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Abstract

The birth certificate for endocrinology was Bayliss’ and Starling’s demonstration in 1902 
that regulation of bodily functions is not only neuronal but also due to blood-borne 
messengers. Starling named these messengers hormones. Since then transport via blood 
has defined hormones. This definition, however, may be too narrow. Thus, today we 
know that several peptide hormones are not only produced and released to blood from 
endocrine cells but also released from neurons, myocytes, immune cells, endothelial 
cells, spermatogenic cells, fat cells, etc. And they are often secreted in cell-specific 
molecular forms with more or less different spectra of activity. The present review depicts 
this development with the story about cholecystokinin which was discovered in 1928 
as a hormone and still in 1976 was conceived as a single blood-borne peptide. Today’s 
multifaceted picture of cholecystokinin suggests that time may be ripe for expansion 
of the hormone concept to all messenger molecules, which activate their target cells 
– irrespective of their road to the target (endocrine, neurocrine, neuronal, paracrine, 
autocrine, etc.) and irrespective of their kind of activity as classical hormone, growth factor, 
neurotransmitter, adipokine, cytokine, myokine, or fertility factor.

Introduction

The word hormone originates from the Greek word 
’hormoa’. It was proposed by the British linguist WB 
Hardy and introduced by Ernest Starling in his Croonian 
Lectures published in ‘The Lancet’ in 1905 (1) – 3 years 
after his and William Bayliss’ breakthrough discovery of 
the first hormone in history, secretin (2). ‘Hormone’ was 
rapidly accepted as a general designation for blood-borne 
chemical messengers of which secretin was the first and 
gastrin the second example (2, 3). Accordingly, hormones 
and blood-borne regulation became core-concepts in 
endocrinology as complementary to neuronal regulation, 
which until then had been considered the only way for 
regulation and coordination of bodily functions (4, 5).

In the wake of the secretin discovery, endocrinology 
blossomed with uncoverings of a multitude of additional 
hormones, endocrine glands and ensuing paradigmatic 
shifts in the understanding of regulatory physiology. 
Chemically, the structure of hormones turned out to 
vary from proteins and peptides, to steroids, thyronins 

and monoamines. And cellularly, most new hormones 
appeared to originate from glands such as the pituitary, 
thyroid, parathyroids, pancreatic islets, adrenals, ovaries 
and testes. A major exception from the glandular origin, 
however, was the gastrointestinal hormones, because 
endocrine cells in the gut are distributed in a regional 
manner among non-endocrine cells in the gastrointestinal 
mucosa and not collected in the glands. Hence, we have 
the puzzling paradox that many endocrinologists do not 
consider the gut to be a classic endocrine organ, although 
the gastrointestinal tract by all parameters is the largest 
and in evolutionary as well as historical terms the oldest 
endocrine organ in the body (for reviews, see 6, 7, 8, 9).

For hormones in general, however, the progress in 
cellular and molecular biology during the last decades 
has in a fundamental manner deepened the insight into 
a new biology (10). This insight has changed both basic 
and clinical endocrinology. The following story about 
cholecystokinin (CCK) illustrates how studies of a single 
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peptide hormone from the gut (CCK-33) has gradually 
contributed to expand endocrinology into a considerably 
wider concept than just being about blood-borne 
messenger molecules.

The cholecystokinin (CCK) story

Six chronological descriptions of CCK as a blood-
borne hormone

The prehistory
Almost a century before CCK was discovered in 1928 
as a gallbladder-emptying hormone (11), European 
physiologists took a broad interest in bile secretion and 
the role of bile in digestion (for reviews, see 12, 13). For 
instance, Claude Bernard (who introduced the concept 
of ‘sécrétion interne’) reported in 1856 that installation 
of hydrochloric acid into the duodenum increased the 
secretion of bile (14). In 1903, another French physiologist, 
Wertheimer, reported that duodenal stimulation of bile 
secretion persisted after cutting vagal and sympathetic 
neurons to the duodenum (15). And in the same year, 
Fleig described how blood from an isolated loop of the 
small intestine, into which acid was injected, increased 
bile-flow when transfused into another dog (16). Thus, 
already 1 year after Bayliss’ and Starling’s discovery of 
secretin, French physiologists had evidence to suggest 
that the duodenum might release a blood-borne chemical 
messenger or hormone that stimulated bile secretion. But 
they were not sure whether the bile-stimulating effect 
was still to some extent caused by secretin. During the 
following years, Okada studied bile secretion in Starling’s 
laboratory in London. And in 1914, he reported that acid 
in the duodenum not only stimulated the secretion of 
hepatic bile but it also emptied gallbladder bile into the 
small intestine (17).

In retrospect, it may be surprising that so many bile 
secretion studies over almost a century did not ignite the 
idea that the upper small intestine harbored a specific 
bile-releasing hormone, different from secretin. Therefore, 
further experiments were necessary in order to rule out a 
possible bile-secretagogue activity of secretin. Such studies 
were eventually performed by Andrew Ivy and colleagues 
in Chicago in the late 1920s (11, 18, 19, 20).

The functional identification
Ivy  et  al. examined first whether different preparations 
of secretin of various purity affected the gallbladder 

in dogs (20). They concluded – pretty inconclusively – 
from this study that an observed gallbladder contracting 
activity was due to ‘secretin or some substance closely 
associated with it’ (13, 20). After further cross-circulation 
studies in dogs, they saw that hydrochloric acid in the 
duodenum of a dog caused gallbladder contraction in 
another. And when they kept that observation together 
with differences in solubility of secretin preparations 
and preparations containing the gallbladder contracting 
activity, they concluded that the small intestine 
produced a new hormonal activity which they decided 
to name cholecystokinin (11, 18, 19, 20). Thus, a third 
and separate gut hormone-like activity was entering the 
scene. And from being concerned mainly with secretin 
and a little with gastrin, gastrointestinal endocrinology 
broadened. Today, secretin, gastrin, and CCK are – for 
good reasons – accepted as the classical troika of gut 
hormones. Nevertheless, compared to secretin, the 
interest in CCK was limited in the following decades. In 
1946, Ivy therefore tried to evoke clinical interest for CCK 
by suggesting that CCK injections might be of use for the 
diagnosis and therapy of biliary dyskinesia (21). But the 
response from clinicians remained meager.

In the meantime, another hormonal activity from 
the duodenal mucosa had been found by Harper and 
Raper in 1943 (22). Its existence was rapidly confirmed 
in Ivy’s laboratory (23). The active substance was named 
pancreozymin, because it stimulated the secretion of 
pancreatic enzymes. Pancreozymin was for more than  
20 years considered a separate gut hormone (22, 23, 24). It 
was noted, however, that pancreozymin preparations also 
stimulated gallbladder contraction (25). This side effect 
was, however, considered to be due to contamination 
of the partly purified pancreozymin preparations with 
CCK. The situation illustrated the need for pure hormone 
preparations that hopefully also would allow identification 
of the structure of the hormones.

Already from 1912, attempts had been made in 
several laboratories to purify and isolate secretin from 
intestinal extracts (26, 27, 28, 29). The goal was – as just 
mentioned – to have a pure and stable secretin preparation 
for physiological and clinical tests of exocrine pancreatic 
functions (30). Similarly, attempts to purify CCK was 
also initiated early (19, 31). In retrospect, however, these 
purification attempts were premature and too optimistic 
because the necessary biochemical technology was not yet 
available (for review, see 32). Peptide purification required 
at least electrophoretic, ion-exchange chromatographic 
and counter current distribution techniques, which 
became available in the 1950s.
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The structural identifications
The identification of the CCK structure was again 
associated with secretin. After pilot extractions and early 
purification steps in the late 1940s and early 1950s (30, 
31), Jorpes and Mutt in Stockholm decided to establish 
a large-scale platform of almost industrial size for 
extractions of porcine small intestines in order to have 
sufficient material for purification of secretin, CCK and 
pancreozymin (33, 34). That was a wise decision, because 
the intestinal tissue concentrations of both secretin and 
CCK have turned out to be low (35, 36). Mutt and Jorpes 
managed to collect the proximal 1 m small intestine from 
20,000 hogs (20 km of intestine!). After boiling, acetic 
acid extractions, absorption to alginic acid, fractionations 
with ethanol and methanol, ion-exchange and later 
size chromatographies, and finally counter current 
distributions, they had approximately 10 mg essentially 
pure peptides for sequence analysis (37, 38, 39).

This more than 20 years’ tour de force is probably the 
most important single effort in furthering gastrointestinal 
endocrinology. And the results were worth the effort: 
After identification of the secretin structure, CCK was 
identified as a tyrosyl-sulfated and carboxyamidated 
peptide of 33 amino acids, now called CCK-33 (Fig. 1). 
But the bioassay monitoring of gallbladder contractions 
and pancreatic bicarbonate and enzyme secretion of the 
different purification steps also revealed that CCK and 
pancreozymin was one and the same peptide hormone 
(40). After some discussion, consensus was obtained 
about maintaining the name cholecystokinin and its 
acronym, CCK, rather than the ungainly double name 
cholecystokinin-pancreozymin, or CCK-PZ (41, 42). 
Moreover, the structure also showed an unexpected close 
homology between the bioactive C-terminal sequences of 
CCK and that of the in 1964 sequenced gastric hormone, 
gastrin (43, 44) (Fig. 2).

The homology story, however, turned out to be even 
greater. In addition to the mammalian gastrins, the CCK-
structure showed an even higher degree of homology with 
the simultaneously isolated frog skin peptides, caerulein 
and phyllocaerulein (45, 46). And particularly interesting 
in evolutionary terms was the disulfated cionin-peptide 
from the central ganglion of the protochordate, Ciona 
Intestinalis, which revealed a hybrid structure (47) 
similar to that of the presumed common ancestor of 
CCK and gastrin (48). Finally, also insects express a 
group of neuropeptides, the sulfokinins, with significant 
homologies to the CCK structure (49, 50) (see also Fig. 2). 
Thus, CCK represents a large family of potent bioactive 
peptides in the animal kingdom that in phylogenetic 
terms is 500–600 million years old (51, 52, 53).

Knowledge of the CCK-33 structure was a decisive 
milestone. Viktor Mutt generously supplied purified  
CCK-33 from Stockholm to interested research 

Figure 1
The amino sequence of porcine cholecystokinin-33 (CCK-33), the originally 
identified CCK-peptide (Mutt & Jorpes (39)). The bioactive CCK-8 sequence 
(26, 27, 28, 29, 30, 31, 32, 33) is underlined. Only the amino acids in the 
encircled positions no. 7, 9, 10, and 15 differ from those in the human 
sequence (Met, Ile, Val, and Asn, respectively).

Figure 2
The bioactive sequences of peptide systems belonging to the 
cholecystokinin (CCK) family. CCK and the antral hormone, gastrin (43, 44), 
are the only mammalian members of the family. Caerulein and 
phyllocaerulein are identified from frog skin extracts (45, 46). Cionin is a 
neuropeptide isolated from the central ganglion of the protochord, ciona 
intestinalis (47). Note the unique disulfated sequence, which might 
suggest that cionin may resemble a common ancestor of CCK and gastrin 
(48). The core of the bioactive sequences, the common C-terminal 
tetrapeptide amide, is boxed. The lower panel shows the bioactive 
sequences of the insect neuropeptides, the sulfakinins, which are 
homologous to vertebrate and protochordian members of the CCK family 
(49, 50). Also their C-terminal tetrapeptide amide sequence is boxed.
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laboratories for functional studies, antibody production 
and chromatographic calibrations. And with the almost 
coincident chemical synthesis of the bioactive C-terminal 
octapeptide sequence (CCK-8), material became  
available for further CCK-research (54). Subsequent 
chromatographic studies on intestinal extracts showed, 
however, that CCK-33 was only one among several 
bioactive CCK-peptides (36, 55, 56, 57, 58). These other 
CCKs have been purified and their structures determined 
to be CCK-58, CCK-22, CCK-8 and CCK-5. The longer 
forms are released in both tyrosyl-sulfated and non-
sulfated forms (59), whereas CCK-5 only exists as non-
sulfated in lack of a tyrosyl residue for O-sulfation 
(58, 60). Thus, CCK is in molecular terms a highly 
heterogenous peptide system. Understanding of this 
molecular heterogeneity requires, however, insight into 
the CCK-gene expression cascade with emphasis on the 
posttranslational maturation of proCCK-expressing cells.

The CCK biogenesis
The CCK gene was cloned and sequenced from a rat 
cell line in 1985 by Deschenes  et  al. (61). Only two of 
its three exons are coding. They are transcribed to one 
mRNA of 750 bases of which 345 are translated to a 
preproCCK protein of 115 amino acids (Fig. 3). The 
first part of the preproprotein is the signal peptide that 
is cleaved off by a signalase, leaving intact proCCK. 
Then follows a spacer-peptide in whose sequence there 
are several variations from species to species (51). The 
spacer sequence is followed by the CCK-58 sequence with 
only few species variations (51). The intestinal CCK-58  
sequence undergoes extensive endoproteolysis by 
primarily prohormone convertase 1/3 at monobasic and a 
single dibasic cleavage site (62). As a result, the endocrine 
I-cells in the intestinal mucosa contain in their secretory 
granules a mixture of CCK-58, -33, -22, -8 and -5 of which 
CCK-33 appears to be the predominant form in the human 
intestine and circulation (63). As mentioned previously, 
however, 20–30% of the bioactive CCK-peptides in the 
small intestine are not tyrosyl-sulfated (59). The non-
sulfated, but still carboxyamidated, CCK-peptides are 
not agonists for the CCK1-receptor and are consequently 
without effect on hepatic bile secretion and emptying of 
the gallbladder. But they are still bioactive as agonists for 
the CCK2 receptor. They function – in other words – as 
intestinal gastrins (64).

As indicated by Fig. 3, the cellular posttranslational 
maturation of proCCK involves multiple often incomplete 
processing steps catalyzed by enzymes that have been 

reviewed in detail elsewhere (62, 65, 66, 67). After release 
of the CCK peptides from enteroendocrine I-cells to blood 
the plasma pattern changes, because the longer molecular 
forms (CCK-58, -33 and -22) are cleared at a slower rate 
from circulation than the short CCKs (CCK-8 and -5).

The hormonal functions and receptors
The CCK-synthesizing I-cells in the gut mucosa have an 
apical membrane in direct contact with the intestinal 
lumen where it can taste the luminal content. The 
basal cell region is close to capillaries, to which the 

Figure 3
The posttranslational maturation of preprocholecystokinin in the 
endocrine I-cells of the small intestine. Mono-and dibasic cleavage sites 
(arginyl (R) and lysyl (K) residues) are indicated on the schematic figure of 
preprocholecystokinin (upper part of the figure). In the remaining part of 
the figure, the asterisks (*) indicate tyrosyl O-sulfation sites on the 
procholecystokinin processing intermediates and bioactive endproducts. 
Decisive processing enzymes (sulfortransferases, prohormone 
convertases, carboxypeptidase E, and the amidation enzyme (pepdityl-
glycyl-α-amidating monooxygenase complex (PAM)) are also mentioned at 
the cellular level of the posttranslational processing pathway, where they 
act. In the intestinal endocrine I-cells, prohormone convertase 1/3  
(PC 1/3) is predominant, whereas prohormone convertase 2 (PC 2) 
predominates in cerebral CCK neurons (see also 62). CCK-83 has been 
identified in tissue extracts but not in plasma (63).

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/EC-21-0025

https://ec.bioscientifica.com © 2021 The authors
Published by Bioscientifica Ltd

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/EC-21-0025
https://ec.bioscientifica.com


J F Rehfeld CCK and the hormone concept R14310:3

CCK-containing secretory granules are released upon 
stimulation (68, 69). The most important stimulus is food, 
in particular protein- and fat-rich food (70, 71). Of the 
major constituents, protein, L-amino acids and digested 
fat cause the largest release of CCK-peptides (70, 72). The 
chain length of the fatty acids determines the magnitude 
of the CCK response to lipids with long-chain fatty acids 
being more stimulatory than medium and short chain 
(73, 74, 75, 76). The response to carbohydrates is lower 
but still significant (77, 78).

The I-cells in the intestinal mucosa have the highest 
density in the duodenum and the proximal jejunum (59, 
68, 69, 79). But there are still fair amounts of I-cells and 
CCK in the remaining small intestine and even a few in the 
colon (59, 79, 80). It is a mistake to consider the duodenum 
as the main source of intestinal CCK. Careful quantitation 
shows that the jejunum contains considerably more CCK, 
and even the ileal mucosa also expresses more bioactive 
CCK peptides than the duodenum (59). The explanation 
is simple: The duodenum constitutes only a short part of 
the small intestine. Besides, some immunohistochemical 
countings of I-cells in the duodenum have been false high 
due to use of antibodies that cross-react with duodenal 
gastrin cells (G-cells) that can be quite abundant (59, 69).

Bioactive CCK peptides in blood circulate in the low 
picomolar range (63, 70, 71, 72). They potently stimulate 
their target cells via one of the two CCK receptors (81, 
82) expressed on the target cell membrane. The CCK1 
and CCK2 receptors are both of the GPRC type and show 
extensive homology (81, 82, 83). The CCK1 receptor, earlier 
named the CCK-A receptor, is also called the alimentary 
receptor. It mediates hepatic bile secretion, gallbladder 
contraction (Fig. 4), relaxation of the sphincter Oddi, 
pancreatic enzyme secretion and growth, inhibition of 
gastric acid secretion via somatostatin cells and inhibition 
of gastric emptying (84), satiety via afferent vagal fibers 
(85), and gut motility. Only tyrosyl-sulfated CCK peptides 
are agonists for the CCK1 receptor, which do not bind 
non-sulfated CCK peptides, nor any gastrins (81).

The CCK2 receptor is primarily expressed in the 
brain – and therefore earlier named the brain or CCK-B 
receptor. The CCK2 receptor was, however, originally 
cloned and structurally identified as the gastrin receptor 
(82). Accordingly, it is also expressed in the stomach 
with particularly high density on enterochromaffin-like 
(ECL) cells and occasionally on parietal cells. The CCK2 
receptor therefore mediates gastrin’ergic acid secretion 
via histamine release from the ECL cells (86). Notably, the 
CCK2 receptor is also expressed on human and porcine 
pancreatic islet cells (87), where it contributes to the 

gut hormonal incretin effect on insulin and glucagon 
secretion (88). The CCK2 receptor is less specific than 
the CCK1 receptor, as it binds all carboxyamidated CCK 
and gastrin peptides irrespective of the degree of tyrosyl-
sulfation (82, 83).

The differentiated receptor distribution in the 
gastrointestinal tract illustrates the central hormonal 
role that blood-borne intestinal CCK peptides play in 
digestion and metabolism.

The plasma measurements
In accordance with the origin of endocrinology, a defining 
character of hormones has been their traveling via blood 
to their targets. Consequently, it is in endocrinology 
necessary to be able to measure the concentrations of 
hormones in plasma. Both the understanding of basal 
regulatory and pathophysiological functions of the 
hormone as well as its impact as biomarker in clinical 
diagnosis and therapy-monitoring require accurate  
plasma measurements. And that has been a major 
challenge for CCK.

Accurate and sophisticated bioassays for plasma CCK 
were described in the 1980s (70, 89, 90). But the complexity 
and labor intensiveness precluded, however, wider use in 
other laboratories. Therefore, the only feasible approach 
has been development of RIAs with the necessary 

Figure 4
The concentrations of bioactive CCK in plasma vs gallbladder emptying 
during a mixed meal in normal human subjects. Data from (141) with 
permission.
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sensitivity and specificity. It took decades to develop such 
assays (71, 91, 92, 93). The challenges were first to raise 
antibodies of very high affinity, because bioactive CCK in 
plasma from normal subjects circulate in femtomolar to 
low picomolar concentrations (70, 71, 89, 92). Secondly, 
the antibodies must in molar terms bind all the different 
bioactive peptides in circulation (CCK-58, -33, -22, and -8) 
equally well – in analogy with the CCK1 receptor binding; 
and finally, the antibodies should not bind any of the 
homologous gastrin peptides. This last criterion has been 
the largest challenge, because the gastrin concentrations 
in plasma are about ten-fold higher than those of CCK (70, 
71). And in a clinical context, hypergastrinemic patients 
are not uncommon (94). An additional problem with low-
quality and unreliable commercial kits for plasma CCK 
measurements was recently reviewed (95). In view of the 
challenges for measurement of the true concentrations of 
CCK in plasma, users of commercial kits have to evaluate 
the reliability of each kit carefully.

In summary, since almost all CCK in blood originates 
from the enteroendocrine I-cells in the gut, specific 
measurement of CCK in plasma has confirmed that 
intestinal CCK fulfills all criteria for being a classic 
blood-borne hormone (see also Fig. 4). But it is not a 
simple hormone: The molecular heterogeneity and the 
low concentrations in circulation have to be considered. 
Moreover, the close structural homology with gastrin as 
well as their sharing of the CCK2 receptor also requires 
attention in the understanding of CCK as a hormone. 
And the concept becomes even more challenged with the 
recognition of expression of CCK also in extraintestinal 
endocrine cells and non-endocrine cells (vide infra).

Six descriptions of the discoveries of CCK in 
extraintestinal cells

CCK in central and peripheral neurons
It came unexpectedly when Vanderhaeghen et al. in late 
1975 reported that the vertebrate brain contained a ‘new 
peptide reacting with gastrin antibodies’ (96). Soon after, 
three gastrin immunoassay laboratories (from Liverpool, 
New York, and Aarhus) began to characterize the gastrin-
like peptide in extracts of brain tissue (36, 97, 98, 99). In 
rapid succession, but with the Liverpool-laboratory first, 
they revealed that the predominant molecular form of the 
gastrin-like neuropeptide was not a gastrin peptide but 
sulfated CCK-8 (36, 97, 99, 100). Further studies showed 
that also longer (CCK-58 and CCK-33) as well as a shorter 
forms (CCK-5) are expressed in cerebral neurons, although 
in concentrations lower than those of CCK-8 (36, 60, 80).  

In accordance with the widespread occurrence of 
especially the CCK2 receptor in cerebral tissues, neuronal 
CCK peptides turned out to be potent neurotransmitters 
in all brain regions except the cerebellum (101, 102). 
For the sake of completeness, it should be noted that 
true gastrin peptides also are expressed in central and 
peripheral neurons (36, 103, 104) but considerably more 
sporadic and in low amounts as compared to the CCK 
peptides (36, 80).

In fact, the brain in higher mammals expresses 
more CCK than the gut (Table 1). Moreover, cerebral 
CCK neurons are more abundant than neurons of any 
other neuropeptide, giving CCK a unique status as brain 
peptide (80, 105, 106). While most peptidergic neurons 
are present in subcortical regions, CCK is expressed in 
the highest concentrations in neocortical neurons (36, 
80, 107). The perikarya of the cortical CCK nerves are 
distributed in layers II-VI, with the highest frequency 
in layers II and III (80, 108). CCK in mesencephalic 
dopamine neurons projecting to the limbic area of 
the forebrain (105) has aroused some clinical interest 

Table 1 The expression of cholecystokinin in normal adult 
mammalian tissue.

Tissue Tissue concentrationa (pmol/g)

Intestinal tract
 Duodenal mucosa 200
 Jejunal mucosa 150
 Ileal mucosa 20
 Colonic mucosa 5
Central nervous system
 Cerebral cortex 400
 Hippocampus 350
 Hypothalamus 200
 Cerebellum 2
 Spinal cord 40
Peripheral nervous system
 Vagal nerve 25
 Sciatic nerve 15
 Nerveplexes in colonic wall 5
Extraintestinal endocrine glands
 Adenohypophysis 25
 Neurohypophysis 20
 Thyroid gland 2
 Adrenal medulla 1
Genital tract
 Testicles 5
 Spermatozoas 1
Cardiovascular system
 Atrial myocytes 10
 Ventricular myocytes 2
Mononuclear immune cellsb ++

aOrders of magnitude based on measurement of tissue extracts from 
different mammalian species. bExpression determined only by 
immunocytochemistry.
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because these neurons are supposed to be involved  
in schizophrenia.

Outside the brain, the colon contains numerous CCK 
neurons, whereas jejunum and ileum are more sporadically 
innervated (80). Colonic CCK fibers penetrate the circular 
muscle layer to form a plexus in the submucosa (80). In 
accordance with these locations, CCK peptides excite 
colonic smooth muscles and release acetylcholine from 
neurons in both plexus myentericus and submucosa 
(109). Ganglionic cell somas and endocrine cells in 
pancreatic islets are also surrounded by CCK nerves (110, 
111). Finally, afferent vagal nerve fibers also contain CCK 
(112, 113).

The physiologic and pathophysiologic roles of 
the high concentrations of CCK in the brain are far 
from settled. But there are indications that cerebral 
CCK neurons are involved in central satiety regulation 
and in memory. And clinically, cerebral CCK seems 
involved in anxiety and – as mentioned – perhaps in  
schizophrenia (105).

CCK in extraintestinal endocrine cells
The CCK gene is expressed also in several well-known 
endocrine cell types outside the gut. Hence pituitary 
corticotrophs and melanotrophs express significant 
amounts of proCCK fragments but the posttranslational 
processing results in only trace amounts of conventional 
α-amidated CCK peptides (114, 115). Also, thyroid C-cells 
produce CCK,but mainly as non-sulfated but amidated 
CCK-8 (116). Since C-cells also are well equipped with 
CCK2-receptors (117), the thyroid unsulfated CCK-8 is 
probably an autocrine stimulator of growth of the normal 
and not least malignant C-cells. Adrenal medullary cells 
produce small amounts of CCK, although amidated and 
with a low degree of sulfation (118). The significance of 
adrenal CCK is so far unknown. Finally, and as mentioned 
previously, CCK nerve terminals are present also in 
pancreatic islets, where short molecular forms of CCK can 
contribute to the regulation of the secretion of islet-cell 
hormones (111).

CCK in male germ cells
It was a major surprise to see that spermatogenic cells 
– although transiently – express the CCK gene in most 
mammals (119, 120). Less than 25% of the amidated 
CCK is sulfated. Interestingly, the CCK peptides in 
mature spermatozoa are concentrated in the acrosomal 
granule, which opens the possibility that CCK may 

play a role in fertilization due to the acrosomal reaction 
(120). The acrosomal expression is species-specific, as 
human spermatozoa in addition to CCK also express 
its homologue, gastrin (121). The reason for the dual 
expression is unknown.

CCK in immune cells
Cholecystokinin immunoreactivity has consistently been 
found to be expressed in human and rat mononuclear 
cells in blood (122, 123). Moreover, CCK-8 (sulfated as 
well as non-sulfated) has been reported to exert a wide 
spectrum of stimulation and inhibition on lymphocytes, 
macrophages, and cytokine release, with ensuing anti-
inflammatory effects (124, 125, 126, 127). The field is 
complex due to the many peptide players; but the clinical 
impact of CCK in inflammatory diseases and endotoxin 
shock may be significant.

CCK in cardiac myocytes
Fetal mice express high levels of CCK mRNA in cardiac 
myocytes (128). Accordingly, adult cardiomyocytes in 
mice, rats, and pigs contain substantial amounts of 
the proCCK protein (129). The processing, however, 
of cardiac proCCK is unique, as the end product of the 
posttranslational maturation is a long triple-sulfated and 
N-terminally truncated fragment 25–94 with only trace 
amounts of the conventionally amidated and sulfated 
CCK peptides (129). The tissue concentration of the long 
proCCK fragment is higher in atrial than ventricular 
myocytes. The proCCK25-94 fragment is released to plasma 
and may find use as a marker of the risk of mortality in 
heart failure patients (129). The fate of the corresponding 
N-terminal 1–24 fragment of proCCK has remained 
obscure in spite of several attempts to find it.

CCK in tumor cells
The cholecystokinin gene is expressed at highly variable 
amounts in different neuroendocrine tumors, especially 
corticotrophic pituitary tumors (130), medullary thyroid 
carcinomas (116), phaeochromocytomas (118), and 
pancreatic islet cell tumors of which some may cause a 
specific clinical CCKoma syndrome (131, 132, 133, 134). 
The CCK gene is also expressed in Ewing’s sarcomas, 
where proCCK is apparently is poorly processed. However, 
specific proCCK measurements may be used to monitor 
the treatment of sarcomas (135). Cerebral gliomas, 
astrocytomas, and acoustic neuromas also express CCK 
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peptides (136, 137, 138). The present knowledge about 
tumor expression of CCK has been summarized in a 
recent review that also discusses measurements of CCK 
and proCCK in plasma as tumor markers (139).

Concluding comments

Since the structural identification of CCK half a century 
ago as a single peptide with a sequence of 33 amino 
acid residues (CCK-33), the CCK story has been full of 
major, unexpected revelations: First, it was shown that 
the bioactive C-terminus of CCK was similar to that of 
the gastrins and those of amphibian skin peptides as well 
as protochordean and insect neuropeptides. Moreover, 
CCK and gastrin peptides all turned out to be agonists 
for one of the two CCK receptors, the CCK2 receptor. In 
the late 1970s and in the 80s, it was also demonstrated 
that bioactive CCK occurs in multiple molecular forms 
– from CCK-58 to CCK-5 with and without tyrosyl 
O-sulfations – as a consequence of complex, cell-specific 
posttranslational maturation processes. At variable 
intervals, it was subsequently shown that CCK peptides 
are expressed all over the body: abundantly in central 
and peripheral neurons as potent neurotransmitters, in 
intestinal and extraintestinal endocrine cells as classical 
hormones, in germ cells as putative fertility factors, in 
cardiac myocytes for unknown reasons, and in immune 
cells of significance for inflammatory diseases. Finally, 
the proCCK maturation appears to be cell specific also in 
tumors expressing the CCK gene. The tumors therefore 
release a multifaceted pattern of CCK peptides that may 
cause a specific CCKoma syndrome. In summary, CCK 
should today be seen as a rather ubiquitous system of 
intercellular messenger peptides.

A point is, however, that CCK is only one example of 
a hormonal peptide system with a molecular and cellular 
complexity as described previously. In fact, all gastrointestinal 
peptide hormones (ghrelin, gastrin, secretin, the gut 
glucagons, neurotensin, the tachykinins, somatostatin, 
etc.) are also complex systems widely expressed in multiple 
bioactive forms both within and outside the gastrointestinal 
tract. And similar features are seen for extraintestinal peptide 
hormones such as the calcitonins, parathyroid hormones, 
and neuropeptides originally discovered in extracts of 
central and peripheral nervous tissue. In other words, 
most peptide hormones have a wide range of activities, of  
which only some are due to peptide messengers traveling via 
blood (for reviews, see 140).

This situation challenges the classical hormone 
concept. Etymologically, the Greek origin of the word 
‘hormone’ (hormoa) means ‘I arouse to activity’, which 
is exactly what bioactive peptides do irrespective of the 
routes to their targets. Consequently, there are now 
biological as well as etymological reasons for expansion 
of the hormone concept to cover all bioactive messenger 
molecules whose target cells express specific receptors.

Ernest Starling was in good faith when he introduced 
the word ‘hormone’ as a designation for blood-borne 
messenger molecules 116 years ago (1). Secretin and 
blood-borne regulation as an alternative supplement to 
neural regulation was indeed a decisive paradigmatic 
shift in physiology (1, 2). Starling could not know that 
the same peptides acted both as neurotransmitters and 
blood-borne messengers – not to speak of further roles as 
growth factors, fertility factors, cytokines, myokines, and 
adipokines.
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