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Normative learning theories dictate that we should preferentially attend to
informative sources, but only up to the point that our limited learning systems
can process their content. Humans, including infants, show this predicted
strategic deployment of attention. Here, we demonstrate that rhesus monkeys,
much like humans, attend to events ofmoderate surprisingness over bothmore
and less surprising events. They do this in the absence of any specific goal or
contingent reward, indicating that the behavioural pattern is spontaneous.
We suggest this U-shaped attentional preference represents an evolutionarily
preserved strategy for guiding intelligent organisms toward material that is
maximally useful for learning.
1. Introduction
Intelligent organisms acquire knowledge through experience; however, there is
more information available than they can actually explore [1,2]. Thus, intelligent
organisms must be selective.

Adaptive theories of curiosity posit that uncertainty helps guide learners’
exploration [3–9]. Specifically, adaptive learners attend to informationof intermedi-
ate uncertainty. This results in a U-shaped relationship between uncertainty and
inattention: low uncertainty events offer little to learn from and high uncertainty
events are beyond the learners’processing capabilities [3,8,10–18]. Thismechanism
has been attested in humans and may represent an elegant solution for intelligent
organisms to resolve the information overload problem.

Human infants and children preferentially maintain attention to sequential
events of intermediate surprisal values [16–19]. While this pattern has not been
observed in non-humans, monkeys can seek information for its inherent value.
Rhesus macaques’ inferotemporal cortical neurons respond more strongly to
images presented in an unexpected order [20,21]. Further, macaques’ behaviour
demonstrates they will sacrifice liquid reward in exchange for information
with no strategic benefit [22,23] and engage in directed exploration [24,25].
These data raise the possibility that strategic information-seeking patterns
may reflect an evolutionarily ancient capacity for adaptive regulation of incom-
ing information. If so, this would demonstrate a general principle of advanced
evolved learners rather than a uniquely human skill.

Here, we employ a variation on the infant paradigm with rhesus macaques.
We test the hypothesis that adaptive regulation of information-seeking is a
cognitive skill shared with our common ancestor. Unlike most previous work
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Figure 1. (a) Sequential visual display. The illustration shows five time-points in the sequence. At each event in the sequence, one of the three unique objects
popped up from behind one of three boxes. (b) Idealized learning model schematic. The schematic shows how the idealized learning model forms probabilistic
expectations about the expectedness of the next event in a sequence.
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on curiosity in macaques, we employ a free-viewing
paradigm without rewards tied to particular responses. This
approach tests for spontaneous preference and avoids
possible learning effects. We find that macaques’ visual
attention is strikingly similar to that of human infants.
2. Methods
(a) Subjects
Five male rhesus macaques (Macaca mulatta) served as subjects.
Subjects had been trained to perform oculomotor tasks for liquid
rewards through positive-reward-only reinforcement training
using standardized methods [26] (electronic supplementary
material, appendix S2).
(b) Stimuli
Visual stimuli were coloured shapes on a computer monitor
(figure 1a). We designed the displayed stimuli to be easily cap-
tured by a simple statistical model [16,18]. Each trial featured
one of 80 possible visual-event sequences (electronic supple-
mentary material, appendix S1). All sequences were presented
to all subjects in different randomized orders. One sequence
was presented per trial, and each was presented in the form of
a unique animated display.

Each animated display featured three identical boxes in three
distinct, randomly chosen spatial locations that remained static
throughout the sequence on the screen. Each box concealed
one unique geometric object, which was randomly selected
from a set that included four different shapes in eight colours
(e.g. a yellow triangle and a blue circle). Geometric objects
remained associated with their respective boxes throughout the
sequence and were unique within a trial, but were chosen
randomly from the set across trials [16–19].

Objects appeared from boxes on the displays according to the
sequence orders. Each event within a sequence consisted of one of
the three objects popping out from behind one of the three boxes
(750 ms), and then back into the box (750 ms) without overlap
or delay. Eighty sequences were generated to maximize the
difference of their theoretical information property, such that the
pop-up probabilities of each geometric object varied if a different
sequence was observed. For example, if a sequence starts with

and follows by another , this is an example of a very
predictable sequential event. If the same sequence starts again
with but follows by , this would be an example of a
less predictable sequential event.

(c) Procedure
We recorded eyemovements as subjects watched sequential visual
displays designed to elicit probabilistic expectations, following
methods employed in preverbal infants [16] and gaze-based exper-
imental protocols for studying animal visual perception and
cognition [27]. Eye positionsweremeasuredwith the Eyelink Tool-
box and were sampled at 1000 Hz by an infrared eye-monitoring
camera system (SR Research, Osgoode, ON, Canada) [28]. A sole-
noid valve delivered a 53 µl water reward when each object was at
its peak (every 1.5 s), regardless of where or whether the subject
was looking. The intermittent and fully predictable reward is a
standard procedure in primate behaviour studies designed to
increase general task participation without making any particular
task events reward associated [26]. Regardless of subjects’ gaze
behaviour, each sequencewas displayed in full. The rate of presen-
tation was between 0 and 2 trials, interspersed within unrelated
trials for other studies [26,29,30].

(d) Analysis
We analysed three behavioural measures: reaction time (RT), pre-
dictive-looking, and look-away. RT measures the latency to shift
gaze to the object after it appears. This is a standard measure to
detect agents’ expectations. Predictive-looking1 is a binary variable
that indicates whether the subject was already looking at the cur-
rent object when it first became active but before the object
actually popped up. Look-away2 is the first point in the trial
when the macaque looked off-screen for 0.75 s (50% of the total
pop-up event duration) [16–18]. We analysed these three behav-
ioural measures as a function of the surprisal value of each event
in the sequence, which is the negative log probability of the
event’s occurrence, according to unigram and transitional (or
bigram) Markov Dirichlet-multinomial (ideal observer) models
(following the analysis methods of [16–18]). The unigram
model treats each event as statistically independent, while the
transitional model assumes event order dependence and tracks
the conditional probability on the immediately preceding event
(electronic supplementary material, appendix S3). The models
begin with an uninformative prior corresponding to the implicit
beliefs a learner possesses before making any observations. Once
the sequence presentation begins, the model estimates the surpri-
sal value of the current event at each item in the sequence.
It combines the simple prior with the learner’s previous
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Figure 2. (a) RT (ms) as a function of unigram surprisal. (i) Subjects’ RT to fixate the active object ( y-axis) as a function of unigram surprisal (x-axis). The points
and error bars show raw data binned to three group means of three evenly spaced intervals according to surprisal values. The smooth curve shows the fit of a GAM
with standard errors. Vertical tick marks show values of surprisal attained in the experiment. (ii) RT ( y-axis) and unigram surprisal (x-axis), while controlling for all
factors. (b) Look-away probability as a function of unigram surprisal. (i) Subjects’ probability of looking away ( y-axis) as a function of unigram surprisal (x-axis). The
smooth curve shows the fit of a GAM with 95% confidence interval. (ii) The relationship between look-away probability (y-axis) and unigram surprisal (x-axis), while
controlling for all covariate factors.
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observations from the sequence in order to form a posterior or
updated belief. The next object pop-up event then conveys the
surprisal value according to the probabilistic expectations
of the updated belief (figure 1b). We evaluated the statistical
significance of variables using mixed effect linear and logistic
regressions with random intercepts. The raw regression models
include standardized linear and quadratic surprisal terms
as predictors. The controlled regression models include covariate
factors, such as whether an object is a repeat, distance between
the current and previous pop-up object, trial number. A general-
ized additive model (GAM) was used to visualize the
relationship between the surprisal estimate from the compu-
tational model and the behavioural data [31] (electronic
supplementary material, appendix S3).
3. Results
(a) Quicker deployment of gaze for events of

intermediate surprisal
The unigram GAM analysis shows that the relationship
betweenRTs and subjects’ expectations about stimulus predict-
ability is U-shaped, with subjects exhibiting the fastest RTs
for intermediately predictable stimuli (figure 2a(i)). We fitted
the model with a log-transformed RT variable to ensure
assumptions of linear mixed effect regression are fulfilled.
The raw regression reveals both a significant linear term
(β =−4.48, t = –5.58, p = 2.48 × 10−8) and a significant quadra-
tic term (β = 5.43, t = 6.77, p = 1.42 × 10−11). The U-shape
relationship holds when other variables are controlled in
the GAM, as well as revealed by the significant quadratic
term (β = 2.40, t = 2.55, p = 0.011) in the controlled regression
(figure 2a(ii)). The significance of the quadratic term likely
corresponds to a genuine U over the range of surprisal,
especially in light of the fact that the significance holds even
in the controlledGAM. In the GAManalysis for the transitional
surprisal measures, it shows a shallower U-shape, with both
linear trend (β =−2.54, t =−3.18, p = 0.001) and quadratic
trend (β = 2.57, t = 3.21, p = 0.001) being significant in the raw
model. Once all predictors are included, the curve becomes
mostly flat. This shows that the unigram model is more
robust than the transitional model to capture the relationship
between subjects’ RTs and the surprisingness of stimuli.
Our results also show that all five subjects exhibit similar pre-
ference for stimuli of intermediate surprisal, suggesting that
the U-shape relationship holds within rhesus macaques and
is not due to subject average (electronic supplementary
material, appendix S7). This consistent pattern observed in
each macaque subject was also found within individual
human infantswho reserve attention for events that aremoder-
ately predictable [19] (electronic supplementary material,
appendix S5 and S6).
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(b) Predictive looks towards unshown items
Subjects are more likely to predictively look at objects on
their first appearance when the pop-up events are estimated
to be more likely, according to the model. The GAM
plot shows a decreasing trend between the probability
of predictive-looking and the surprisal value (electronic
supplementarymaterial, appendixS2). Thepattern is supported
by the statistically significant linear surprisal terms in both uni-
gram raw regression (β =−13.53, z =−3.02, p = 0.003) and the
bigram raw regression (β =−12.85, z =−2.74, p = 0.006). This
decreasing linear trend also holds in controlled models with
linear terms being significant in unigram (β =−12.68, z =−2.3,
p = 0.02) and transitional (β =−10.12, z =−1.98, p = 0.048)
models. These results show that subjects might be curious
about unknown information and spontaneously track the
incoming statistics, expecting that there is some change that
will occur and, if it does, itwill be informative. Theyalso suggest
that as it is increasingly unlikely to see unopened boxes ever
open, macaques are less likely to allocate their attentional
resources towardsmonitoring unopened boxes. It is further evi-
dence thatmacaques’ information-seeking ismoderated by their
expectation in the absence of overt rewards (electronic sup-
plementary material, appendix S5 and S6).

(c) Preferential gaze towards events of intermediate
surprisal

Estimated by the unigram GAM analysis, subjects were more
likely to terminate attention to highly predictable events
and also highly unexpected events (figure 2b(i)). In the
raw regression, both the linear term (β =−34.66, z =−15.00, p <
2 × 10−16) and the quadratic term (β= 29.01, z = 11.68, p< 2 ×
10−16) are statistically significant. The controlled logistic
regression revealed statistically significant linear (β=−16.12,
z=−4.73, p= 2.30 × 10−6) and quadratic terms (β = 6.38, z =
2.02, p = 0.04). Results from the transitional model show
that there is a U-shaped relationship in the raw model and
model fits, with the quadratic trend being statistically significant
(β = 14.49, z= 6.72, p= 1.78 × 10−11). However, this pattern
disappears when other variables are controlled (electronic
supplementary material, appendix S5 and S6).
4. Discussion
Humans do not indiscriminately absorb any information they
encounter. Instead, we preferentially seek out information
that is maximally useful [1,2,8,32]. This regulated infor-
mation-gathering strategy favours moderately surprising
events, resulting in an inverse-U-shaped pattern between
event surprisal and engagement. Here we show that this pat-
tern, previously only observed in humans [16–19], is also
observed in rhesus macaques, a primate species that diverged
from humans roughly 25 million years ago.

The presence of this pattern in macaques suggests that the
capacity to adaptively seek useful information is not uniquely
human, but instead reflects long-standing evolutionary press-
ures present since at least the time of our last common
ancestor. This is important because a good deal of theorizing
highlights the uniqueness of human curiosity, with the impli-
cation that curiosity is a factor that has driven human
divergence [33]. Our results, then, suggest an alternative
hypothesis that humans and animals share a broad suite of
cognitive adaptations.We suggest that these kinds of cognitive
adaptations can flexibly adapt a primate’s probabilistic beliefs
to changing environmental statistics in order to implicitly
guide learning in a broad range of domains, from learning
about objects [34] to the social world [35,36]. Monkeys differed
from humans in that unigram statistics were more robust pre-
dictors of monkey learners’ behaviours than the transitional
statistics to sequential stimuli [16,17].While it may be tempting
to wonder whether this reflects a species-level difference, this
conclusion is premature and unlikely for several reasons.
First, the macaques we tested had substantial experiences
with tasks for which tracking unigram statistics was more rel-
evant (e.g. k-arm bandit tasks) [22,25,28,30]. Second, previous
work has demonstrated that macaques possess sensitivity to
transitional statistics in other tasks [20,21,37–39]. Thus, further
work with a macaque population with more similar experi-
ences to the human infants would be required to draw strong
conclusions about cross-species differences in unigram versus
transitional statistical sensitivities.

Letting uncertainty guide attention is a broadly useful
organizing principle for learning, including information rel-
evant to avoiding predation and generating social
expectations including those relating to mating. We suspect
that this is likely a feature of intelligent organisms in general
since its utility is not limited to especially social species.
Though we have presented evidence that uncertainty drives
attention in both humans and macaques, we note that uncer-
tainty is not the only driver of attention. Perceptual salience
(e.g. contrast, movement, colour saturation, visual complexity),
social relevance (e.g. faces) and social pressures (e.g. domi-
nance hierarchies, social familiarity) also guide attention [40–
42]. Further work will be needed to determine to what
degree each of these pertinent attentional drivers relatively
influences attention across species, and how species-specific
needs and pressures might influence their relative importance.
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Endnotes
1In this paradigm, the events occurred temporally predictable
(every 1500 ms), with no breaks between. Thus, these predictive
looks differ from those elicited in most predictive-looking paradigms,
where delays between events specifically encourage predictive
looking.
2In this version, sequences kept unfolding nomatterwhether themaca-
ques were looking. This is different from the human infant paradigm,
in which infants could terminate the displays with their inattention.
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