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Introduction
Reassortment is an evolutionary mechanism of segmented RNA viruses that plays an impor-
tant but ill-defined role in virus emergence and interspecies transmission. Recent experimental
studies have greatly enhanced our understanding of the cellular mechanisms of reassortment
within a host cell. Our purpose here is to offer a brief introduction on the role of reassortment
in segmented RNA virus evolution, explain the host cellular mechanisms of reassortment, and
provide a synthesis of recent experimental findings and methodological developments. While
we focus our discussion on influenza viruses, wherein most of the studies on reassortment have
been carried out, the concepts presented are broadly applicable to other multipartite genomes.

What Is Virus Reassortment?
Virus reassortment, or simply reassortment, is a process of genetic recombination that is exclu-
sive to segmented RNA viruses in which co-infection of a host cell with multiple viruses may
result in the shuffling of gene segments to generate progeny viruses with novel genome combi-
nations (Fig 1A) [1]. Reassortment has been observed in members of all segmented virus fami-
lies, including, for example, Bluetongue virus [2], but reassortment is most prominently
described for influenza viruses as a primary mechanism for interspecies transmission and the
emergence of pandemic virus strains [3–5]. For instance, reassortment accelerates the rate of
acquisition of genetic markers that overcome adaptive host barriers faster than the slower pro-
cess of incremental increase due to mutation alone. The emergence of new influenza genes in
humans and their subsequent establishment to cause pandemics have been consistently linked
with reassortment of novel and previously circulating viruses [4–6].

In contrast, recombination occurs through a template switch mechanism, also known as
copy choice recombination. When two viruses co-infect a single cell, the replicating viral RNA-
dependant-RNA-polymerase can disassociate from the first genome and continue replication
by binding to and using a second distinct genome as the replication template, resulting in the
generation of novel mosaic-like genomes with regions from different sources [7,8] such as
some circulating recombinant forms of HIV [9]. Although, in principle, recombination can
occur in both segmented and non-segmented viruses, reports of recombination in segmented
viruses have been frequently disputed [10,11] as weak evidence that arose through laboratory
or bioinformatic artifacts [12,13]. Here we focus on virus reassortment using the well-studied
influenza virus as an example.
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How Do Segmented Viruses Reassort within a Host Cell?
Essential prerequisites for reassortant include the entry of more than one virus particle into a
single host cell, followed by the concomitant production of genome segments within the host
cell. Experimental systems have revealed a high frequency of multiple infections [1,14],
although there is some evidence suggesting the role of specific viral proteins limiting further
infection [15].

Ultimately, the definitive formation of viable infectious reassortants is dependent on the
incorporation of one copy of each segment into a virus particle. Two alternative mechanisms
for reassortment within the host cell have been proposed. The random packaging model
[16,17] posits that viral RNA is incorporated in virions without discrimination (but not other
viral or cellular RNA); hence, the likelihood of forming viable reassortants with an entire
genome set occurs by chance [16]. However, mounting evidence supports an alternative selec-
tive packaging model [18–20], which proposes that a virus particle packages eight unique viral
RNA segments through specific packaging signals. Experimental visualization of RNA interac-
tions [18] during virus assembly has revealed detailed interactive networks—i.e., epistatic inter-
action of virus packaging signals—among virus segments, which are thought to play an
important role in directing reassortment. Through the experimental swapping of packaging
signals between influenza viruses of different types, Essere et al. [19] were able to overcome the
bias observed towards specific genotypes. In an extreme case, Baker et al. [19,21] have shown
that the swapping of packaging signals of two different species of influenza viruses enabled

Fig 1. Reassortment of two tripartite genomes producing a novel reassortant. A) Diagrammatic representation of the emergence of a novel reassortant
strain with genes derived from two parents. B) Phylogenetic discordance between segments 1 and 3 (left) and segment 2 (right) for three tripartite strains.
Branches in bolder colors represent parental strains, whereas lighter colors represent the acquisition of gene segments from different parents to form a novel
reassortant strain.

doi:10.1371/journal.ppat.1004902.g001
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reassortment to form viable particles that have not been observed in nature, indicating a central
role for these packaging signals in reassortment. Intuitively, the emergence of differences in the
packaging signals of diverging virus lineages may lead to virus speciation. Such a phenomenon
could explain the lack of reassortment between the two influenza virus species (A and B) that
share structural and functional similarities and that occupy the same ecological niche. Despite
a lack of a mechanistic understanding of the function of packaging signals, these observational
studies highlight important implications for viral evolution through epistatic interaction
between gene segments and the emergence of novel reassortants.

How Is Reassortment Detected?
The identification of reassortment is important to detect novel reassortants with increased
transmissibility, increased pathogenicity, or those that escape antibody recognition or are resis-
tant to antivirals. Reassortment is most commonly detected through incongruencies in phylo-
genetic relationships among the different segments of a viral genome [22–26], as gene
segments from the same virus isolate occupy conflicting phylogenetic positions due to differ-
ences in their evolutionary histories (Fig 1B). Early studies identified reassortment by manually
detecting phylogenetic incongruence of different viral segments. However, this method
becomes impractical for studying large datasets, especially those with complex reassortment
histories with nested reassortments or when there is a lack of phylogenetic support for reassort-
ment among closely related sequences [27]. This has led to the development of several auto-
mated reassortment detection methodologies [28–31], but the phylogeny-based methods have
remained the most robust and popular method for detecting reassortment [29,30]. Several
extensions of the phylogenetic method have also been successfully applied to estimate past
reassortment of viral lineages, including the coalescent-based Bayesian phylogenetics that infer
and compare the time of most recent common ancestor (TMRCA) of each segment to infer
possible reassortment [32], multi-dimensional scaling of tree distances [25,32], and more
recently, using time-resolved Bayesian phylogenetics and trait state changes [33–35]. In addi-
tion, several distance-based methods exist [27], where degrees of similarity between pairs of
viral genomes are used to infer reassortment [36,37]. Recently, a study has used a novel method
based on the rapid rate of amino acid replacement post reassortment as a method of detecting
a reassortment event [27]. While all the studies listed above are aimed at identifying reassort-
ment events and strains, methodologies that infer an explicit rate of reassortment are rare, but
examples include [33,34,38].

What Do Genomic Studies Tell Us about Reassortment?
Influenza exhibits high levels of mixed infections in all major hosts [39–42], with up to 25% of
all infections in avian hosts involving multiple influenza subtypes. However, large-scale geno-
mic studies have identified various levels of restrictions on random reassortment between co-
circulating influenza viruses, which differ depending on host, subtype, and preferential genetic
combinations [35,36,43–46]. The greatest frequency of influenza reassortment is observed in
their natural reservoir, wild aquatic birds [40], where viruses of different subtypes frequently
exchange gene segments. However, reassortment is more restrictive in other hosts, particularly
humans. Reassortment between human seasonal influenza viruses of different subtypes (A/H1
and A/H3 viruses) is rare [47] despite co-circulation over 40 years and extensive evidence of
mixed infection [39]. Furthermore, studies of human influenza viruses have shown that certain
combinations of gene segments were consistently detected in surveillance, suggesting either
preferential assortment of these gene segments or a fitness advantage to these combinations.
Convincing evidence comes from the two co-circulating and frequently reassorting lineages of
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influenza B viruses [35,48], but virions consistently contained the polymerase basic 1, 2, and
the hemagglutinin (HA) genes (PB1-PB2-HA) from a single lineage [35]. Similarly, preferential
combinations of segments are transiently observed for human influenza A viruses [45,46].

What Are the Consequences of Virus Reassortment?
The tremendous genomic novelty generated by reassortment confounds all current methods of
virus control. Evolutionary studies indicate an advantage for gene lineages with reassorting
backgrounds. Specifically, a significant increase in transient amino acid mutations is observed
following reassortment [27], primarily in the surface glycoprotein hemagglutinin, the major
immunogenic protein of influenza that leads to antigenic change [25,32]. This suggests that the
placement of the HA within novel genetic backgrounds through reassortment greatly affects
virus fitness and directly influences antigenic variation, contributing to the long-term evolution
of the virus. However, reassortment could lead to evolutionary change due to various other fac-
tors, including selection pressure induced by herd immunity; the residues being under weak
selective constraint; or compensation for fitness costs of mutations accruing elsewhere in the
genome [25]. Similarly, the emergence of drug-resistant mutations may be acquired following
reassortment, as shown for the emergence of amantadine-resistant H3N2 viruses [49] and osel-
tamivir-resistant seasonal H1N1 viruses [50]. These studies suggest that reassortment con-
founds available methods of virus control, although detailed examination of the role of
reassortment in driving genome-wide evolution is still needed.
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