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Abstract: A new series of nitrogen and sulfur heterocyclic systems were efficiently synthesized by linking
the following four rings: indole; 1,2,4-triazole; pyridazine; and quinoxaline hybrids. The strength of the
acid that catalyzes the condensation of 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione
1 with aromatic aldehydes controlled the final product. Reflux in glacial acetic acid yielded
Schiff bases 2–6, whereas concentrated HCl in ethanol resulted in a cyclization product
at C-3 of the indole ring to create indolo-triazolo-pyridazinethiones 7–16. This fascinating
cyclization approach was applicable with a wide range of aromatic aldehydes to create
the target cyclized compounds in excellent yield. Additionally, the coupling of the new
indolo-triazolo-pyridazinethiones 7–13 with 2,3-bis(bromomethyl)quinoxaline, as a linker in acetone
and K2CO3, yielded 2,3-bis((5,6-dihydro-14H-indolo[2,3-d]-6-aryl-[1,2,4-triazolo][4,3-b]pyridazin-3
ylsulfanyl)methyl)quinoxalines 19–25 in a high yield. The formation of this new class of heterocyclic
compounds in high yields warrants their use for further research. The new compounds were characterized
using nuclear magnetic resonance (NMR) and mass spectral analysis. Compound 6 was further confirmed
by the single crystal X-ray diffraction technique.

Keywords: 1,2,4-Triazolel; indole; pyridazine; quinoxalines; linker; annulated heterocycles

1. Introduction

Nitrogen-, oxygen-, and sulfur-containing heterocycles are one of the most important compounds
found in organic chemistry, as well as in the pharmaceutical industry [1–6]. Among these,
4-amino-1,2,4-triazole-3-thione-based indole scaffolds have drawn considerable attention in the
chemical community, including in material science and agrochemical applications. The substituted
triazoles have emerged in different pharmaceutical applications including antiproliferative [7],
antiviral [8], antimalarial [9], antimicrobial [10], and anticonvulsant agents [11]. Additionally,
a few studies have reported their use as inhibitors for metalloenzyme-including ureases [12],
dizinc metallo-β-lactamase [13], the tumor necrosis factor alpha (TNF-α) converting enzyme [14],
ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS-5) [15], dicopper
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dopamine-β-hydroxylase inhibitors [16], and also as human carbonic anhydrase enzyme and
acetylcholinesterase (AChE) activities [17].

Many triazole-based indoles as a core structure are reported with pharmaceutical targets.
Westwell, A.D. et al., independently introduced the synthesis of a set of compounds with a
4-amino-1,2,4-triazole-3-thione-based indole moiety via S-arylation; among these series, they discovered
that 3-nitrobenzyl derivative has higher activity in Bc1-2-expressing human cancer cell lines at the
BH3 binding pocket with (IC50 µM) equal to 0.31 ± 0.03 µM for breast (MDA-MB-231), 0.40 ± 0.07 µM
for cervical (HeLa), and 0.65 ± 0.21 µM for human leukemia (KG1a), respectively [18]. Another
analogue derived from triazole-based indole was reported also by Westwell, A.D. et al., which exhibited
anticancer activity against breast MDA-MB-231 and cervical HeLa cell lines; IC50 = 0.91 ± 0.21 µM,
and 0.25 ± 0.11 µM, respectively [19]. In the same area of research, Boraei, A.T.A. et al. explored a set
series of compounds including the S-benzylation of a triazole-based indole. Additionally, another set
of triazolo-thiadiazepine and triazolo-thiadiazine scaffolds were discovered as potential inhibitors for
epidermal growth factor receptor (EGFR) [20,21] (Figure 1).

Figure 1. Selected 1,2,4-triazole- indole scaffolds.

A novel fluorophore was derived from a triazole–indole scaffold for a fluorimetric DNA biosensor
technique, which was applied for tumor suppressor gene detection and was achieved by Darestani-Farahani,
M. et al., in 2018 [22]. Indeed, the indole–triazole Schiff base was synthesized and used as a fluorescent
probe for Al3+ ions [23]. This research area reported in the literature regarding indole–triazole hybrids has
gained attention from a large number of organic chemists, as well as medicinal chemists.

4-Amino-1,2,4-triazole-3-thione-based indole scaffolds have been used in a large number of organic
transformations [24,25], including in metal complexation and in applications for conventional Mizoroki–Heck,
and Tsuji–Trost reaction catalysis [26]. Triazole–indole hybrids are commonly reported as synthetic
intermediates with hydrazonoyl halides for the synthesis of annulation heterocycles [27]. Gomha, S.M. and
Riyadh, S.M. independently applied the microwave technique for the synthesis of a set of compounds with
triazole–indole–thiadiazole moieties starting from 4-amino-1,2,4-triazole-3-thione-based indole as a building
block, and they explored their potential antimicrobial activity [28]. We have noticed, in the specific reaction of
triazole–indole as a core structure with aldehydes, that carbon position number 2 in the indole scaffold plays
a crucial rule in chemical transformation [29,30]. Furthermore, novel triazole–indole–oxadiazole compounds
were synthesized utilizing triazole–indole hit via ultrasound irradiation, and the synthesized compounds
exhibited antimicrobial activity against E. coli and S. aureus with values of (MIC) between 2 and 8 mg/mL [31].
One more example derived from an indolo–trizolo scaffold was reported by Diana, P. et al., which showed
remarkable antibiofilm activity against S. aureus [32]. The quinoxaline scaffold showed interesting biological



Molecules 2020, 25, 450 3 of 13

activity [33]. Diana, P. et al., synthesized a new series of aza-isoindolo and isoindolo-azaquinoxaline
derivatives which have been discovered to be anticancer agents [34,35].

With these findings mentioned above, here, we reported the synthesis of new multi-nitrogen/sulfur
heterocyclic systems by linking the following four rings: Indole; 1,2,4-triazole; pyridazine;
and quinoxaline.

2. Results and Discussion

2.1. Synthesis of 2–16 and 19–25

The condensation of 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 1 with
benzaldehyde, 4-fluorobenzaldehyde, 3-bromobenzaldehyde, p-tolualdehyde, and o-vanillin in
glacial acetic acid yielded the Schiff bases 2–6 in low yield. Alternatively, we carried out
the reaction using a stronger acidic medium of concentrated HCl in ethanol under a reflux
condition. Surprisingly, this reaction condition exclusively yielded the cyclized compounds
indolo-triazolo-pyridazinethiones 7–16 in excellent yields. The approach was further extended
for the substrate scope, and the reaction was performed with ten aromatic aldehydes with
different electronic effects: benzaldehyde, 4-fluorobenzaldehyde, 3-bromobenzaldehyde, p-tolualdehyde,
2,3,4-trimethoxybenzaldehyde, 4-chlorobenzaldehyde, 4-bromobenzaldehyde, 3,4-dihydroxybenzaldehyde,
4-hydroxy-3-methoxybenzaldehyde, and 2-hydroxy-3-methoxybenzaldehyde (Scheme 1). Compounds 17
and 18 did not occur under the reaction condition.

Scheme 1. Synthesis of Schiff bases 2–6 and cyclized indolo-triazolo-pyridazinethiones 7–16.
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The coupling of indolo-triazolo-pyridazinethiones 7–13 with 2,3-bis(bromomethyl)quinoxaline in
acetone and K2CO3 yielded 2,3-bis((5,6-dihydro-14H-indolo[2,3-d]-6-aryl-[1,2,4-triazolo][4,3-b]pyridazin
-3-ylsulfanyl)methyl)quinoxalines 19–25 in excellent yields (Scheme 2).

Scheme 2. Coupling of indolo-triazolo-pyridazinethiones 7–13 with 2,3-bis(bromomethyl)quinoxaline.

2.2. Structural Assignments

The structural assignments were established based on 1H- and 13C-NMR, and the differentiation
between the two isomers 2 and 7 is discussed by comparing their spectra in Figure 2.

The Schiff base structures 2–6 were assigned from their spectra, which showed the following:
The aromatic protons appeared in the range from 7.01 to 8.03 ppm, the benzylidene CH proton appeared
as singlet around 9.73 ppm, and two D2O exchangeable signals were assigned for indole NH near
11.90 ppm, and the second for triazole NH that found around 14.30 ppm. The 13C-NMR showed
only aromatic and thiocarbonyl signals (C=S) between 105.0 and 167.0 ppm (Figure 2A,B). There was
exclusive formation of indolo-triazolo-pyridazinethiones 7–16 whereas, indolo-triazolo-thiadiazole
17 and indolo-triazolo-triazine 18 did not occur. The structures assignments were deduced from the
1H-NMR, which showed the appearance of pyridazine CH proton as a doublet around 5.92 ppm;
then, the aromatic protons and three D2O exchangeable signals around 7.01, 12.24, and 13.64 ppm
assigned for pyridazine NH, indole NH, and triazole NH protons, respectively, appeared. 13C-NMR
displayed the pyridazine CH at 56.13 ppm and the thiocarbonyl signal (C=S) around 164.73 ppm
(Figure 2C,D). In addition, the disappearance of one CH from the indole signals strongly implied the
indolo-triazolo-pyridazinethiones 7–16 structures. Structure 17 was excluded because it should contain
the indole CH and should not contain any thiocarbonyl signal. Structure 18 was also excluded because
our structures contain the indole NH. The 1H-NMR of derivatives 19–25 displayed the methylene
protons around 5.00 ppm, and the CH of the pyridazine ring was detected at 5.92 ppm. Moreover, two
exchangeable protons were detected at 7.00 ppm for NH pyridazine and 12.36 ppm for the NH indole.
13C-NMR demonstrated the methylene carbons around 35.10 ppm, and no carbons were detected near
to 160.00 ppm. The results support the idea that the alkylation of bis(bromomethyl)quinoxaline was
performed with sulfur rather than nitrogen.
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Figure 2. (A) 1H nuclear magnetic resonance (NMR) of 2, (B) 13C-NMR of 2, (C) 1H-NMR of 7, and (D) 

13C-NMR of 7. 

2.3. X-ray Diffraction Analysis of 6 

The structure of 6 was determined by single crystal X-ray diffraction (Figure 3). Compound 6 
crystallized in a triclinic system and P-1 space group with Z = 2 and two molecular formula per 
asymmetric unit (Tables 1 and 2). For simplicity, one of the two-formula units with atom numbering 
is shown in Figure 3. The lists of the bond distances and angles are collected in Table S1 and S2 
(Supplementary data). The indole moiety is typically a planar system in which the plane passes 
through the triazole-3-thione, and the aryl moieties are twisted from the plane of the indole plane by 
8.91° and 52.82°, respectively, for the molecular unit shown in Figure 4. The other molecular unit with 
higher atom numbering showed similar twists of 6.60° and 52.98°, respectively [36–38]. 

Figure 2. (A) 1H nuclear magnetic resonance (NMR) of 2, (B) 13C-NMR of 2, (C) 1H-NMR of 7, and (D)
13C-NMR of 7.

2.3. X-ray Diffraction Analysis of 6

The structure of 6 was determined by single crystal X-ray diffraction (Figure 3). Compound
6 crystallized in a triclinic system and P-1 space group with Z = 2 and two molecular formula per
asymmetric unit (Tables 1 and 2). For simplicity, one of the two-formula units with atom numbering
is shown in Figure 3. The lists of the bond distances and angles are collected in Tables S1 and S2
(Supplementary data). The indole moiety is typically a planar system in which the plane passes
through the triazole-3-thione, and the aryl moieties are twisted from the plane of the indole plane by
8.91◦ and 52.82◦, respectively, for the molecular unit shown in Figure 4. The other molecular unit with
higher atom numbering showed similar twists of 6.60◦ and 52.98◦, respectively [36–38].

Figure 3. Structure and atom numbering of 6.
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Table 1. Crystal data for 6.

Chemical formula C38H26N10O4S2
Formula weight 726.79 g/mol

Temperature 104(2) K
Wavelength 1.54178 Å
Crystal size 0.030 × 0.070 × 0.130 mm

Crystal habit Yellow plate
Crystal system Triclinic

Space group P -1
Unit cell dimensions a = 10.1105(6) Å

b = 13.1764(6) Å
c = 14.2858(6) Å

Volume 1705.44(15) Å3

Z 2
Density (calculated) 1.415 g/cm3

Absorption coefficient 1.893 mm−1

F(000) 752

Table 2. Data collection and structure refinement for 6. (RMS, root mean square)

Theta range for data collection 3.38 to 68.23◦

Index ranges −12 ≤ h ≤ 12, −15 ≤ k ≤ 15, −17 ≤ l ≤ 17
Reflections collected 54525

Independent reflections 6232 [R(int) = 0.1173]
Coverage of independent reflections 99.9%

Absorption correction Multi-scan
Max. and min. transmission 0.9470 and 0.7960
Structure solution technique direct methods
Structure solution program SHELXT 2014/5 (Sheldrick, 2014)

Refinement method Full-matrix least-squares on F2

Refinement program SHELXL-2017/1 (Sheldrick, 2017)
Function minimized Σ w(Fo

2
− Fc

2)2

Data/restraints/parameters 6232/0/471
Goodness-of-fit on F2 1.085

Final R indices 4104 data;
I > 2σ(I)
all data

Weighting scheme w = 1/[σ2(Fo
2) + (0.1000P)2]

where P = (Fo
2 + 2Fc

2)/3
Largest diff. peak and hole 1.57 and −0.52 eÅ−3

RMS deviation from mean 0.110 eÅ−3

Figure 4. The molecular packing of the synthesized compound 6. Intra and intermolecular hydrogen
bonds are indicated as dashed lines.
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The structure showed two intramolecular hydrogen bonds of the type O-H . . . N between the
hydroxyl group as a hydrogen bond donor, the adjacent Schiff base nitrogen atom as a hydrogen
bond acceptor, and donor-acceptor distances in the range of 2.659(6)–2.664(6) Å (Table 3). In addition,
each of the two units in the crystal are connected by weak C11-H11 . . . S2 hydrogen bonds with a
donor-acceptor distance of 3.391(5) Å, leading to the hydrogen-bonded dimeric units shown in Figure 4.

Table 3. Hydrogen bond parameters for 6.

D-H . . . A D-H H . . . A D . . . A D-H . . . A

O1-H1 . . . N1 0.84 1.94 2.659(6) 143
O3-H3A . . . N6 0.84 1.95 2.664(6) 143
C11-H11 . . . S2 0.95 2.51 3.391(5) 154

3. Materials and Methods

Melting points are determined using a melting-point apparatus (SMP10) in open capillaries and
are uncorrected. The progress of the reactions was monitored by thin layer chromatography (Merck).
Detections were achieved by UV light illumination. For flash chromatography, commercial silica was
used. Nuclear magnetic resonance (1H-NMR, 13C-NMR, and 2D NMR) spectra were determined in
DMSO-d6 and were recorded on Bruker AC 300/500 spectrometers using TMS as an internal standard.
Chemical shifts are termed in δ (ppm) and coupling constants are described in Hz. The assignment
of exchangeable OH and NH was confirmed by D2O. CHNS-microanalysis was done using a Flash
EA-1112 instrument. The HREI mass spectra were detected using a Finnigan MAT 95XP. The FAB-MS
was done using Jeol JMS HX110. The IR were detected using a Bruker Alpha ATR-FTIR.

3.1. Procedure for 2–6

The appropriate aldehyde (1.1 mmol) and 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-
3-thione 1 (1.0 mmol) were refluxed in glacial acetic acid (5.0 mL) for 3 h, then cooled, crystals either
appear during cooling then filtered and recrystallized from ethanol or the mixture was poured into
cold water; the formed ppt was filtered, dried, and purified by silica-column chromatography using
EA/H (1: 1) as an eluent.

4-(Benzylideneamino)-5-(1H-indol-2-yl)-2H-1,2,4-triazole-3(4H)-thione 2. Yield 65%; m.p. 221 to 222 ◦C, 1H-NMR
(DMSO-d6, 500 MHz) δ 7.03 (dd, 1 H, J 8.0, J 7.5 Hz), 7.08 (d, 1 H, J 1.0 Hz), 7.20 (dd, 1 H, J 7.5, J 8.2 Hz),
7.45 (d, 1 H, J 8.2 Hz), 7.61 to 7.70 (m, 4 H), 8.02 (d, 2 H, J 7.3 Hz), 9.73 (s, 1 H, CH=N), 11.89 (br. s, 1 H,
NHIndole), 14.28 (br. s, H, NHTriazole); 13C-NMR (DMSO-d6, 125 MHz) δ 105.30, 111.88, 119.87, 121.25,
122.34, 123.69, 127.26, 128.87, 129.30, 131.90, 132.95, 136.93, 143.41, 162.09, 167.12; IR (cm−1): 1601, 2923,
3223, 3423; elemental analysis calculation for C17H13N5S: C, 63.93; H, 4.10; N, 21.93; S, 10.04 found: C,
63.63; H, 3.95; N, 21.99; S, 10.15.

(E)-4-(4-Flourobenzylideneamino)-5-(1H-indol-2-yl)-2H-1,2,4-triazole-3(4H)-thione 3. Yield: 71%; m.p. 227
to 228 ◦C, 1H-NMR (DMSO-d6, 3400 MHz) δ 7.03 (ddd, 1 H, J 8.0, J 7.5, J 0.9 Hz), 7.09 (d, 1 H, J 1.03 Hz),
7.22 (ddd, 1H, J 7.5, J 8.2, J 1.1 Hz), 7.46 to 7.50 (3, 3 H), 7.63 (d, 1 H, J 8.0 Hz), 8.11 to 8.15 (m, 2 H),
9.74 (s, 1 H, CH=N), 11.90 (br. s, 1 H, NHIndole), 14.30 (br. s, H, NHTriazole); 13C-NMR (DMSO-d6, 100
MHz) δ 105.36, 111.93, 116.49, 116.71, 119.93, 121.29, 122.33, 123.76, 127.29, 128.58, 131.50, 131.59, 136.97,
143.43, 162.09, 163.66, 166.15; IR (cm−1): 1603, 2927, 3099, 3467; elemental analysis calculation for
C17H12FN5S: C, 60.52; H, 3.59; F, 5.63; N, 20.76; S, 9.50 found: C, 60.26; H, 3.66; F, 5.71; N, 21.01; S, 9.55.

(E)-4-((3-Bromobenzylidene)amino)-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 4. Yield: 49%;
m.p. 236 to 237 ◦C, 1H-NMR (DMSO-d6, 400 MHz) δ 7.04 to 7.08 (m, 2 H), 7.22 (dd, 1H, J 7.5, J 8.2 Hz),
7.47 (d, 1 H, J 8.2 Hz), 7.58-7.67 (m, 2 H), 7.89 (d, 1 H, J 8.0 Hz), 8.06 (d, 1 H, J 7.8 Hz), 8.19 (s, 1 H), 9.80
(s, 1 H, CH=N), 11.91 (br. s, 1 H, NHIndol), 14.34 (br. s, H, NHTriazol); 13C-NMR (DMSO-d6, 100 MHz) δ
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105.93, 112.43, 120.45, 121.81, 122.71, 122.96, 124.29, 127.76, 128.18, 131.80, 132.03, 134.75, 136.01, 137.48,
143.98, 162.60, 166.02; IR (cm−1): 1588, 2928, 3087, 3442; elemental analysis calculation for C17H12BrN5S:
C, 51.27; H, 3.04; Br, 20.06; N, 17.58; S, 8.05. Found: C, 51.08; H, 3.22; Br, 20.13; N, 17.68; S, 8.11.

(E)-5-(1H-Indol-2-yl)-4-((4-methylbenzylidene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5. Yield: 45%;
m.p. 225 to 226 ◦C, 1H-NMR (DMSO-d6, 300 MHz) δ 2.42 (s, 3 H, CH3), 6.99 to 7.05 (m, 2 H), 7.19 (dd,
1H, J 7.5, J 8.2 Hz), 7.42 to 7.45 (m, 3 H), 7.61 (d, 1 H, J 7.9 Hz), 7.91 (d, 2 H, J 7.9 Hz), 9.62 (s, 1 H,
CH=N), 11.88 (br. s, 1 H, NHIndole), 14.25 (br. s, H, NHTriazole); 13C-NMR (DMSO-d6, 100 MHz) δ 21.8,
105.8, 112.4, 120.4, 121.7, 123.0, 124.2, 127.8, 129.4, 129.8, 130.4, 137.5, 143.9, 167.6; IR (cm−1): 1602, 2924,
3225, 3420 elemental analysis calculation for C18H15N5S: C, 64.84; H, 4.53; N, 21.01; S, 9.62. Found: C,
64.96; H, 4.67; N, 20.95; S, 9.39.

(E)-4-((2-Hydroxy-3-methoxybenzylidene)amino)-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 6.
Yield: 61%; m.p. 230 ot 231 ◦C, 1H-NMR (DMSO-d6, 500 MHz) δ 3.87 (s, 3 H, CH3), 7.03 to 7.07 (m, 3
H), 7.17 to 7.23 (m, 2 H), 7.45 (d, 1 H, J 8.4 Hz), 7.59 to 7.63 (m, 2 H), 9.88 (s, 1 H), 9.99 (s, 1 H, CH=N),
11.87 (br. s, 1 H, NHIndole), 14.23 (br. s, H, NHTriazole); 13C-NMR (DMSO-d6, 75 MHz) δ 56.14 (CH3),
105.23, 111.934, 115.78, 1168.52, 118.60, 119.69, 119.91, 121.27, 122.54, 123.69, 127.30, 136.93, 143.49,
148.37, 148.47, 162.07, 163.24; IR (cm−1): 1608, 2915, 3227, 3418; elemental analysis calculation for
C18H15N5O2S: C, 59.17; H, 4.14; N, 8.76; S, 8.77 found: C, 59.43; H, 4.22; N, 18.97; S, 8.75.

3.2. General Procedure for the Synthesis of Indolo-Triazolo-Pyridazinethiones 7–16

To a mixture of indolyltriazolethione 1 (1.0 mmol) in ethanol (5.0 mL), the appropriate aldehyde
(1.1 mmol) was added followed by the addition of 5 drops of concentrated HCl, and the mixture was
refluxed for 1 to 2 h until a precipitate was formed. The solid product was cooled, filtered, dried, and
recrystallized from ethanol.

5,6-Dihydro-14H-indolo[2,3-d]-6-phenyl-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 7. Yield: 89%; m.p.
>300 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 5.92 (d, 1 H, J 5.7 Hz, H-6Pyridazine), 7.01 (d, 1 H, J 5.7 Hz,
HNPyridazine, D2O exchangeable), 7.07 (dd, 1 H, J ≈ 7.5 Hz), 7.22 to 7.29 (m, 4 H), 7.41-7.48 (m, 4 H), 12.24
(br. s, 1 H, NHIndole, D2O exchangeable), 13.64 (br. s, 1 H, NHTriazole, D2O exchangeable); 13C-NMR
(DMSO-d6, 125 MHz) δ 55.51 (C-6Pyridazine), 112.43, 116.79, 119.27, 119.74, 120.40, 124.08, 124.17, 127.065,
127.49, 128.25, 137.80, 139.91, 141.83, 164.21; IR (cm−1): 1628, 2897, 2985, 3067, 3162, 3222; HRMS (EI)
calculated for C17H13N5S (M+): 319.0892. Found: 319.0902.

5,6-Dihydro-6-(4-flourophenyl)-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 8. Yield: 80%;
m.p. >300 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.93 (d, 1 H, J 5.4 Hz, H-6Pyridazine), 7.04 (d, 1 H, J
5.4 Hz, HNPyridazine), 7.07 to 7.15 (m, 3 H), 7.26 (dd, 1 H, J 7.5, J 8.1 Hz), 7.40 to 7.48 (m, 4 H), 12.27 (br. s,
1H, NHIndole), 13.66 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6, 75 MHz) δ 54.81 (C-6Pyridazin), 112.51,
114.93, 115.21, 116.61, 119.34, 119.72, 120.54, 124.14, 124.19, 129.08, 129.19, 136.12, 137.83, 141.83, 163.14
(CPh), 164.32; IR (cm−1): 1604, 1632, 2907, 2960, 3068, 3265; HRMS (EI) calculated for C17H12N5SF (M+):
337.0797. Found: 337.0781.

6-(3-Bromophenyl)-5,6-dihydro-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 9. Yield: 73%;
m.p. >300 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.99 (d, 1 H, J 5.1 Hz, H-6Pyridazine), 7.11 to 7.35 (m,
2 H), 7.43 (d, 1 H, J 8.1 Hz), 7.48 (d, 1 H, J 8.1 Hz), 7.59 (d, 1 H, J 7.8 Hz), 7.69 (s, 1 H,), 12.30 (br. s,
1H, NHIndole), 13.68 (br. s, 1 H, NHTriazole) 13C-NMR (DMSO-d6, 75 MHz) δ 55.10 (C-6Pyridazin), 113.05,
116.67, 119.80, 120.18, 121.17, 122.18, 124.65, 124.77, 126.48, 129.08, 130.19, 130.83, 130.98, 138.27, 142.27,
143.34, 164.93; IR (cm−1): 1627, 2906, 3075, 3202, 3263; HRMS (EI) calculated for C17H12N5SBr (M+):
396.9997. Found: 397.0000.
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5,6-Dihydro-14H-indolo[2,3-d]-6-p-tolyl-5,6-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 10. Yield: 91%;
m.p. >300 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 2.23 (s, 3 H, CH3), 5.84 (d, 1 H, J 5.8 Hz, H-6Pyridazine),
6.93 (d, 1 H, J 5.8 Hz, HNPyridazine), 7.04–7.28 (m, 6 H), 7.39 (d, 1 H, J 8.0 Hz), 7.46 (d, 1 H, J 8.2 Hz),
12.22 (br. s, 1H, NHIndole), 13.62 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6, 75 MHz) δ 20.62 (CH3),
55.44 (C-6Pyridazin), 112.45, 116.93, 119.34, 119.77, 120.39, 124.09, 124.18, 127.15, 128.84, 136.76, 136.85,
137.83, 141.89, 164.20; IR (cm−1): 1622, 3192, 3322; HRMS (EI) calculated for C18H15N5S (M+): 333.1048.
Found: 333.1072.

5,6-Dihydro-14H-indolo[2,3-d]-6-(2,3,4-trimethoxyphenyl)-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 11.
Yield: 93%; m.p. 266 to 267 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 3.72, 3.79, 3.96 (3s, 9 H, 3 OCH3),
5.99 (d, 1 H, J 7.1 Hz, H-6Pyridazine), 6.40 (d, 1 H, J 8.8 Hz), 6.63 (d, 1 H, J 8.8 Hz), 6.75 (d, 1 H, J 7.1 Hz,
HNPyridazin), 6.97 (dd, 1 H, J 8.0, J 7.4 Hz), 7.05 (d, 1 H, J 8.0 Hz), 7.20 (dd, 1 H, J 7.4, J 8.3 Hz), 7.46 (d, 1
H, J 8.3 Hz), 12.26 (br. s, 1H, NHIndole), 13.63 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6, 100 MHz) δ
51.15, 55.70, 60.36, 61.57 (C-6Pyridazin, 3 OCH3), 107.41, 112.44, 115.44, 119.51, 120.18, 120.27, 122.96,
123.54, 124.06, 124.67, 137.94, 141.77, 141.89, 151.63, 153.42, 163.64; IR (cm−1): 1623, 3001, 3175; HRMS
(EI) calculated for C20H19N5O3S (M+): 409.1209. Found: 409.1213.

6-(4-Chlorophenyl)-5,6-dihydro-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 12. Yield:
68%; m.p. >300 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.96 (d, 1 H, J 5.4 Hz, H-6Pyridazine), 7.08 to 7.14
(m, 2 H), 7.27 (dd, 1 H, J 7.5, J 8.1 Hz), 7.34 (d, 2 H, J 8.4 H), 7.41 (d, 2 H, J 8.4 H), 7.48 (d, 1 H, J 8.1 Hz),
7.53 (d, 1 H, J 7.8 Hz), 12.28 (br. s, 1H, NHIndole), 13.67 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6,
75 MHz) δ 54.69 (C-6Pyridazine), 112.53, 116.32, 119.36, 119.72, 120.60, 124.16, 124.23, 128.28, 128.94,
132.17, 137.82, 139.07, 141.80, 164.36; IR (cm−1): 1635, 2915, 3075, 3160, 3268; HRMS (EI) calculated for
C17H12N5SCl (M+): 353.0502. Found: 353.0500.

6-(4-Bromophenyl)-5,6-dihydro-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 13. Yield
71%; m.p. >300 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.95 (d, 1 H, J 5.1 Hz, H-6Pyridazine), 7.10 to 7.55
(m, 9 H), 12.29 (br. s, 1H, NHIndole), 13.68 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6, 100 MHz) δ
54.75 (C-6Pyridazine), 112.55, 116.27, 119.39, 119.74, 120.63, 124.19, 124.26, 129.33, 131.22, 137.85, 139.54,
141.82, 164.38; IR (cm−1): 1629, 2907, 3071, 3202, 3268; HRMS (EI) calculated for C17H12N5SBr (M+):
396.9997. Found: 396.9964.

5,6-Dihydro-6-(3,4-dihydroxyphenyl)-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione 14.
Yield 74%; m.p. >300 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.66 (d, 1 H, J 6.3 Hz, H-6Pyridazine),
6.61 to 6.74 (m, 4 H), 7.03 (dd, 1 H, J 8.1 J 6.9 Hz), 7.20-7.25 (m, 2 H), 7.45 (d, 1 H, J 8.1 Hz), 8.78 (s, 1 H,
OH), 8.87 (s, 1 H, OH), 12.18 (br. s, 1 H, NHIndole), 13.60 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6,
100 MHz) δ 55.89 (C-6Pyridazine), 112.38, 115.16, 115.23, 117.08, 118.60, 119.40, 119.90, 120.23, 124.01,
124.16, 130.42, 137.87, 141.86, 144.97, 145.01, 163.90; IR (cm−1): 1634, 2908, 3071, 3313; HRMS (EI)
calculated for C17H13O2N5S (M+): 351.0790. Found: 351.0765.

5,6-Dihydro-6-(4-hydroxy-3-methoxyphenyl)-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione
15. Yield 87%; m.p. 300 to 301 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 3.70 (s, 3 H, OCH3), 5.75 (d, 1 H, J
6.0 Hz, H-6Pyridazine), 6.57 to 6.64 (m, 2 H), 6.86 (d, 1 H, J 6.0 Hz), 7.07 (dd, 1 H, J 7.8, J 7.2 Hz), 7.21 to
7.28 (m, 2 H), 7.38 (d, 1 H, J 7.8 Hz), 7.45 (d, 1 H, J 8.1 Hz), 8.91 (s, 1 H, OH), 12.19 (br. s, 1H, NHIndole),
13.62 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6, 75 MHz) δ 55.53, 55.64 (C-6Pyridazine, OCH3), 111.49,
112.43, 115.15, 117.49, 119.25, 119.77, 119.82, 120.36, 124.04, 124.32, 130.40, 137.77, 141.98, 145.89, 147.37,
164.25; IR (cm−1): 1633, 2917, 3074, 3167, 3279, 3401; HRMS (EI) calculated for C18H15N5O2S (M+):
365.0946. Found: 365.0980.

5,6-Dihydro-6-(2-hydroxy-3-methoxyphenyl)-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazine-3(2H)thione
16. Yield 89%; m.p. 200 to 201 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 3.82 (s, 3 H, OCH3), 6.15 (d, 1 H, J
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6.5 Hz, H-6Pyridazine), 6.27 (d, 1 H, J 7.6 Hz), 6.60 (dd, 1 H, J 7.9, J 8.0 Hz), 6.87 to 6.91 (m, 2 H), 6.96
(dd, 1 H, J 8.0, J 7.3 Hz), 7.10 (d, 1 H, J 8.0 Hz), 7.21 (dd, 1 H, J 7.3, J 8.3 Hz), 7.45 (d, 1 H, J 8.3 Hz),
9.27 (s, 1 H, OH), 12.24 (br. s, 1H, NHIndole), 13.68 (br. s, 1 H, NHTriazole); 13C-NMR (DMSO-d6, 125
MHz) δ 51.15 (C-6Pyridazin), 55.84 (OCH3), 111.51, 112.32, 115.64, 118.75, 119.54, 119.75, 119.87, 120.09,
123.71, 124.01, 125.72, 137.91, 141.15, 143.94, 147.54, 162.67; IR (cm−1): 1628, 2920, 3074, 3167, 3280, 3406;
HRMS (FAB +ve) calculated for C18H16N5O2S (M+): 366.1025. Found: 366.091030.

3.3. General Procedure for the Alkylation with Di(bromomethyl)quinoxaline 19–25

The appropriate indolo-triazolo-pyridazinethiones (2.0 mmol) and K2CO3 (2.2 mmol) were stirred
in acetone (10 mL) for 1 h; then, di(bromomethyl)quinoxaline (1.1 mmol) was added and stirring was
continued overnight. The solvent was removed under vacuum, water was added, and the solid was
obtained by filtration, dried, and recrystallized from dimethyl formamide (DMF).

2,3-Bis((5,6-Dihydro-14H-indolo[2,3-d]-6-phenyl-[1,2,4-triazolo][4,3-b]pyridazin-3-ylsulfanyl)methyl)quinoxaline 19.
Yield: 83%; m.p. 291 to 292 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.04 (s, 4 H, 2 SCH2), 5.91 (d, 2 H, J
6.3 Hz, 2 H-6Pyridazine), 7.40 (dd, 2 H, J ≈ 7.5 Hz), 7.20 to 7.36 (m, 16 H), 7.47 (d, 2 H, J 8.1 Hz), 7.80 to
7.83 (m, 2 H), 8.00-8.03 (m, 2 H), 12.34 (br. s, 2 H, 2 NHIndole); 13C-NMR (DMSO-d6, 75 MHz) δ 35.86 (2
SCH2), 56.54 (2 C-6Pyridazine), 112.85, 114.53, 119.94, 120.71, 121.55, 123.92, 124.96, 127.73, 128.13, 128.71,
128.83, 130.74, 137.91, 140.29, 140.53, 146.53, 149.00, 151.10; IR (cm−1): 1611, 2926, 3143; elemental
analysis calculated for C44H32N12S2: C, 66.65; H, 4.07; N, 21.20; S, 8.09. Found: C, 66.93; H, 4.15; N,
21.10; S, 8.15.

2,3-Bis((5,6-Dihydro-6-(4-flourophenyl)-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazin-3-ylsulfanyl)methyl)quinoxaline
20. Yield: 87%; m.p. 294decomp. ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.045 (s, 4 H, 2 SCH2), 5.92 (d, 2
H, J 6.0 Hz, 2 H-6Pyridazine), 7.03 to 7.11 (m, 6 H), 7.22 (dd, 2 H, J 7.2, J 8.1 Hz), 7.29 to 7.38 (m, 8 H), 7.47
(d, 2 H, J 8.1 Hz), 7.80 to 7.83 (m, 2 H), 7.98 to 8.02 (m, 2 H), 12.36 (br. s, 2 H, 2 NHIndole); 13C-NMR
(DMSO-d6, 75 MHz) δ 35.84 (2 SCH2), 55.92 (2 C-6Pyridazine), 112.89, 114.28, 119.87, 120.80, 121.60,
123.99, 124.88, 128.71, 129.75, 129.84, 130.74, 136.51, 137.92, 140.51, 146.47, 149.03, 151.10; IR (cm−1):
1608, 3060, 3147; HRMS (FAB +ve) calculated for C44H31N12S2F2 (M+): 829.2204. Found: 829.2220.

2,3-Bis((6-(3-Bromophenyl)-5,6-dihydro-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazin-3-ylsulfanyl)methyl)quinoxaline
21. Yield: 79%; m.p. 298decomp.

◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.05 (s, 4 H, 2 SCH2), 5.99 (d, 2 H,
J 5.7 Hz, 2 H-6Pyridazine), 7.09 (dd, 2 H, J 7.8, J 7.5 Hz), 7.18 to 7.52 (m, 16 H), 7.80 to 7.83 (m, 2 H), 7.98
to 8.02 (m, 2 H), 12.39 (br. s, 2 H, 2 NHIndole); 13C-NMR (DMSO-d6, 75 MHz) δ 35.36 (2 SCH2), 55.22 (2
C-6Pyridazine), 112.44, 113.27, 119.34, 120.45, 121.06, 121.65, 123.60, 124.38, 128.23, 129.89, 130.24, 130.48,
130.60, 137.37, 140.00, 142.74, 145.87, 148.62, 150.53; IR (cm−1): 1609, 2924, 3058; HRMS (FAB +ve)
calculated for C44H31N12S2Br2 (M+): 949.0603. Found: 949.0615.

2,3-Bis((5,6-Dihydro-14H-indolo[2,3-d]-6-p-tolyl-[1,2,4-triazolo][4,3-b]pyridazin-3-ylsulfanyl)methyl)quinoxaline 22.
Yield: 78%; m.p. 284 to 285 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 2.18 (s, 6 H, 2 CH3), 5.02 (s, 4 H,
2 SCH2), 5.83 (d, 2 H, J 6.6 Hz, 2 H-6Pyridazine), 7.00 to 7.32 (m, 16 H), 7.46 (d, 2 H, J 8.4 Hz), 7.80 to
7.83 (m, 2 H), 7.99-8.01 (m, 2 H), 12.31 (br. s, 2 H, 2 NHIndole); 13C-NMR (DMSO-d6, 75 MHz) 21.08 (2
CH3), 35.79 (2 SCH2), 56.52 (2 C-6Pyridazine), 112.82, 114.67, 119.93, 120.65, 121.58, 123.88, 124.93, 127.75,
128.72, 129.36, 130.72, 137.20, 137.35, 137.91, 140.53, 146.56, 148.97, 151.14; IR (cm−1): 1610, 2917; HRMS
(FAB +ve) calculated for C46H37N12S2 (M+): 821.2767. Found: 821.2767.

2,3-Bis((5,6-Dihydro-14H-indolo[2,3-d]-6-(2,3,4-trimethoxyphenyl)-[1,2,4-triazolo][4,3-b]pyridazin-3-ylsulfanyl)
methyl)quinoxaline 23. Yield: 90%; m.p. 280 to 283 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ 3.71, 3.78, 3.92
(3s, 18 H, 6 OCH3), 4.98 (s, 4 H, 2 SCH2), 6.02 (d, 2 H, J 8.0 Hz, 2 H-6Pyridazine), 6.48 (d, 2 H, J 8.4 Hz),
6.64 (d, 2 H, J 8.4 Hz), 6.97 (br, 4 H), 7.11 (d, 2 H, J 8.4 Hz), 7.18 (br, 2 H), 7.45 (d, 2 H, J 8.0 Hz), 7.78 (br, 2
H), 7.93 (br, 2 H), 12.34 (br. s, 2 H, 2 NHIndole); 13C-NMR (DMSO-d6, 100 MHz) δ 35.15 (2 SCH2), 51.60,



Molecules 2020, 25, 450 11 of 13

55.71, 60.37, 61.51 (2 C-6Pyridazin, 6 OCH3), 107.61, 112.33, 113.40, 119.21, 119.98, 121.89, 123.07, 123.34,
123.81, 124.41, 128.17, 130.23, 137.57, 140.02, 141.87, 146.22, 148.23, 150.68, 151.58, 153.39; IR (cm−1):
1605, 2931, 3199; HRMS (FAB +ve) calculated for C50H45N12O6S2 (M+): 973.3026. Found: 973.3053.

2,3-Bis((6-(4-Chlorophenyl)-5,6-dihydro-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazin-3-ylsulfanyl)
methyl)quinoxaline 24. Yield: 77%; m.p. 294decomp.

◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.05 (s, 4 H, 2
SCH2), 5.95 (d, 2 H, J 6.0 Hz, 2 H-6Pyridazine), 7.07 (dd, 2 H, J 7.5 Hz), 7.20 to 7.48 (m, 16 H), 7.80 to 7.84
(m, 2 H), 7.98 to 8.01 (m, 2 H), 12.37 (br. s, 2 H, 2 NHIndol); 13C-NMR (DMSO-d6, 75 MHz) 35.81 (2
SCH2), 55.76 (2 C-6Pyridazine), 112.90, 113.98, 119.86, 120.85, 121.61, 124.90, 128.71, 128.84, 129.57, 130.75,
132.76, 137.91, 139.44, 140.50, 146.41, 149.06, 151.10; IR (cm−1): 1600, 2927, 3205; HRMS (FAB +ve)
calculated for C44H31N12S2Cl2 (M+): 861.1613. Found: 861.1607.

2,3-Bis((6-(4-Bromophenyl)-5,6-dihydro-14H-indolo[2,3-d]-[1,2,4-triazolo][4,3-b]pyridazin-3-ylsulfanyl)methyl)
quinoxaline 25. Yield: 81%; m.p. 284 to 285 ◦C; 1H-NMR (DMSO-d6, 300 MHz) δ 5.05 (s, 4 H, 2 SCH2),
5.94 (d, 2 H, J 5.7 Hz, 2 H-6Pyridazine), 7.08 (dd, 2 H, J7.5 Hz), 7.21 to 7.49 (m, 16 H), 7.80 to 7.84 (m, 2
H), 7.98 to 8.01 (m, 2 H), 12.37 (br. s, 2 H, 2 NHIndole); 13C-NMR (DMSO-d6, 75 MHz) 35.82 (2 SCH2),
55.80 (2 C-6Pyridazin), 112.91, 113.92, 119.86, 120.86, 121.35, 124.04, 124.91, 128.71, 129.93, 130.74, 131.77,
137.92, 139.88, 140.51, 146.41, 149.08, 151.09; IR (cm−1): 1602, 2925, 3198; HRMS (FAB +ve) calculated
for C44H31N12S2Br2 (M+): 949.0603. Found: 949.0669.

4. Conclusions

A fascinating cyclization reaction approach was achieved when 4-amino-5-(1H-indol-2-yl)-2,4-
dihydro-3H-1,2,4-triazole-3-thione 1 was reacted with ten aromatic aldehydes in ethanol and
concentrated HCl to obtain indolo-triazolo-pyridazinethiones 7–16 in an excellent yield. Moreover, the
alkylation of indolo-triazolo-pyridazinethiones 7–13 with 2,3-bis(bromomethyl)quinoxaline as a linker in
acetone and K2CO3 afforded 2,3-bis((5,6-dihydro-14H-indolo[2,3-d]-6-aryl-[1,2,4-triazolo][4,3-b]pyridazin-3
ylsulfanyl)methyl)quinoxalines 19–25 in a high yield. Studies to establish their applications are in progress.

Supplementary Materials: NMR spectra (Figures S1–S44); and IR analyses (Figures S45–S60) associated with this
article can be found in the online version.
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