites are depicted by boxes.
B. The panel shows the b-galactosidase activities of wild-type JCB387 and JCB3884 (narL narP) cells carrying pRW224, containing pnrf97
promoter fragments (sequences 287 to 110) from E. coli K-12, S. enteric serovar Typhimurium and EHEC (see Fig. 2). Cells were grown
aerobically and anaerobically in minimal salts medium and where indicated 2.5 mM sodium nitrite was added.
C. The panel shows the b-galactosidase activities of JCB3884 (narL narP) cells carrying pRW224, containing either the pnrf97 STM or the
pnrf97 STM/p14C promoter fragments (sequences 287 to 110). The p14C mutation introduces a point mutation at position 214 in pnrf97
STM to disrupt the extended 210 promoter motif. Cells were grown aerobically and anaerobically in minimal salts medium. b-galactosidase
activities are expressed as nmol of ONPG hydrolysed min21 mg21 dry cell mass, each activity is the average of three independent
determinations and standard deviations are shown.
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Information Fig. S3), thus, corroborating our assignment

of the RNA polymerase complexes observed in Fig. 4.

Sequences downstream of position 110 repress

expression from the Salmonella nrf promoter

The S. enterica serovar Typhimurium nrf promoter is the

least active of the promoters tested and previously we

demonstrated that sequences upstream of position 287

do not influence expression as the Salmonella promoter

lacks the stimulatory upstream IHF III site (Fig. 2)

(Browning et al., 2006). During the course of this study,

we cloned the smaller pnrf97 promoter fragments (287

to 110) from E. coli K-12 and EHEC into the low copy

number lac expression vector pRW224, to generate lacZ

transcriptional fusions (Fig. 5A). As a control we also

generated the S. enterica serovar Typhimurium version of

this construct, i.e., pnrf97 STM (Supporting Information

Table S1). Constructs were transformed into strains

JCB387 and JCB3884 (narL narP) and promoter activity

was determined in cells grown in minimal medium. Sur-

prisingly, results in Fig. 5B indicated that anaerobic

expression from the pnrf97 STM transcriptional fusion

was much higher than the E. coli K-12 derivative, resem-

bling that of pnrf97 EHEC. This suggests that the Salmo-

nella promoter is stronger than previously thought and

that expression from the longer pnrf53 STM fragment

might be repressed by an additional factor, which binds

downstream of position 110. Note that the introduction of

the p14C mutation into the pnrf97 STM promoter frag-

ment, which disrupts the extended 210 element of the

promoter, completely abolished promoter activity, indicat-

ing that new promoter elements had not been generated

during construction of this fragment (Fig. 5C).

Expression of the E. coli K-12 and the Salmonella nrf

operons are regulated by CsrA

CsrA is a sequence-specific RNA binding protein, which

directly represses the translation of many E. coli and

Salmonella genes and can indirectly repress the tran-

scription of others (Lawhon et al., 2003; Vakulskas

et al., 2015). CsrA binds to the consensus sequence

CAGGA(U/A/C)G within mRNAs, often found overlap-

ping the ribosome binding sites of the genes it regulates

(Liu et al., 1997; Vakulskas et al., 2015). Inspection of

the S. enterica serovar Typhimurium nrfA sequence,

around the ATG translation initiation codon, suggested

that it might contain a CsrA binding sequence (Fig. 6A).

To investigate this, point mutations, at positions 1103

and 1104, were introduced into the pnrf53 STM frag-

ment to disrupt the important GGA motif of the CsrA

binding site (Fig. 6A). DNA promoter fragments were

cloned into pRW50 to generate lacZ transcriptional

fusions and b-galactosidase activity was then examined

in JCB3884 (narL narP). Results in Fig. 6B show that

disruption of the potential CsrA binding site elevated

anaerobic expression �twofold, suggesting that CsrA

might repress expression from the pnrf53 STM frag-

ment. Note that amino acid sequence of the S. enterica

serovar Typhimurium CsrA is identical to that of E. coli

K-12 (Supporting Information Fig. S2).

To examine whether the pnrf53 STM fragment is regu-

lated by CsrA, b-galactosidase expression, from the

pnrf53 STM and the pnrf53 STMp 1 104A fragments

(positions 2246 to 1133), cloned into pRW50, was

examined in the Dlac strain CF7789 and in TRCF7789

in which csrA is disrupted (Romeo et al., 1993). As the

sequence surrounding the E. coli K-12 nrfA ribosome

binding site is similar to that of Salmonella (Fig. 2) we

also altered the GGA motif in the E. coli K-12 promoter

(i.e., the p 1 102A substitution). Note that both the

p 1 104A and p 1 102A substitutions maintain the argi-

nine codon at this position in the nrfA mRNA when com-

pared to the wild-type sequence (i.e., AGG verses

AGA). Results in Fig. 6C show that expression from

pnrf53 STM p 1 104 was elevated �twofold in CF7789,

whilst no increase was observed in TRCF7789. This

suggests that CsrA inhibits expression from the pnrf53

STM construct. Conversely, the expression from the E.

coli pnrf53 p 1 102A fragment was indistinguishable

from that of the wild-type pnrf53 fragment in the both

strains, indicating that CsrA does not regulate expres-

sion from the E. coli K-12 pnrf53 fragment. As CsrA pre-

dominantly influences translation (Vakulskas et al.,

2015), we also cloned each pnrf53 derivative into

pRW224 to generate translational fusions and b-

galactosidase expression was again determined in

CF7789 and TRCF7789 (csrA). The disruption of the

GGA motif in both the pnrf53 STM and the E. coli K-12

pnrf53 fragments resulted in an increase of anaerobic

expression in CF7789, which was absent in TRCF7789

(Fig. 6D). This indicates that CsrA represses expression

from both the E. coli and Salmonella nrf constructs,

when cloned as lacZ translational fusions, and suggests

that CsrA regulates these two nrf operons differently.

To confirm that CsrA regulates both the E. coli K-12

and Salmonella nrf operons we examined the effect that

over-expressing CsrA has on expression from the E. coli

K-12 pnrf53 and pnrf53 STM fragments. A C-terminal

6His tagged version of csrA (csrA-6his) (Dubey et al.,

2005) was, therefore, cloned into the expression vector

pQE60 NdeI to generate pQE60/csrA (Raghunathan

et al., 2011). Induction analysis confirmed that CsrA-6His

could be detected in E. coli K-12 JM109 (lacIq Dlacz)

cells carrying pQE60/csrA (Supporting Information Fig.

S4). Therefore, JM109 cells, carrying either pQE60 NdeI

586 R. E. Godfrey, D. J. Lee, S. J. W. Busby and D. F. Browning �

VC 2017 The Authors Molecular Microbiology Published by John Wiley & Sons Ltd., Molecular Microbiology, 104, 580–594



or pQE60/csrA, were transformed with pRW244 carrying

various pnrf53 and pnrf53 STM fragments, cloned as

translational fusions. Cells were grown anaerobically in

minimal salts medium, containing 0.4% glucose, and the

effect of leaky uninduced CsrA-6His expression was

determined by measuring b-galactosidase expression.

Results in Table 3 show that CsrA caused a large

decrease in expression from the pnrf53 and pnrf53 STM

wild-type fragments, when compared to cells carrying the

empty pQE60 NdeI vector. However, for pnrf53 and

pnrf53 STM fragments, carrying substitutions in the CsrA

binding site (i.e., pnrf53 p 1 102A and pnrf53 STM

p 1 104A respectively) the effect of CsrA expression was

considerably less. This confirms that CsrA represses

Fig. 6. Analysis of CsrA-dependent
regulation of nrf operon expression.
A. The panel shows the sequence of the
S. enterica serovar Typhimurium pnrf53
STM promoter fragment from positions
184 to 1133, aligned with the CsrA
binding site consensus (Liu et al., 1997;
Vakulskas et al., 2015). The location of
the nrfA ATG initiation codon is
underlined and sequence differences
between pnrf53 STM and the E. coli K-
12 fragment are highlighted in black (see
also Fig. 2).
B. The panel shows the b-galactosidase
activities of JCB3884 (narL narP) cells
carrying pRW50, containing the pnrf53
STM promoter fragments harbouring
substitutions at positions 1103 and
1104 (see panel A) cloned as lacZ
transcriptional fusions.
C. The panel shows the b-galactosidase
activities of CF7789 and TRCF7789
(crsA) cells, carrying various pnrf53 and
pnrf53 STM fragments cloned into
pRW50 as lacZ transcriptional fusions.
The p 1 102A and p 1 104A
substitutions disrupt the potential CsrA
binding sites in the pnrf53 and pnrf53
STM fragments respectively.
D. The panel shows the b-galactosidase
activities of CF7789 and TRCF7789
(crsA) cells, carrying pnrf53 and pnrf53
STM fragments cloned into pRW224 as
lacZ translational fusions. In all
experiments, cells were grown
aerobically and anaerobically in minimal
salts medium and b-galactosidase
activities are expressed as nmol of
ONPG hydrolysed min21 mg21 dry cell
mass. Each activity is the average of
three independent determinations and
standard deviations are shown for all
data points. In panels (C) and (D) the
fold increase in b-galactosidase activity,
due to the p 1 102A or p 1 104A
substitutions, is indicated in brackets.
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expression of both E. coli K-12 and Salmonella nrfA

using the CsrA binding sites identified by this study.

Sequences surrounding the transcription start site of the
Salmonella nrf promoter are responsible for its elevated
promoter activity

Results in Fig. 5 indicate that the anaerobic expression

from the Salmonella pnrf97 STM fragment is elevated in

comparison to the E. coli K-12 pnrf97 fragment. To iden-

tify which parts of the Salmonella promoter that were

responsible for this, we generated chimeric pnrf97

fragments, in which the upstream and downstream

sequences from pnrf97 STM were introduced into the E.

coli K-12 pnrf97 fragment (Fig. 7A). Fragments were

cloned into pRW224 to generate lacZ transcriptional

fusions, and b-galactosidase activities were determined

in JCB3884 (narL narP) cells, during aerobic and anaer-

obic growth in minimal medium. Results in Fig. 7B show

that the downstream differences surrounding the tran-

scription start site were predominantly responsible for

the increased promoter activity. When individual differen-

ces were introduced into the E. coli K-12 pnrf97 frag-

ment (i.e., the p3A, p 1 1A and p 1 4T substitutions)

only those at positions 11 and 14 led to small

increases in expression, in comparison to pnrf97 (Fig.

7B). Thus, we conclude that the differences around the

transcription start site are responsible for the higher pro-

moter activity observed for the Salmonella pnrf97 frag-

ment and that none of the differences alone are

responsible for the elevation observed.

Discussion

Both the E. coli and Salmonella formate-dependent Nrf

nitrite reductases can support anaerobic growth on

nitrite and detoxify NO, making them important for sur-

vival under the anoxic conditions experienced in the

intestines of warm blooded animals (Pope and Cole,

1982; Poock et al., 2002; Lundberg et al., 2004; Gilber-

thorpe and Poole, 2008; Mills et al., 2008; van Won-

deren et al., 2008). Here, we show that the regulation of

the nrf promoters from various pathogenic bacteria is

similar to that of E. coli K-12, being induced by anaero-

biosis and nitrite (Fig. 3). However, in spite of maintain-

ing this general pattern of regulation, the core

promoters of the EHEC and Salmonella promoters are

more active than that of E. coli K-12 (Fig. 5B). Our

results also demonstrate that the EHEC nrf promoter

displays considerable FNR-independent activity (Table

1), and that the operon is expressed in EHEC in the

presence of oxygen (Supporting Information Fig. S1).

The EHEC promoter only differs from its E. coli K-12

counterpart due to a single base pair improvement in

the 210 element at position 27 (Fig. 2), which is an

important base in the 210 hexamer (Shultzaberger

et al., 2007; Browning and Busby, 2016). This difference

increases the affinity of RNA polymerase for the EHEC

promoter and enables RNA polymerase to out-compete

Fis when binding, decreasing the effect of this repres-

sion (Fig. 4: Table 2). Alignment of promoter sequences

from 22 EHEC O157:H7 strains (Supporting Information

Fig. S5A) indicated that this improvement was present

in all strains examined, however, it was absent from the

closely related E. coli O55:H7 and EHEC O157:H-

strains (Supporting Information Fig. S5B) (Rump et al.,

2011; Sadiq et al., 2014). This indicates that this altera-

tion in pnrf appears to be specific to EHEC O157:H7.

We suggest that, as EHEC O157:H7 is a commensal of

cattle, and as cattle feeds often contain elevated nitrate

levels, the altered expression patterns of nrf may facili-

tate growth in the presence of nitrite and NO, derived

from metabolism in this niche (Lundberg et al., 2004;

Callaway et al., 2009; Cockburn et al., 2013).

The core promoter of the Salmonella nrf promoter

was also much stronger than that of E. coli K12, with

anaerobic expression rivalling that of the EHEC pro-

moter (Fig. 5B). Chimeric promoter constructs demon-

strated that this was primarily due to sequence

differences around 11, but that no specific difference

was absolutely responsible (Fig. 7B). At bacteria pro-

moters, the occurrence of an A as an initiating nucleo-

tide is favoured over C and this difference could partly

explain the strength of the Salmonella promoter (Jeong

and Kang, 1994; Walker and Osuna, 2002; Vveden-

skaya et al., 2015). Furthermore, during transcription ini-

tiation RNA polymerase also recognizes bases around

the transcript start, i.e., the core recognition element,

and, thus, differences in this region of the Salmonella

promoter could influence recognition of this element and

Table 3. Repression of pnrf promoter derivatives by CsrA-6His

expression.

b-Galactosidase activitya

Promoterb pQE60 NdeI pQE60/csrA Ratioc

pnrf53 516 6 32 41 6 3 12.6
pnrf53 p1102A 1314 6 90 643 6 84 2
pnrf53 STM 399 6 14 17 6 1 23.5
pnrf53 STM p1104A 2269 6 43 338 6 1 6.7

a. b-galactosidase activities were measured in strain JM109 (lacIq

Dlac) carrying pRW224 containing different pnrf53 translational
fusions and pQE60 derivatives. Cells were grown anaerobically in
minimal salts medium supplemented with 0.4% glucose to control
CsrA-6His expression. b-galactosidase activities are expressed as
nmol of ONPG hydrolysed min21 mg21 dry cell mass, each activity
is the average of three independent determinations and standard
deviations are shown.
b. The first column lists the pnrf53 fragments used.
c. The ratio column indicates the fold repression due to the leaky
expression of CsrA-6His.
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in turn affect promoter activity (Zhang et al., 2012; Bae

et al., 2015; Vvedenskaya et al., 2016). Alignment of nrf

promoter sequences from different S. enterica serovars

(Supporting Information Fig. S6) indicated that many

serovars possessed the same differences around 11 as

S. enterica serovar Typhimurium, indicating that these

improvements are largely conserved. However, two S.

enterica serovars (Dublin and Newport) possess a G at

position 14, which is the same as the E. coli K-12 pro-

moter at this position (Supporting Information Fig. S6).

Thus, we would expect in these Salmonella serovars

expression from pnrf to be lower.

Our data indicates that although the EHEC and

S. enterica serovar Typhimurium core promoters have

similar anaerobic expression levels (Fig. 5B) they achieve

it using different mechanisms, highlighting the ability of

bacteria to mix and match their promoter elements to

achieve similar transcription outputs (Miroslavova and

Busby, 2006; Hook-Barnard and Hinton, 2007). The

EHEC solution to increasing promoter strength, by alter-

ing the 210 element, decreases the dependency of the

promoter on FNR and its sensitivity to repression during

growth in rich media. For the Salmonella promoter,

changing bases around the transcription start site

increases promoter activity but maintains the overall reg-

ulation seen at the E. coli K-12 promoter (Tables 1 and

2). Thus, increasing promoter strength to similar levels

can result in very different patterns of regulation.

The RNA binding protein, CsrA, regulates the expres-

sion of many genes in E. coli K-12 and S. enterica sero-

var Typhimurium, controlling diverse traits such as

metabolism, biofilm formation, motility and virulence

(Lawhon et al., 2003; Edwards et al., 2011; Vakulskas

et al., 2015). Our results demonstrate that CsrA modu-

lates anaerobic respiration in both E. coli and Salmo-

nella by regulating expression of the formate-dependent

Fig. 7. Expression of chimeric pnrf97 promoter fragments.
A. The panel shows the sequence alignment of various wild-type and chimeric pnrf97 fragments (positions 287 to 110). The position of the
transcription start site for E. coli K-12 pnrf97 is indicated by lower case text. The location of FNR and NarL/NarP binding sites are represented
by inverted arrows, whilst IHF I and Fis I binding sites are depicted by boxes. Differences between the E. coli pnrf97 fragment and the pnrf97
STM derivatives are highlighted in black.
B. The panel shows the b-galactosidase activities of JCB3884 (narL narP) cells carrying pRW224, containing various pnrf97 promoter
fragments. Cells were grown aerobically and anaerobically in minimal salts medium. b-galactosidase activities are expressed as nmol of
ONPG hydrolysed min21 mg21 dry cell mass, each activity is the average of three independent determinations and standard deviations are
indicated.
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NrfA periplasmic nitrite reductase. Consistent with our

results, pull down experiments with 6His tagged CsrA

identified nrfA mRNA as a target for CsrA in E. coli

(Edwards et al., 2011). The positioning of the CsrA bind-

ing site suggests that CsrA likely represses translation,

perhaps by preventing ribosomal access to the nrfA

ribosome binding site in both bacterial species (Figs 2

and 6D). However, it is clear from our work with tran-

scriptional fusions that Salmonella nrfA expression is

more complicated (Fig. 6C) and that CsrA may influence

nrfA transcription elongation, perhaps by causing pre-

mature transcription termination, as has been observed

for pgaA in E. coli, or alternatively it may affect tran-

script stability (Figueroa-Bossi et al., 2014; Vakulskas

et al., 2015). As CsrA exists as a homo-dimer it is able

to associate with two sites separated by up to 63 nucle-

otides (Mercante et al., 2009). It is of note that the nrfA

untranslated leaders, in both bacteria, contain additional

GGA motifs, which could serve as auxiliary low affinity

CsrA targets (Fig. 2). This, coupled with any differences

in mRNA secondary structure, could account for the

apparent differential CsrA regulation observed between

the E. coli and Salmonella constructs.

In E. coli, CsrA availability and activity is controlled by

the small non-coding RNAs (sRNA) CsrB and CsrC

(CsrB/C), which both contain multiple CsrA binding

motifs that sequester CsrA away from its target tran-

scripts (Vakulskas et al., 2015). Production of CsrB/C

sRNA is increased in response to the accumulation of

metabolic carboxylic acids, e.g., formate and acetate

(Suzuki et al., 2002; Vakulskas et al., 2015) and CsrB/C

turnover is accelerated by the presence of glucose

(Leng et al., 2016). Thus, it has been proposed that

when a preferred carbon source is exhausted and meta-

bolic carboxylic acids build up, CsrB/C levels increase

and sequester CsrA to promote the switch from expo-

nential to stationary phase (Leng et al., 2016). As CsrA

regulates gene expression in response to nutrient qual-

ity, we propose that CsrA has been co-opted at nrf to

reinforce operon regulation in response to this signal.

For example, during anaerobic growth in rich medium,

nrf operon transcription is sharply inhibited by Fis

(Browning et al., 2005). Under these conditions CsrB/C

sRNA turnover should be increased and CsrA ‘freed’ to

repress its targets, including nrfA. However, during

growth in poor media nrf operon transcription in maximal

as Fis levels are lower, particularly in stationary phase

(Ball et al., 1992; Ali Azam et al., 1999). If this is

coupled with the accumulation of carboxylic acids, we

predict that increased CsrB/C sRNA production and

decreased turnover, would sequester CsrA from the nrf

transcript to allow its increased translation. As NrfA-

mediated nitrite reduction is also dependent on formate,

it is possible that CsrA regulation is also a way of linking

nrf operon expression to formate levels. Thus, we pro-

pose the use of CsrA and Fis together at nrf ensures

that the translational and transcriptional regulation com-

plement and reinforce one another.

It is clear that the regulation of the E. coli K-12 nrf

operon is complicated, with a total of six global regula-

tors (i.e., FNR, NarL, NarP, IHF, Fis and now CsrA)

coordinating expression in response to environmental

and metabolic conditions (Browning et al., 2002; 2005,

2006). Much of this regulation is conserved between the

different pathogenic bacteria studied here. However, it is

clear that regulation of the EHEC and S. enterica sero-

var Typhimurium nrf operons have been fine-tuned, pre-

sumably in response to the particular niches occupied

by each species in the intestines of their host organ-

isms. Although CsrA has been implicated in nrfA regula-

tion, it does not account for all the repression observed

for the Salmonella pnrf53 STM construct and at present

the role of the long untranslated leader, which is con-

served between species, is unclear. Thus, it is likely that

additional regulatory mechanisms may operate to con-

trol expression of this complex and important operon in

enteric bacteria.

Experimental procedures

Bacterial strains, growth conditions, plasmids and
primers

The bacterial strains, plasmids and promoter fragments

used in this work are listed in Supporting Information Table

S1 and oligonucleotides are listed in Supporting Information

Table S2. Standard methods for cloning and manipulating

DNA fragments were used throughout (Sambrook and Rus-

sell, 2001). By convention, locations at the nrf promoter are

labelled with the transcript start point designated as 11,

and with upstream and downstream locations prefixed ‘2’

and ‘1’ respectively. Single base substitutions in pnrf are

denoted pNX, where N is the position of the substitution rel-

ative to the transcript start and X is the substituted base in

the non-template strand of the promoter. For routine DNA

manipulations and as a source of DNA fragments for gel

retardation, fragments were cloned into plasmid pSR (Kolb

et al., 1995) and for in vitro transcriptions, its derivative,

pLSR was used (El-Robh and Busby, 2002). To measure

promoter activities, fragments were cloned into the lac

expression vectors pRW50 and pRW224 (Lodge et al.,

1992; Islam et al., 2011). Derivatives of pSR, pLSR and

pQE60 were maintained in host cells using media supple-

mented with 100 lg ml21 ampicillin, whilst derivatives of

pRW50 and pRW224 were maintained with 15 lg ml21 tet-

racycline. Cells were grown in either minimal medium (mini-

mal salts with 0.4% glycerol, 10% Lennox broth, 40 mM

fumarate) (Pope and Cole, 1982) or in Lennox broth (2%

(w/v) peptone, (Merck), 1% (w/v) yeast extract (Fisher Sci-

entific) and 170 mM NaCl) supplemented with 0.4% glu-

cose (Squire et al., 2009). Where indicated, a final
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concentration of 2.5 mM sodium nitrite was added to

cultures.

Promoter fragment and plasmid construction

The DNA sequences of the nrf promoters from pathogenic

enteric bacteria were compiled from xBASE2 (http://xbase.

warwick.ac.uk/) (Fig. 1) (Chaudhuri et al., 2008). The nrf

promoter DNA from EHEC, UPEC, EAEC, EPEC, was

amplified by PCR using the nrfA Up and nrfA Down primers

(Supporting Information Table S2) with genomic DNA as

template. The S. flexneri pnrf DNA was amplified using

nrfSFX Up and nrfA Down primers. PCR products were

restricted with EcoRI and BamHI and cloned into pRW50 to

generate lacZ transcriptional fusions.
The wild-type pnrf97 EHEC and pnrf97 STM fragments

were generated by PCR, using the primer pairs nrfA E87/

nrfO157 H10 and nrfSTM E87/nrfSTM H10, with the rele-

vant genomic DNA as template. The chimeric pnrf97 STM

up and pnrf STM down promoter fragments were also syn-

thesized by PCR, using primer pairs nrfSTM E87/nrfA H10

and nrfA E87/nrfSTM H10 with pRW224/pnrf97 STM and

pRW224/pnrf97, respectively, as template. The p3A, p 1 1A

and p 1 4T substitutions were introduced into the E. coli K-

12 pnrf97 fragment by PCR using primers nrfSTM p3A,

nrfSTM p 1 1A and nrfSTM p 1 4T with primer nrfA E87

and pRW224/pnrf97 as template. The extended 210 motif

in the pnrf97 STM promoter fragment was disrupted by

PCR amplifying the Salmonella promoter region using pri-

mers nrfSTM E87 and nrfSTM p14C with pRW224/pnrf97

STM as template. All pnrf97 promoter derivatives were

restricted with EcoRI and HindIII and cloned into pRW224

to generate lacZ transcriptional fusions.
The pnrf53 and pnrf53 STM fragments, carrying substitu-

tions in the CsrA binding site, were generated using mega-

primer PCR (Sarkar and Sommer, 1990). In the first round

of PCR primers nrfA p 1 102A, nrfSTM p 1 103, nrfSTM

p 1 104, were used in conjunction with primer D10527 and

the relevant pRW50/pnrf53 construct. Each PCR product

was then used with primer D10520 and the same template

to generate the final PCR product, which was restricted

with either EcoRI and HindIII for cloning into pRW50 to

generate lacZ transcriptional fusions or EcoRI and BamHI

for pRW224 to generate lacZ translational fusions.

To express CsrA in vivo, the DNA encoding a C-terminal

6His tagged version of csrA (csrA-6his) was excised from

plasmid pCSB12 (Dubey et al., 2005) and cloned into vec-

tor pQE60 NdeI (Raghunathan et al., 2011), using NdeI

and BamHI, to generate plasmid pQE60/csrA. Plasmid

pQE60/csrA was maintained in E. coli K-12 JM109 cells,

grown in the presence of 0.4 to 1% glucose, to limit the

leaky expression of CsrA.

Assays of nrf promoter activity

To assay the expression from pnrf derivatives cloned into

the lac expression vectors pRW50 and pRW224, different

host strains were transformed and b-galactosidase activity

was measured as described in our previous work (Jayara-

man et al., 1987). Cells were grown in either minimal salts

medium (Pope and Cole, 1982) or rich medium [Lennox

broth supplemented with 0.4% glucose (Squire et al.,

2009)]. Where indicated, a final concentration of 2.5 mM

sodium nitrite was added to cultures. For aerobic growth,

cells were shaken vigorously to an OD650 of 0.2 to 0.3,

whilst, for anaerobic growth, they were held static in growth

tubes to an OD650 of 0.4 to 0.6. b-galactosidase activities

are reported as nmol of ONPG hydrolysed in our assay

conditions min21 mg21 dry cell mass and each activity is

the average of three independent determinations.

Western blotting

To examine the expression of NrfA protein in E. coli K-12

and EHEC strains, bacteria were either grown anaerobically

and aerobically in minimal malts medium at 378C. For anaer-

obic growth conditions, 50 ml of bacterial culture was grown

without shaking to an OD600 of 0.5 to 0.6, whilst for aerobic

conditions 10 ml cultures were shaken vigorously to an

OD600 of 0.3 to 0.4. The preparation of normalized total cel-

lular protein samples, their resolution by SDS-PAGE gels

and their Western blotting was carried out as detailed in our

previous work (Browning et al., 2013). NrfA proteins were

detected using anti-NrfA antiserum raised in rabbit (kindly

provided by Jeff Cole) and blots were developed using the

ECL Western Blotting Detection System (GE Healthcare).
To examine the expression of CsrA-6His protein, JM109

cells, carrying pQE60/csrA were grown aerobically in 10 ml

of Lennox broth supplemented with glucose, where appro-

priate, until an OD600 of �0.4. Protein expression was then

induced by the addition of IPTG (Isopropyl b-D-1-thiogalac-

topyranoside) to a final concentration of 1 mM for 3 hrs.

Total cellular protein samples were prepared and Western

blotting was carried out using anti-6His (C-terminal) HRP

linked antibody (Invitrogen) (Browning et al., 2013).

Purified proteins

Escherichia coli RNA polymerase holoenzyme containing

r70 was purchased from Epicentre Technologies (Madison,

WI) and FNR DA154 and Fis proteins were purified as

described previously (Wing et al., 2000; Grainger et al.,

2008). Note that FNR carries the DA154 substitution, which

renders FNR active under aerobic conditions (Wing et al.,

2000).

Gel retardation assays

Gel retardation assays using purified FNR, Fis and RNA

polymerase were carried out as detailed by Browning et al.

(2008). Purified promoter fragments were end labelled with

[g-32P]-ATP and approximately 0.5 ng of each fragment was

incubated with varying amounts of each protein. The reac-

tion buffer contained l0 mM potassium phosphate (pH 7.5),

100 mM potassium glutamate, 1 mM EDTA, 50 lM DTT,

5% glycerol and 25 lg ml21 herring sperm DNA. The final

reaction volume was 10ll. FNR and Fis proteins were incu-

bated at 378C for 15 minutes, after which RNA polymerase

was added and samples were incubated at 378C for a fur-

ther 15 minutes. Samples were loaded directly onto a run-

ning 6% polyacrylamide gel (12 V cm21), containing 2%
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glycerol and 0.25 3 TBE and analysed using a Bio-Rad
Molecular Imager FX and Quantity One software (Bio-Rad).

In vitro transcription assays

The pnrf97 promoter fragment was cloned into plasmid
pLSR, such that the divergent pnrf and pascP1 promoters
are both cloned upstream of a lambda oop transcription ter-

minator (Supporting Information Fig. S3) (El-Robh and
Busby, 2002). Purified FNR D154A protein was then incu-
bated with pLSR/pnrf97 plasmid (8 nM final concentration)

at 378C for 20 min in a reaction mixture containing 40 mM
Tris-Cl (pH 7.9), 10 mM MgCl2, 50 mM KCl, 0.1 mM dithio-
threitol (DTT), 0.2 lg of bovine serum albumin (BSA) ll21,

0.5 mM ATP, 0.5 mM CTP, 0.5 mM GTP, 0.05 mM UTP and
5 lCi of [a-32P]UTP, with a final reaction volume of 20 ll.
Purified E. coli RNAP was then added to a final concentra-

tion of 50 nM, and the mixture was incubated at 378C for a
further 20 min, after which it was stopped by the addition of
25 ll of formamide buffer (95% [vol/vol] deionized formam-

ide, 20 mM EDTA, 0.05% [wt/vol] bromophenol blue, 0.05%
[wt/vol] xylene cyanol FF). Samples were then loaded onto
a 5.5% denaturing polyacrylamide gel, containing 1 3 TBE,

and were analysed using a Bio-Rad Molecular Imager FX
and Quantity One software (Bio-Rad).
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