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Prefrontal Cortex Affects Performance of the Wisconsin Card
Sorting Task during Provision of Feedback
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Early functional neuroimaging studies of tasks evaluating executive processes, such as the Wisconsin card sorting task (WCST),
only assessed trials in blocks that may contain a large amount of different cognitive processes. More recently, we showed us-
ing event-related fMRI that the dorsolateral prefrontal cortex (DL-PFC) significantly increased activity during feedback but not
matching periods of the WCST, consistent with its proposed role in the monitoring of information in working memory. Repetitive
transcranial magnetic stimulation (rTMS) is a method that allows to disrupt processing within a given cortical region and to affect
task performance for which this region is significantly solicited. Here we applied rTMS to test the hypothesis that the DL-PFC
stimulation influences monitoring of working memory without interfering with other executive functions. We applied rTMS to
the right DL-PFC and the vertex (control site) in different time points of the WCST. When rTMS was applied to the DL-PFC
specifically during the period when subjects were receiving feedback regarding their previous response, WCST performance dete-
riorated, while rTMS did not affect performance during matching either when maintaining set or during set-shifting. This selective
impairment of the DL-PFC is consistent with its proposed role in monitoring of events in working memory.

Copyright © 2008 Ji Hyun Ko et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

There is considerable evidence that damage to the prefrontal
cortex impairs performance on cognitive set-shifting tasks
[1–3]. In one such task, the Wisconsin card sorting task
(WCST), the subject has to match, over successive trials, a test
card to one of four reference cards based on a matching rule
that the subject acquires on the basis of feedback provided af-
ter each matching response. Patients with prefrontal lesions
are often impaired in shifting the principle of matching when
the feedback provided indicates that a cognitive shift in men-
tal set is required. Functional neuroimaging studies support
these observations [4–6]. In a recent study, conducted with
functional magnetic resonance imaging (fMRI), we demon-
strated differential activation of different parts of the pre-
frontal cortex during the performance of the WCST. In par-
ticular, we were able to show that the dorsolateral prefrontal

cortex (DL-PFC) was engaged when feedback was provided
[4]. This selective engagement of the mid-DL-PFC during
the provision of feedback after each matching response by
the subject is consistent with the proposed role of this part of
the prefrontal cortex in the monitoring of events in working
memory [7–9]. Neuroimaging studies, however, suffer from
the limitation that they provide neuronal correlates of cog-
nitive performance and cannot determine a causal relation
between observed brain activity and cognitive performance
[10, 11]. Thus the specific functional relevance of the DL-
PFC in monitoring the feedback provided during the perfor-
mance of set-shifting tasks remains to be established.

Here we have used repetitive transcranial magnetic stim-
ulation (rTMS) to examine this issue. The application of
rTMS to an area of cortex that, at a particular point in time, is
actively involved in the processing of task-relevant informa-
tion should cause performance to decline [12–14]. In other
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Figure 1: TMS coil was located over (a) the right DL-PFC (X = 45, Y = 33, Z = 25) or (b) the vertex (control) (X = 0, Y =−35, Z = 80). The
positioning of the TMS coil over these locations, marked on the native MRI, was performed with the aid of a frameless stereotaxic system.

words, rTMS acts as a “virtual lesion” producing a tempo-
rary interruption of processing [15]. In the present study, we
tested the hypothesis that rTMS of the human DL-PFC in-
fluences monitoring of the information held in the working
memory without interfering with other executive functions.
To test this specific hypothesis, we used a computerized ver-
sion of the WCST [4] in which different stages of task perfor-
mance can be isolated. We applied rTMS to the right DL-PFC
and over a control site (the vertex) in three different ways: at
the beginning of the feedback period, at the beginning of the
matching response period, and independently of task tim-
ing. Our previous functional neuroimaging study had indi-
cated the involvement of the DL-PFC during the provision
of feedback, but not during the matching response. To fur-
ther strengthen our findings, we also added a control task
(Figure 3(b)) that only required matching to a twin card.

2. MATERIALS AND METHODS

Ten healthy subjects (19–33 years) participated in the study
after having given written informed consent. All subjects
were right-handed according to the Edinburgh handedness
inventory [16], they had no previous personal or family his-
tory of neurological or psychiatric disorders and were not
taking any medication at the time of experiments. The ex-
periments were approved by the Research Ethics Committee
of the Montreal Neurological Institute and Hospital. Figure 2
displays an overview and timing of the experimental setup.

2.1. Cognitive task

Subjects were trained for 30 minutes on the WCST before
the rTMS sessions. Prior to the training sessions, the sub-
jects were instructed to perform as well as they could. Dur-
ing the WCST, four reference cards and one matching card
were presented on a computer screen (Figure 3(a)). On each
trial, the subjects had to match a test card to one of the four
reference cards according to one of three rules: shape, num-
ber, or color. The currently appropriate rule for classification
is found by trial and error based on the 3-second positive
or negative feedback that is provided immediately after each
matching decision. The rule for classification changed ran-
domly after the subject answers correctly on six consecutive

trials. In the control task, the matching card was identical to
one of the reference cards so that the subject simply selected
the identical card and did not have to find an appropriate rule
for classification as in the WCST (Figure 3(b)). Subjects per-
formed the card-sorting tasks in six different rTMS sessions
(2 × 3 design). Five-minute breaks were given in between
sessions. Each session lasted six minutes.

2.2. Frameless stereotaxy system

In order to target the DL-PFC and vertex (control site) in
all our subjects (Figure 1), we used a procedure that takes
advantage of the standardized stereotaxic space of Talairach
and Tournoux [17] and frameless stereotaxy [18, 19]. A high-
resolution MRI of the subjects’ brain was acquired and trans-
formed into standardized stereotaxic space using the algo-
rithm of Collins et al. [20]. The coordinates selected for the
right DL-PFC (X = 45, Y = 33, Z = 25) were based on a pre-
vious functional activation study that yielded increased ac-
tivity during the feedback period [4]. Of note, in this study,
we stimulated the DL-PFC located in the right hemisphere
because this side appeared to be more consistently and ro-
bustly activated [4]. The control stimulation site (i.e., vertex
region, X = 0, Y = −35, Z = 80) was also chosen based on its
lack of activation during performance of the WCST in these
previous studies.

The Talairach coordinates were converted into each sub-
ject’s native MRI space using the reverse native-to-talairach
transformation [18]. The positioning of the TMS coil over
these locations, marked on the native MRI (Figure 1), was
performed with the aid of a frameless stereotaxic system
(Rogue Research, Montreal, Canada).

2.3. TMS protocol

Repetitive TMS was carried out with the Magstim high-speed
magnetic stimulator (Magstim, UK) using a figure-eight coil.
The coil was held in a fixed position over the stimulation
sites by a mechanical arm. It was positioned so that magnet-
ically induced current under the coil flowed in a posterior-
anterior direction. Stimulus intensities, expressed as a per-
centage of the maximum stimulator output, were set at 110%
of the resting motor threshold (RMT). RMT was defined as
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Figure 2: Timeline of the experimental setup. All subjects were trained for approximately 30 minutes at the beginning of the experiment.
After registering the subjects’ anatomical land marks to their structural MRIs, the subjects performed 6 minutes of the behavioral tasks while
rTMS was administered at DL-PFC or vertex (control) in three different timing conditions. The orders of stimulation sites and timings were
counterbalanced. The behavioral tasks consisted of WCST and control task.
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Figure 3: Behavioral tasks. (a) WCST: the four cards shown on the top in the computer screen are reference cards, and the card on the
bottom is the test card. The subjects could move a yellow bar which was displayed under the reference cards by pressing the left button of a
mouse with their index finger. Pressing the right button with the middle finger confirmed the selection of the card followed by negative or
positive feedback. The subjects had to find out the rule of classification (color, shape, and number) by trial and error. (b) Control task: the
test card was identical to one of the reference cards. The rest was the same as WCST.

the lowest stimulus intensity able to elicit, in the contralat-
eral first dorsal interosseous (FDI) muscle, 5 motor evoked
potentials (MEPs) of at least 50 uV amplitude in a series of 10
stimuli delivered over the right primary motor cortex at in-
tervals longer than 5 seconds. MEPs were recorded from the
FDI muscle with Ag\Cl surface electrodes fixed on the skin
with a belly-tendon montage. The EMG signal was filtered
(10 Hz–1 kHz bandpass), digitized at 2 kHz, and displayed on
a computer screen [19].

Three rTMS blocks (6 minutes each) were applied to the
right DL-PFC and the vertex during the WCST and control
task (Figure 2). Each block was separated by a 5-minute in-
terval. In each block, 5 pulse trains of 250-millisecond du-
ration were delivered at a stimulation frequency of 20 Hz
with between-train interval dependent on the subject’s per-
formance time (PT) (i.e., 4 to 6 second). For each block,
rTMS was delivered either (block-1) at the beginning of each
feedback period (number of trials: 72.05 ± 0.75) (Figure 4),
(block-2) at the beginning of each matching period (number
of trials: 74.15± 1.19) (Figure 5), or (block-3) every 6 second
regardless of the moment in the task (i.e., desynchronized
condition) (number trials: 75.53± 2.14) (Figure 6). This last
paradigm was applied in order to investigate whether the

rTMS effect was timing dependent (i.e., block-1 and -2) or
not (block-3). Block order was counterbalanced across sub-
jects and performed on the same day (Figure 2). The stimu-
lation parameters followed safety guidelines for rTMS [21].

2.4. Data analysis

PT and error rate were calculated. Each subject’s PT and error
rate were averaged within each condition (stimulation site,
timing, and task). PT was measured from the presentation of
the test card to the subject’s response, that is, the selection of
a reference card (Figures 4, 5, and 6).

Repeated-measures ANOVA was used to compare the ef-
fect of the two different stimulation sites, the three timings of
stimulation, and the two different tasks on PT.

The paired samples t-test (two-tailed) was used to com-
pare the mean PT and error rate in the WCST between
the DL-PFC and vertex stimulations during the three differ-
ent rTMS timing conditions (rTMS during feedback, during
matching, and desynchronized). The mean PT for the control
task was also compared in the same manner. Data are pre-
sented as mean ± SE. All statistical analysis was performed
using SPSS 13.0 for Windows (SPSS Inc., USA).
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Figure 4: (a) rTMS at the beginning of feedback: while the subject
performed the WCST or control task, rTMS was applied over the
right DL-PFC or vertex at the beginning of receiving feedback. (b)
DL-PFC stimulation during the feedback phase of the WCST in-
creased performance time (PT) compared to the vertex stimulation
(∗P = .023; two-tailed). No stimulation effect was observed in the
control task.

3. RESULTS

TMS intensity was 58.4± 2.8%. There was no significant dif-
ference between numbers of trials among different blocks.
Repeated-measures ANOVA on PT revealed a significant
main effect of different tasks (WCST versus control; F(1,9) =
71.3; P < .001) confirming that the WCST was more demand-
ing than the control task. There was also a significant main
effect of stimulation timing on PT (beginning of feedback
versus beginning of matching versus desynchronized; F(2,18)
= 23.845; P < .001) indicating that the timing of stimula-
tion, overall, was an important factor influencing task per-
formance more than stimulation site (DL-PFC versus vertex;
F(1,9) = 2.516; P = .147). A significant interaction effect was
observed between tasks and stimulation site (F(1,9) = 7.642;
P = .022) indicating that stimulation site affected PT differ-
ently depending on which task was used.

To test the effect of different stimulation sites within each
task and stimulation timing condition, a paired t-test (two-
tailed) was performed. When comparing DL-PFC versus ver-
tex during the WCST, PT increased significantly when rTMS
was delivered at the beginning of the feedback period (DL-
PFC = 1840.04 ± 87.18 ms, Vertex = 1682.46 ± 61.23 ms;
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Figure 5: (a) rTMS at the beginning of matching: while the subject
performed the WCST or control task, rTMS was applied over the
right DL-PFC or vertex at the beginning of matching. (b) DL-PFC
stimulation during the matching phase of WCST or control task had
no effect on PT compared to the vertex stimulation.

t(9) = 2.727; P = .023) (Figure 4). Further analysis revealed
that the magnitude of impairment did not correlate with in-
tensity of TMS (r = −0.063; P = .863). No changes in PT
were observed when rTMS was given at the beginning of
the matching period (DL-PFC = 1419.19 ± 107.48 ms, Ver-
tex = 1309.87 ± 88.07 ms; t(9) = 1.382; P = .200) (Figure 5)
nor when it was desynchronized with task performance (DL-
PFC = 1739.13 ± 148.26 ms, Vertex = 1659.70 ± 98.24 ms;
t(9) = 0.944; P = .370) (Figure 6). When comparing DL-PFC
versus vertex during the control task, rTMS did not induce
significant changes in PT either during the feedback (DL-
PFC = 1491.66 ± 65.47 ms, Vertex = 1459.48 ± 59.60 ms;
t(9) = 0.669; P = .521) (Figure 4), matching (DL-PFC =
1084.92 ± 62.15 ms, Vertex = 1080.26 ± 77.11 ms; t(9) =
0.074; P = .943) (Figure 5), or desynchronized (DL-PFC =
1517.38 ± 147.72 ms, Vertex = 1490.91 ± 90.36 ms; t(9) =
0.314; P = .760) conditions (Figure 6).

The repeated-measures ANOVA on error rate did not
show any significant main effect of task conditions, stimula-
tion timing, or the sites of stimulation, nor significant inter-
action effects except when comparing DL-PFC and vertex at
the beginning of feedback which came close to significance.
More specifically, the results obtained when performing a
paired t-test on the error rates between DL-PFC and vertex
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Figure 6: (a) Desynchronized rTMS: while the subject performed the WCST or control task, rTMS was applied over the right DL-PFC or
vertex at every 6 seconds which was desynchronized with the tasks. (b) Desynchronized DL-PFC stimulation had no effect on PT compared
to the vertex stimulation.

stimulation during the WCST were at the beginning of the
feedback (DL-PFC = 6.10 ± 1.71, Vertex = 3.28 ± 1.16; t(9)
= 2.120; P = .063); at the beginning of matching (DL-PFC
= 4.79± 1.04, Vertex = 4.86± 1.27; t(9) = −0.057; P = .956);
during the desynchronized condition (DL-PFC = 5.21±0.83,
Vertex = 3.56± 0.51; t(9) = 1.941; P = .084).

4. DISCUSSION

The present study demonstrated that when rTMS was ap-
plied to the DL-PFC specifically during the period when
the subject was receiving feedback regarding his/her match-
ing response, performance of the WCST deteriorated. It
appeared that the effect of rTMS was significantly timing
dependent. In fact, rTMS-induced interference of DL-PFC
affected performance specifically during the receiving of
feedback (Figure 4), but not during the matching response
(Figure 5) nor when the interference was desynchronized
with specific stages of the WCST (Figure 6).

This observation of a selective rTMS-induced impair-
ment in task performance during specific timing of a task
has already been reported in the literature in relation to sev-
eral of the tasks and cortical areas stimulated. For instance,

rTMS of the medial frontal cortex affected task switching and
at the time of response set switching when delivered before
or at time of response selection [10, 22]. Similarly, rTMS af-
fected DL-PFC depending on whether this area, at a particu-
lar point in time, is actively involved in processing task rele-
vant information [11, 23].

The selective rTMS-induced impairment in WCST per-
formance of DL-PFC during the receiving of feedback is in
accordance with imaging, lesion, and neurophysiological in-
vestigations. In a previous fMRI study, Monchi et al. [4] have
shown that DL-PFC is engaged when the subject is receiving
feedback during the WCST. That is, the period when mon-
itoring of information held in working memory, as demon-
strated by lesion studies in monkeys, is critical [8, 24]. This
specific involvement has also been confirmed with neuronal
recordings from DL-PFC in monkeys during a WCST ana-
log which have shown the activation of DL-PFC cells during
monitoring and useof feedback information. A large popula-
tion of DL-PFC cells were strongly engaged in assessing be-
havioral outcome/feedback [25].

Interestingly, while rTMS induced selective impairment
in WCST performance, it did not affect error rate very
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significantly. This observation is consistent with previous
work by Wagner et al. [26] who, stimulating the DL-PFC,
observed no significant effect on error making during the
WCST. There are two potential alternatives that could explain
these findings.

The first explanation is that error making may be influ-
enced by a different prefrontal area. In fact, lesions of DL-
PFC in monkeys have shown impairment in monitoring of
information but did not compromise maintenance of infor-
mation and set shifting per se [8, 9, 24], which presumably
may influence errors during set-shifting tasks. Set shifting
from a previously relevant to a new response mode engages
a more ventral area of the PFC (i.e., ventrolateral PFC) [4]
and is impaired by lesioning of this area [24, 27]. Another
cortical area that may also have a relevant role is the medial
PFC which can influence error trials during performance-
monitoring processes [25].

A second explanation, considering the fact that rTMS-
induced error trials have been reported less frequently in re-
lation to different tasks and cortical area stimulated [10, 22,
23, 28], it may also be that rTMS parameters (e.g., intensity,
frequency, and unilateral stimulation) used so far in differ-
ent studies have not been strong enough to induce a com-
plete “virtual lesion.” Against the latter hypothesis, however,
stands the fact that the magnitude of selective impairment
in WCST performance observed in this study did not corre-
late with intensity of TMS which at least excludes a possible
relationship between intensity and effect on performance.

While our study provides some insights over the debate
regarding the role of DL-PFC during set-shifting tasks, over-
all it emphasizes the importance of rTMS in delineating the
functional relevance of neuronal correlates of performance
observed during neuroimaging studies [10, 11]. In other
words, our results suggest that just because a cortical area
(i.e., DL-PFC) is functionally activated during the course of
an executive task [4], it may not necessarily play the same
critical and essential role during the whole task, and that
rTMS may be a useful tool to complement fMRI in order to
infer functionality of a cortical region of the human brain.

To date, the neural mechanisms underlying executive
processes are still poorly understood, even less are the mech-
anisms by which rTMS interferes with cortical information
processing and induces such a “temporary lesion.” It is be-
lieved that the rTMS-induced “noise” into neural processes
may, perhaps, be the consequence of a stimulation-induced
synchronization of neuronal firing disrupting active process-
ing in the underlying cortex [15, 29]. A valid alternative,
however, may also be represented by a suppression in cor-
tical excitability (lasting up to 1 second) observed following
short trains of rTMS at 20 Hz [30] or induced abnormality
in the release of prefronto-striatal dopamine [19].

The latter is suggested by the contribution of the striatum
and role played by dopamine during the performance of tasks
requiring executive processes. Indeed, studies of dopamine
depletion in nonhuman primates suggest a possible involve-
ment of striatal dopamine in set-shifting tasks [31, 32] while
other neuroimaging studies have proposed that changes in
striatal dopamine levels can modulate certain set-shifting

processes [33] and that level of cognitive impairment may
be dependent on the level of dopamine depletion [34].

Whatever the rTMS mechanisms may be, the ultimate
outcome appears to be a transient interruption of the spe-
cific normal cortical processing (i.e., provision of feedback)
in a restricted area of the prefrontal cortex (i.e., DL-PFC).
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