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autonomic cardiac neurons have a common origin in the neural 
crest but undergo distinct developmental differentiation 
as they mature toward their adult phenotype. progenitor 
cells respond to repulsive cues during migration, followed 
by differentiation cues from paracrine sources that promote 
neurochemistry and differentiation. when autonomic axons 
start to innervate cardiac tissue, neurotrophic factors from 
vascular tissue are essential for maintenance of neurons before 
they reach their targets, upon which target-derived trophic 
factors take over final maturation, synaptic strength and 
postnatal survival. although target-derived neurotrophins 
have a central role to play in development, alternative sources 
of neurotrophins may also modulate innervation. Both 
developing and adult sympathetic neurons express proNGF, 
and adult parasympathetic cardiac ganglion neurons also 
synthesize and release NGF. The physiological function of 
these “non-classical” cardiac sources of neurotrophins remains 
to be determined, especially in relation to autocrine/paracrine 
sustenance during development.

cardiac autonomic nerves are closely spatially associated 
in cardiac plexuses, ganglia and pacemaker regions and so 
are sensitive to release of neurotransmitter, neuropeptides 
and trophic factors from adjacent nerves. as such, in many 
cardiac pathologies, it is an imbalance within the two arms of 
the autonomic system that is critical for disease progression. 
although this crosstalk between sympathetic and parasympa-
thetic nerves has been well established for adult nerves, it is 
unclear whether a degree of paracrine regulation occurs across 
the autonomic limbs during development. aberrant nerve re-
modeling is a common occurrence in many adult cardiovascu-
lar pathologies, and the mechanisms regulating outgrowth or 
denervation are disparate. However, autonomic neurons dis-
play considerable plasticity in this regard with neurotrophins 
and inflammatory cytokines having a central regulatory func-
tion, including in possible neurotransmitter changes. certainly, 
neurotrophins and cytokines regulate transcriptional factors in 
adult autonomic neurons that have vital differentiation roles 
in development. particularly for parasympathetic cardiac gan-
glion neurons, additional examinations of developmental reg-
ulatory mechanisms will potentially aid in understanding at-
tenuated parasympathetic function in a number of conditions, 
including heart failure.
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Introduction

Sympathetic and parasympathetic branches of the cardiac auto-
nomic nervous system (ANS) work in a reciprocal fashion to 
modulate heart rate (chronotropy) and conduction velocity 
(dromotropy) primarily through actions on cardiac pacemaker 
tissue. In addition, sympathetic nerves innervate atrial and ven-
tricular cardiomyocytes and can thereby influence force of con-
traction (inotropy) and relaxation (lusitropy).1-8 Postganglionic 
cardiac sympathetic neurons have their cell bodies primarily in 
the paravertebral stellate (inferior-middle cervical) ganglion neu-
rons (Fig. 1); 92% of retrogradely-labeled nerves from the heart 
have their origins in this ganglion.9,10 These sympathetic neurons 
primarily utilize norepinephrine as their principal neurotrans-
mitter, although other neuropeptides, such as neuropeptide Y 
(NPY) and galanin, are also co-released from sympathetic termi-
nals.11,12 Among other functions, NPY and galanin decrease ace-
tylcholine release from adjacent parasympathetic terminals.13-16 
Parasympathetic neurons receive pre-ganglionic inputs from 
the vagus and have their cell bodies within the cardiac ganglia  
(Fig. 2). The mammalian cardiac ganglia are arranged in discrete 
locations within the atrial epicardium closely associated with epi-
cardial fat, in ganglionated plexi along the walls of the major 
cardiac vessels, and some are also present within the ventricular 
wall.17-22 The primary neurotransmitter in cardiac ganglion neu-
rons is acetylcholine; however, like the sympathetic nerves, neu-
ropeptides such as vasoactive intestinal polypeptide (VIP) may 
also be co-released from parasympathetic terminals, as is nitric 
oxide.3,23-25 Parasympathetic attenuation of heart rate is effected 
primarily through hyperpolarization of nodal tissue, both sino-
atrial and atrio-ventricular.

For heart rate control, the close physical proximity of post-
ganglionic cardiac parasympathetic and sympathetic axons in 
pacemaker regions allows formation of axo-axonal synapses and 
reciprocal modulation of function, through either acetylcholine 
inhibition of norepinephrine release or vice versa.3,26-31 Despite 
mutual modulation, vagal influences on the sinus node predomi-
nate over sympathetic effects; however, vagally induced brady-
cardia is greater in the presence of tonic sympathetic stimulation. 
Hence, the concept of accentuated antagonism has emerged to 
define the functional relationship between these systems.3,13,28

An additional layer of complexity within peripheral autonomic 
limb interactions lies in the intrinsic cardiac nervous system. In 
addition to a simple relay function for conveying preganglionic 
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plexus. In contrast, ablation of the right atrial ganglionated 
plexus attenuates vagal bradycardia while retaining vagal inhibi-
tion of sympathetic function.35,38 Indeed, Armour and colleagues 
have demonstrated that local circuit neurons, those that do not 
project their axons beyond the ganglion, constitute a majority 
of the neurons in the mammalian cardiac ganglion.35,39 Cardiac 
ganglia therefore represent an important site for investigations 
into peripheral autonomic interactions.

The development of cardiac autonomic innervation has four 
distinct phases; neural crest cell (NCC) migration to the dorsal 
aorta, differentiation of NCCs into neurons, aggregation/migra-
tion of neurons to form either the paravertebral sympathetic 
chains or the parasympathetic cardiac ganglia, and finally exten-
sion of axonal projections into cardiac tissue and terminal differ-
entiation. Throughout this period, extending into early postnatal 
life, autonomic neurons and their precursors display substantial 
plasticity. From a developmental perspective, as autonomic con-
trol matures, there can be serious consequences for the fetus/
infant if blood pressure and heart rate are unduly perturbed. In 
normal infants, sympathetic cardiac control decreases with post-
natal age and parasympathetic control over heart rate increases.40 
Conversely, in preterm infants, since maturation is incomplete, 
blood pressure and heart rate control are impaired and may be 
causative in sudden infant death syndrome.40-42 Preterm/low 
birth weight infants also have an increased risk of developing 
hypertension, coronary heart disease and ischemic heart disease 
in adulthood.43-46 Although a link with cardiac autonomic con-
trol has not been established for this group of at risk children, the 
ANS may be causative in a number of childhood cardiovascular 
disease states as it certainly is in adulthood. For example, it has 
already been demonstrated that increased cardiac sympathetic 
activation and parasympathetic depression occurs in low-income 
children47 and children with sickle cell anemia.48 Certainly, 
adult rat offspring of either nutritionally-deprived mothers,49 or 
obese mothers,50 have elevated sympathetic tone that manifests 
in increased blood pressure and heart rate. Similarly, in geneti-
cally hypertensive rats, significant sympathetic acceleration of the 
heart is observed in the early postnatal period (P4) suggesting a 
possible mechanism for subsequent hypertension development.51 

vagal impulses, integration of parasympathetic, sensory and sym-
pathetic inputs via local circuit neurons occurs within cardiac 
ganglia. This level of integration has been studied in detail and is 
critical for allowing the formation of rapid temporal reflexes that 
can enable local regulation of heart rate on a beat-to-beat basis.32-35  
Key to this integration, aside from intraganglionic crosstalk, are 
interganglionic connections and descending inputs.36,37 Axo-
somatic connections between sympathetic nerves and para-
sympathetic neurons also mediate prejunctional autonomic 
interactions within the cardiac ganglia;35 for the right atria these 
interactions involve neurons in the posterior atrial ganglionated 

Figure 1. Sympathetic stellate ganglion; most cardiac-projecting neurons have their origins in this ganglion. Developmental profile with immuno-
histochemistry for the noradrenergic marker tyrosine hydroxylase (TH, green) in sheep. Sheep sympathetic neurons express TH by e100 with more 
prominent expression by e129; staining is localized in neuronal cytoplasm (white arrowheads) and within nerve bundles and fibers (gray arrowheads) 
at all ages examined (Jonker S et al., unpublished data). Scale bar is 200 μm.

Figure 2. parasympathetic cardiac ganglion. immunohistochemical 
staining in an adult rat cardiac ganglion for cholinergic marker vesicular 
acetylcholine transporter (vachT, red) and catecholaminergic marker 
tyrosine hydroxylase (TH, green). Neurons stain in the soma for vachT 
(white arrowhead) and also receive input from cholinergic pre-gangli-
onic terminals (small varicosities around cell bodies). Small intensely 
fluorescent (Si, gray arrows) cells are catecholaminergic and believed to 
function as inter-neurons; here SiF cells make contact with each other 
and with a cholinergic neuron (Moses M et al., unpublished data). Scale 
bar is 50 μm.
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Migration of sympathetic progenitor NCCs to the dorsal 
aorta involves additional repulsive cues through signaling from 
the transmembrane protein neuropilin. Neuropilin 1 (NRP1) 
binds to either semaphorin 3A (SEMA3A) or to an isoform of 
the vascular endothelial growth factor receptor, termed VEGF
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in mice. Pertinent to sympathetic neuron precursors, Nrp1 and 
Sema3a-null mice have defective trunk NCC migration result-
ing in formation of both ectopic sympathetic ganglia and a mal-
formed stellate ganglion.79-81 There are functional consequences 
for abnormal sympathetic ganglion formation in Nrp1 and 
Sema3a-null mice, including sinus bradycardia in these mice.82,83 
Importantly, the repulsive role of SEMA3A continues through-
out developmental axonal patterning in the heart, and is believed 
to be causal in the epicardial to endocardial gradient of cardiac 
sympathetic nerves,8,84 probably through semaphorin receptors 
A3 and A4 expression on sympathetic axons.65,81,85

Cardiac parasympathetic system. NCCs destined for the heart 
and parasympathetic cardiac ganglia delaminate from the neural 
folds at the level of the hindbrain. In contrast to the sympathetic 
ganglia, NCCs destined to form parasympathetic cardiac ganglia 
do not migrate only in the rostral part of somites, and can run 
either through the somites or lateral to them; these NCCs do not 
aggregate at the dorsal aorta but enter the heart along tracts laid 
down by the vagus nerve.63,86-88 At a temporal level, in both avian 
and mammalian embryos, parasympathetic NCCs precede the 
arrival of sympathetic innervation, and parasympathetic inner-
vation is functional before that of the sympathetic system.29,89-92 
Although evidence for guidance cues for cardiac ganglion pre-
cursors is lacking, NCCs that make up this ganglion also con-
tribute to development of the outflow tracts and aortic arches 
(the cardiac neural crest).60,93,94 It is highly instructive that the 
semaphorin receptor, plexinA2, is expressed by this subset of car-
diac NCCs, and that in mice lacking semaphorin 3C, congenital 
heart conditions exist including an interrupted aortic arch and 
persistent truncus arteriosus.78,95 Although the role of the plex-
inA2-semaphorin 3C axis has not been delineated for NCCs des-
tined to be cardiac ganglion neurons, the available data suggests 
that, unlike sympathetic precursors for whom semaphorins serve 
as repulsive cues, cardiac ganglion-destined NCCs may actually 
rely on semaphorins for attractive cues during their migration. 
A role in cardiac ganglion precursor migration has also been 
suggested, but not confirmed, for the neural adhesion protein 
HNK1 (human natural killer-1/CD57);96 however, it is evident 
that there is scope for more research in this regard.

Differentiation of cardiac autonomic neurons. Cardiac sym-
pathetic neurons and progenitors. NCCs aggregate and differenti-
ate in the vicinity of the dorsal aorta before their final migration 
to paravertebral sympathetic ganglion sites. Bone morphoge-
netic proteins (BMPs), released from smooth muscle cells of the 
dorsal aorta, initiate a chain of transcriptional events in NCCs 
that cause terminal differentiation through expression of neu-
ronal specific genes and those associated with a noradrenergic 
phenotype. The evidence for BMPs central role in NCC dif-
ferentiation is comprehensive; in exquisite studies, Rohrer and 
colleagues showed that implanting noggin (BMP4–7 inhibitor)-
releasing beads in avian embryos caused an interruption in NCC 

Altered autonomic maturity in infancy may therefore have long-
lasting consequences, and this is an expanding field of study.

Although deficits in cardiovascular regulation can occur at 
all levels of neuronal control, there is increasing appreciation 
that aberrant nerve growth and plasticity in the effector cardiac 
nerves may have major roles in many cardiac disease processes. 
Intriguingly, many of the neuroplastic alterations observed in 
adult cardiac ANS neurons can be traced back to various stages 
in their development, so the importance of further delineating 
ontogenetic pathways for these neurons is of substantial impor-
tance for future translational studies. This is particularly true 
for parasympathetic cardiac ganglion neurons for which devel-
opmental mechanisms have not been worked out as well as for 
cardiac sympathetic neurons. The focus of this review is on the 
postganglionic ANS neurons and not on central and descending 
ANS pathways, which constitute a separate topic. I hope to dem-
onstrate, however, that plasticity in adult postganglionic cardiac 
neurons is a robust phenomenon that can be linked to develop-
mental pathways, and that is amenable therefore to physiological 
manipulations for reversing altered autonomic tone in conditions 
as varied as the metabolic syndrome, congestive heart failure and 
arrhythmia generation.

Development of Cardiac Autonomic Innervation

Migration of neural crest cells and ganglia formation. Cardiac 
sympathetic system. Although the primitive human heart starts to 
beat at 21 to 22 d, heart development continues to day 50, and 
it is near the end of this period, during the fifth week, that tho-
racic neural crest cells migrate from the neural tube through the 
somites and form aggregations (ganglia) near the dorsal aorta.52 
The initial NCC migration, subsequent differentiation, neuronal 
migration and ganglia formation, and axonal projections to tar-
get tissue and terminal differentiation, have all been reviewed in 
recent years53-65 and are only briefly summarized here.

The NCCs are derived from the dorsal part of the closing neu-
ral tube under the ectoderm. Migration of trunk NCCs (destined 
to be sympathetic neurons) along a ventral pathway occurs with 
migration restricted to the rostral portion of each somite allow-
ing subsequent metameric patterning.66-68 The migration of these 
NCCs is restricted to the ventral route through expression of 
repulsive cues such as ephrinB1 on the caudal side of the somites, 
and its receptor (EphB2) on NCCs.69-71 These progenitor cells 
become fate-restricted within 30–36 h post-migration.72 Once 
at the region dorsolateral to the developing dorsal aorta, a final 
migration of cells occurs either in the rostral or caudal directions 
in order to make up the paravertebral sympathetic chain followed 
by a period of rapid mitosis.73-75 Final migration of cells that con-
stitute paravertebral sympathetic ganglia may be directed by a 
member of the glial cell line-derived neurotrophic factor (GDNF) 
family, artemin,55,76-78 which is expressed both in the dorsal aorta 
and along major vessels along which sympathetic axons grow. The 
patterning of discrete sympathetic ganglia involves Eph-ephrin 
repulsion as occurs with NCC migration from the neural tube; in 
addition, adhesive cell-cell contacts at ganglia sites occur through 
N-cadherin expression by the sympathetic progenitor cells.69
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Establishment of myocardial innervation occurs at different times 
depending on the species investigated. In rats and rabbits there 
are essentially no cardiac sympathetic fibers before birth, how-
ever, in guinea pigs and sheep innervation is established in the 
fetal heart (E85 onwards in sheep).124,125 These structural studies 
also agree with pharmacological observations in fetal/neonatal 
sheep and pigs demonstrating progressive increases in parasym-
pathetic regulation of basal heart rate.126-129 In seminal studies, 
it was demonstrated that functional control of heart rate in the 
atria by sympathetic nerves is established by P2 in rats; however, 
sympathetic tone becomes progressively weaker (maximal heart 
rate at P8) as the parasympathetic system matures close to wean-
ing (P24).130 Similarly, in sheep, the resting heart rate declines 
postnatally, due to increased parasympathetic activity, reaching 
the resting adult rate by the eighth week.131,132 Establishment of 
heart rate control in humans displays a similar developmental 
profile to that in sheep.40

Sympathetic axonal outgrowth and patterning. A decrease in 
sensitivity to NE is observed in both atria and ventricles from 
developing rats after onset of sympathetic innervation, indicating 
that sympathetic nerves actively regulate agonist sensitivity.133,134 
The basis for increased sensitivity to catecholamines prior to 
innervation is that in the postnatal period, and certainly earlier 
in embryonic development, heart rate control is effected through 
additional sources, including catecholamines from the adrenal 
medulla and possibly extra-adrenal chromaffin tissue.130 Although 
not a focus of this review, it is important to note that the embry-
onic heart has an absolute dependence on catecholamines prior to 
development of functional sympathetic innervation (dependency 
from E9.5–13.5 in the mouse; equivalent to 4–6 weeks after fertil-
ization in humans).135-139 As an aside, the β-adrenoceptor agonist 
isoproterenol can cause cardiac hypertrophy in both developing 
and adult rats140,141 confirming an intimate two-way trophic rela-
tionship between nerves and cardiomyocytes. Intrinsic cardiac 
adrenergic (ICA) cells may be the source of catecholamines, pri-
marily epinephrine, in the developing rodent and human heart 
and contribute up to one-third of total cardiac epinephrine con-
tent.139,142,143 The neonatal rat heart has functional α1 in addition 
to β adrenergic receptors, allowing broad responsiveness to epi-
nephrine, particularly for α1-promotion of myocardial hypertro-
phy, with β1 adrenergic receptor control of heart rate increasing 
with postnatal age.139,144,145 Although the fate of ICA cells is not 
certain, some may differentiate into pacemaker cells, however, a 
resident population is potentially the source of adrenergic sup-
port following transplantation.146,147 ICA cells are not believed to 
be of NCC origin and are distinct from small intensely fluores-
cent (SIF; Fig. 2) cells that populate autonomic ganglia and may 
function as interneurons.148-150

Trophic factor control over outgrowth and survival of cardiac 
sympathetic neurons. The modulation by neurotrophic proteins, 
released from targets and exerting control over innervating post-
mitotic neurons, occurs late in development, typically in the 
immediate pre- and post-natal periods. However, it is not only 
the end targets that can secrete neurotrophins, indeed neuro-
trophin-3 (NT-3) is secreted from blood vessel smooth muscle151 
as sympathetic nerves “piggy-back” on the vasculature to reach 

differentiation.53,56,97 Similarly, BMP-2 is expressed in the murine 
dorsal aorta and increases both the rate and extent of NCC dif-
ferentiation.98,99 Transcriptional factors are activated in a distinct 
sequence in avian NCCs, with some responsible for neuronal 
differentiation and others for acquisition of catecholaminergic 
traits. Of significant importance among these transcriptional 
factors is the homeodomain protein Phox2b whose elimination 
interrupts development of most of the peripheral nervous system 
in mice.100 In addition to Phox2b, Ascl1/Mash1/Cash1, Phox2a, 
Gata2/3 and Hand2, all have distinct roles in differentiation. 
Ascl1 has been implicated in development of neuronal markers 
for both sympathetic and parasympathetic CG neurons,99,101,102 
Phox2a, and Phox2b, are positive regulators for expression of 
the noradrenergic synthesizing enzyme dopamine β-hydroxylase 
(DBH),103-105 Gata3 is vital for tyrosine hydroxylase (TH; rate-
limiting enzyme in NE synthesis) expression,106-108 and Hand2 
is essential for maintaining the catecholaminergic phenotype in 
development109-113 and in adults.114 In addition to broad control 
exerted by dorsal aorta BMPs over these transcription factors, a 
degree of cross-regulation exists, including repression of Ascl1 by 
Hes genes, which are effectors of Notch signaling.115 In addition, 
a role for microRNAs in the differentiation of sympathetic NCCs 
has recently been proposed; deletion of the microRNA-process-
ing gene Dicer in mouse embryos causes severe hypoplastic sym-
pathetic ganglia in E15 but not E11-E13 embryos.116 These data 
suggest that microRNAs are not involved in the initial forma-
tion of sympathetic ganglia but are required for neuronal survival 
once NCCs have begun the process of terminal differentiation. A 
similar role of GDNF has also been recently suggested for murine 
sympathetic NCC precursors (starting at E13), with GDNF syn-
thesized from NCCs promoting autocrine/paracrine survival of 
sympathetic progenitors.117 Further, Krieglstein and colleagues117 
also provide evidence for a limited survival-promoting effect of 
GDNF in cultured neonatal sympathetic neurons.

Cardiac parasympathetic neurons and progenitors. Although 
parasympathetic cardiac ganglia follow similar developmen-
tal mechanisms to sympathetic neurons, such as BMP-induced 
transcriptional differentiation cascades, there are some funda-
mental differences. Neither Gata3 nor Hand2 are expressed by 
developing cholinergic parasympathetic ciliary ganglion neu-
rons.109,118,119 Similarly absent are the transcription factors AP-2β 
and HoxB856,120 that are expressed in migrating NCCs and are 
involved in promotion of DBH and NE.121,122 Extrapolating these 
findings to the cardiac ganglia may not be accurate, however, as 
parasympathetic ganglia do have differences in their differentia-
tion mechanisms in comparison to other parasympathetic gan-
glia. A notable example in this regard is that cardiac ganglia are 
normal in Phox2a null mice, in stark contrast to the cranial pter-
ygopalatine and otic parasympathetic ganglia that are absent in 
these mice.123 A rostral-caudal gradient for Phox2a dependency 
has been suggested by the authors to explain this finding; how-
ever, it remains to be determined what other developmental pro-
grams additionally regulate cardiac ganglion neuronal survival 
and differentiation.

Cardiac-derived control over neuronal survival and out-
growth. Establishment of functional cardiac autonomic control. 
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sympathetic nerves reach their ventricular targets at E12 when 
NGF first becomes detectable; NGF levels then rapidly increase 
reaching adult levels by E14.160 However, NGF levels are not 
static after E14, with a decline at birth (E18/P0) followed by a 
second peak (P8) then decreasing and stabilizing back to adult 
levels by P21. Sympathetic neurons in the first postnatal week 
compete for target-derived NGF, as NGF levels in the immedi-
ate postnatal period, despite fluctuations, are still subsaturating, 
with apoptosis occurring for those neurons unable to obtain suf-
ficient levels of NGF.161-166 In addition to neuronal survival, NGF 
also enhances synaptic strength between sympathetic neurons 
and neonatal cardiomyocytes by promoting the formation of 
terminal varicosities.167,168 Intriguingly, NGF may also modulate 
β3-adrenergic receptor expression by cardiomyocytes, a find-
ing with possible ramifications for arrhythmia generation169 as 
β3-adenoceptor expression is increased in some cardiac patho-
logical states. NGF is thus essential for many aspects of sympa-
thetic neuronal maturation.

Initiation of NGF expression by cardiomyocytes may occur 
from factors released by the innervating axons; however, a 
prominent role for endothelin-1 has been recently identified. 
Endothelin-1 promotes cardiomyocyte NGF expression and 
endothelin-1-deficient mice have substantial reductions in stellate 
ganglion neuron numbers (55% of wildtype in E18.5 embryos), 
cardiac innervation and cardiac norepinephrine content.170 
Cardiac NGF levels in endothelin-1-deficient mice decrease 
from E15.5–18.5, corresponding with decreased stellate ganglion 
numbers and restriction of sympathetic nerves to the ventricular 
epicardium. However, these defects can be reversed with cardiac-
specific overexpression of NGF in endothelin-1-deficient mice.170

With regard to cardiac sources of NGF, vascular smooth mus-
cle and cardiomyocytes have been the focus of most investigators; 
however, there may also be alternative sources. The sympathetic 
neurite-promoting role of Schwann cells/support cells/glia 
through NGF synthesis has been examined, particularly after 
injury.171-174 We have demonstrated that, in addition to synthe-
sis by support cells, NGF is synthesized and secreted from neu-
ronal soma of developing and adult rat sympathetic neurons.175 
Levels of NGF transcripts are low in late embryogenesis (E17), 
peak in postnatal rats (P0–28) before decreasing to adult lev-
els. Although NGF transcripts are demonstrable in sympathetic 
neurons in this study, both tissue content and neuronal secretion 
analysis indicate that the predominant form of NGF expressed 
are high molecular weight pro forms of the protein. Despite 
abundancy of proNGF in sympathetic neurons, the 13.5 kDa 
is still present suggesting some intracellular processing occurs; 
however, most cleavage of NGF occurs extracellularly and our 
data are consistent with this concept. The physiological signifi-
cance of neuronally derived NGF remains to be determined for 
developing sympathetic neurons and will be addressed further in 
the adult plasticity section “Mechanisms for sympathetic nerve 
growth; NGF from alternate sources.”

Cardiac parasympathetic innervation development. 
Parasympathetic innervation in the avian and rat heart precedes 
that of the sympathetic system, with nerves arriving shortly 
before birth (E19 in rats).28,29,176 Neuroeffector transmission for 

diverse targets including the heart. In NT-3 null mice, cardiac 
projecting axons from the stellate ganglion are shorter, and indeed 
sympathetic axons are not observed in the heart at E15.5–16.5.152 
Once sympathetic axons reach the heart, dependency on NT-3 
switches to the prototypical neurotrophin, nerve growth factor 
(NGF). Of interest in this regard is that both NT-3 and NGF 
are essential for local axonal growth of post-mitotic sympathetic 
neurons; however, while both neurotrophins utilize the TrkA 
receptor for this function, NT-3 is unable to initiate survival-
promoting retrograde signaling through TrkA.152,153 Pertinent to 
the epicardial-to-endocardial gradient of sympathetic ventricu-
lar coronary innervation, Mukouyama and colleagues154 have 
recently provided some fascinating insight in this regard for the 
developing mouse heart. A two-stage process is involved; first an 
initial phase of NGF-directed nerve growth occurs (E13.5–15.5) 
along large diameter venous subepicardial vessels, nerves grow 
first along the dorsal aspect of the ventricles followed by inner-
vation of more ventral epicardial areas. NGF expression within 
venous smooth muscle is then decreased as deeper arteries now 
increase smooth muscle NGF synthesis (E16.5–17.5), thereby 
facilitating arterial and myocardial innervation, and establishing 
the epicardial-to-endocardial gradient.154

In addition to NGF and NT-3, artemin,76,77,155 a member of 
the GDNF family, and endothelin-3156 are also important in sym-
pathetic axonal guidance to their targets and have been recently 
commendably reviewed.55 In parallel with neurotrophin-directed 
nerve ingrowth, the neural chemorepellent semaphorin-3A is 
expressed strongly in the subendocardium of the mouse heart 
(E12–15) before being downregulated by P42.81 Semaphorin-3A 
may therefore work in concert with NT-3/NGF for patterning 
of the heart including the epicardial-to-endocardial innervation 
gradient. Functionally, semaphorin-3A−/− mice have sinus brady-
cardia and premature ventricular contractions (PVCs), whereas 
mice overexpressing semaphorin-3A in cardiomyocytes display 
inducible ventricular tachyarrhythmias.81 The aberrant innerva-
tion pattern in semaphorin-3A−/− mice is probably causal in the 
increased incidence of PVCs in these mice. In the semaphorin-3A 
overexpressing mice, sympathetic ventricular innervation is nor-
mal in the subepicardium but substantially reduced in the suben-
dothelium, a pattern inverse to that of semaphorin-3A expression. 
Intriguingly, in sensory neurons, the pan-neurotrophin receptor 
p75NTR is able to interfere with semaphorin-3A activity, by act-
ing as a competitive inhibitor to semaphorin-3A receptors, and 
thereby reducing functional semaphorin-receptor complexes.157 
Of interest for cardiac-projecting sympathetic neurons is the 
demonstration in p75NTR−/− mice, of a ventricular innervation 
pattern similar to that observed in semaphorin-3A overexpress-
ing mice,158 suggesting that in the absence of p75NTR, sympa-
thetic innervation is more responsive to disruptive cues from 
semaphorin-3A.65,158

Sympathetic neuronal survival. Once sympathetic nerves reach 
their targets in the heart, target-derived NGF plays a critical 
role in neuronal survival, patterning and synaptic strength. The 
level of NGF in the adult mouse heart corresponds to extent of 
sympathetic innervation, with atria having higher protein and 
RNA levels than ventricles.159 In the developing mouse heart, 
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autocrine/paracrine factor197-199 after demonstrating NGF tran-
scripts and protein within adult rat parasympathetic pterygo-
palatine and cardiac ganglion neurons. Recently, high frequency 
electrical stimulation in adult canines has been shown to induce 
a number of neurotrophins in cardiac ganglion neurons of the 
interatrial ganglionated plexus, and this neurotrophin upregu-
lation is accompanied by increases in soma size, increased ace-
tylcholine release (NT-3 mediated) and increased outgrowth in 
culture (NGF-mediated).200 I will address the issue of autocrine/
paracrine release of neurotrophins from cardiac autonomic neu-
rons later (“Mechanisms for sympathetic nerve growth; NGF 
from alternate sources”); however, it is clear that, aside from 
GDNF family members, members of the neurotrophin family 
may also regulate cardiac ganglion neurons in development and 
into adulthood.

In addition to target-derived factors patterning cardiac auto-
nomic nerves, nerves in turn can also influence development of 
coronary vessels, including both patterning and differentiation, 
primarily through release of vascular endothelial growth factor-A 
(VEGF-A; reviewed by refs. 201 and 202). In contrast, VEGF 
can also act as a neurotrophic factor, and NGF/BDNF/NT-3 
as trophic factors for vascular smooth muscle, endothelial cells, 
and cardiomyocytes (reviewed by refs. 203–205), suggesting 
multiple levels of cross-regulation for both angiogenic and ner-
vous patterning. Although this area is not a focus of this review, 
I would draw particular attention to the findings of Hempstead 
and colleagues206 showing that in mice with a knockout of the 
trkC neurotrophin receptor (specific for NT-3 signaling), heart 
development is grossly abnormal including presence of valvular 
and septal defects, pulmonic stenosis and a globular heart.

Adult Plasticity in Cardiac Autonomic Neurons

Sympathetic plasticity in the heart. Sympathetic neuronal 
remodeling has been implicated in a number of cardiovascu-
lar disease states. Aside from structural changes, alterations in 
neurochemistry and in activity can also occur. The concept of 
sympathetic overactivity, usually accompanied by reduced para-
sympathetic activity and heart rate variability, is increasingly 
recognized as a feature in the pathogenesis of a number of cardio-
vascular pathologies and has been reviewed recently.207-209 From 
a clinical perspective, central-acting sympatholytic drugs, such 
as moxonidine and rilmenidine, have beneficial effects on blood 
pressure control in hypertensive patients by reducing central sym-
pathetic outflow.210,211 Beta-adrenergic blockade in post-infarct 
and heart failure patients has also shown clear clinical benefits, 
partly through targeting of excessive cardiac norepinephrine 
release. There is increasing appreciation of β-blockers for pre-
venting sudden cardiac death, atrial fibrillation and arrhythmias 
in patients with underlying cardiovascular disease (clinical ben-
efits reviewed by refs. 208 and 212–216).

Sympathetic nerve growth contribution to arrhythmia generation. 
Side effects of conventional drugs that target the sympathetic 
system may involve perturbations in cardiac nerve plasticity. 
Recently, the β2-adrenoceptor agonist, terbutaline, used illicitly 
for management of preterm labor, was shown to attenuate cardiac 

the parasympathetic system is established in the rat heart by 
E21 with higher transmission in atria than ventricles, and para-
sympathetic activity increases with postnatal age reaching adult 
levels by P14,176 similar to what has been mentioned earlier for 
other species. In the frog heart, cardiac ganglion neurons do not 
undergo postnatal programmed cell death in order to match neu-
rons to target, as occurs in the sympathetic system.177 Instead, 
cardiac cells tightly regulate neuronal growth and proliferation, 
presumably through release of neurotrophic factors. In the frog 
cardiac ganglion, SIF cells are derived from similar NCC cells 
and appear at the same time as parasympathetic progenitors, 
however, the rate of proliferation is faster for neuronal progeni-
tors and early on a 10 to 1 ratio is established that continues into 
adulthood.178 Similarly in rat sympathetic ganglia, SIF cells are 
first observed at E13 with numbers declining postnatally before 
increasing from P14–21 to adult levels.179,180 The parallel develop-
ment and migration of SIF cells with their neuronal counterparts 
suggests that the interneuron role of these cells is crucial for opti-
mal autonomic ganglion function.

For cardiac parasympathetic innervation, GDNF and neur-
turin (a member of the GDNF family) are involved in both 
trophic support and patterning of innervation. GDNF and neur-
turin signal by first binding to their cognate receptors, GFRα1 
and α2 respectively, and then forming a complex with the c-Ret 
tyrosine kinase (ret).181-183 Cranial parasympathetic ganglia are 
dependent on GDNF for survival early in development then 
switch dependency to neurturin by postnatal day 0.184 Similarly, 
a central role of neurturin in the development and maintenance 
of cardiac ganglion neurons has been demonstrated from the 
use of ret or neurturin knockout mice.185 Neurturin knockout 
mice have reduced numbers and size of cardiac ganglion neurons, 
reduced sinoatrial node innervation, attenuated atrial acetylcho-
line content and attenuated bradycardiac responses to vagal stim-
ulation.186,187 Although neuronal loss in adult neurturin knockout 
mice is appreciable, about 35% of cardiac ganglion neurons sur-
vive and these may have parallel trophic factor dependencies, 
either to other members of the GDNF family,184,188 or to addi-
tional trophic factors.

Aside from members of the GDNF family, what alternative 
neurotrophic factors may also modulate cardiac parasympa-
thetic neurons? In this regard, a novel finding recently was the 
demonstration of neurotrophic receptors TrkA and p75NTR on 
mouse cardiac ganglion neurons.189 Although p75NTR−/− mice 
have normal atrial innervation and acetylcholine content and 
release,190,191 there may be a trophic role of NGF or NT-3 on 
these neurons. Certainly, in non-cardiac parasympathetic neu-
rons, a role for non-GDNF family neurotrophins is well estab-
lished. For example, NT-3 can promote outgrowth from pelvic 
ganglion parasympathetic neuronal explants192 and these neurons 
upregulate cholinergic markers, including the neuropeptide VIP, 
when treated with NGF in culture.193 NGF also increases excit-
ability of airway parasympathetic neurons and augments den-
dritic growth.194 From a developmental perspective, the mouse 
parasympathetic ciliary ganglion displays neuritogenesis in cul-
ture that is NGF-responsive from E6–11.195,196 We postulated 
that cardiac parasympathetic neurons may utilize NGF as an 
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peri-infarct area and NGF-synthesizing inflammatory cells, 
including macrophages and modified fibroblasts known as myo-
fibroblasts.249-251 In explant culture, neuritogenesis from cardiac 
sympathetic neurons is markedly increased by peri-infarct myo-
cardium, and this effect is blocked with a function-blocking 
antibody to NGF. In parallel studies, NGF infusion into the left 
stellate ganglion of canines causes ventricular sympathetic nerve 
sprouting252 confirming a role for NGF. NGF upregulation by 
cardiomyocytes is also implicated in sympathetic hyperinner-
vation after myocardial infarction or cardiac hypertrophy.253,254 
Indeed, the cardiac hypertrophic factor endothelin-1 induces 
NGF in cardiomyocytes.170 NGF is thus strongly implicated as 
critical for ventricular sympathetic hyperinnervation; whether it 
has a role in abnormal atrial innervation patterns linked to atrial 
fibrillation remains to be determined.

In addition to sympathetic hyperinnervation in the ventricles, 
shown in a number of models including the human,251,252,255-257 a 
recent finding was that robust and prolonged sympathetic hyper-
innervation also occurs in cardiac-projecting stellate ganglia 
after acute myocardial infarction. Of particular interest in the 
latter study is the demonstration that sprouting occurs for both 
adrenergic and cholinergic axons in the sympathetic ganglion, 
suggesting that potential NGF-responsiveness is not selective 
for neuronal phenotype in this model.258 Although sympathetic 
fibers are the predominant population in the ventricles, at least 
in the porcine heart significant ventricular cholinergic fibers also 
exist.259 Whether some of this ventricular cholinergic innervation 
is actually derived from cholinergic sympathetic neurons remains 
to be determined, but would certainly add an intriguing dimen-
sion to the findings of cholinergic hyperinnervation in the stellate 
ganglia.

Mechanisms for sympathetic nerve growth; NGF from alternate 
sources. A possible parallel mechanism for sympathetic sprout-
ing is through localized NGF-release from the axons themselves. 
As discussed earlier, we showed that NGF is synthesized and 
released by developing and adult sympathetic neurons primar-
ily as the pro isoform.175 Recently, the expression and secretion 
by sympathetic neurons of matrix metalloproteinases,220 capable 
of cleaving proNGF to the mature moiety, as well as neuronal 
NGF upregulation following electrical stimulation,220 suggests 
that NGF release by sympathetic neurons is followed rapidly by 
conversion to the growth-promoting form. Since proNGF pro-
motes sympathetic axonal degeneration in the relative absence 
of the mature moiety,260-262 the NGF/proNGF ratio will direct 
physiological effects. These data certainly raise the fascinating 
possibility that regulation of extracellular cleavage by the neurons 
themselves may be essential for either the pro-growth (NGF-
directed), or potentially pro-apoptotic (proNGF-directed), fate 
of sympathetic neurons in pathological states.

In addition to autocrine/paracrine release of NGF from sym-
pathetic nerves, a non-intuitive source of NGF in the heart is 
from parasympathetic cardiac ganglion neurons. Presynaptic 
release of reciprocal neurotransmitter, acetylcholine inhibition 
by norepinephrine and vice versa, constitutes a critical regulatory 
mechanism for heart rate control.3,13,26,263,264 Sympathetic and 
parasympathetic fibers are closely apposed in effector pacemaker 

sympathetic neuronal development in neonatal rats after mater-
nal agonist treatment.217 In contrast, β-adrenoceptor antagonists, 
used routinely in management of various situations of increased 
sympathetic drive, including hypertension and congestive heart 
failure, cause sympathetic ventricular hyperinnervation in rats.218 
The mechanism for this sympathetic outgrowth appears to be 
through inhibition of β1-adenoceptor autoreceptors that nor-
mally inhibit adult sympathetic axonal growth. Since neuronal 
remodeling can promote arrhythmia generation, an underap-
preciated aspect of β-blocker therapy may be in neuroplastic 
responses of postganglionic sympathetic neurons to these agents.

In addition to pharmacological promotion of sympathetic 
growth, cardiac neuronal remodeling accompanies hypertension, 
post-myocardial infarct remodeling, and heart failure. Indeed, 
Chen and colleagues219 postulated the nerve-sprouting hypoth-
esis of sudden cardiac death in order to link nerve sprouting and 
electrical remodeling. The role of nerve sprouting in the genera-
tion of arrhythmias has been extensively reviewed;38,220-227 so I 
will only touch on some points particularly relevant to the topic 
of this review. A number of studies have demonstrated the pres-
ence of aberrant sympathetic, or indeed parasympathetic, out-
growth in human and canine hearts with atrial fibrillation.228-237 
Recognition that ectopic or reentrant activity occurs at loca-
tions where autonomic fibers aggregate, such as the ligament of 
Marshall,238-240 has allowed ablation therapy, or localized cardiac 
denervation or block, to become a common option for reversing 
atrial or ventricular fibrillation incidence.238,241-244 However, some 
caution in effectiveness of these therapies comes from the residual 
presence of scar tissue or fibrosis that will continue to serve as a 
substrate for arrhythmia generation.245 In addition, a potential 
role of the parasympathetic neuropeptide vasoactive intestinal 
polypeptide was demonstrated for promotion of atrial fibrilla-
tion in a canine model,246 suggesting that pharmacological block 
strategies may need to consider neuropeptides as well as classical 
neurotransmitters.

Foci for ventricular arrhythmia generation are much more 
likely to develop in areas where electrical signaling is discon-
tinuous, such as an area of fibrosis, or where the myocardium is 
hypersensitive to catecholamines due to functional or pathologi-
cal denervation. Consequently, aberrant sympathetic innervation 
will promote heterogeneity in propagation of action potentials 
and thereby be causal in ventricular tachyarrythmias and conse-
quent sudden cardiac death. This mechanism has received strong 
support from studies in canines and humans where correlations 
between ventricular arrythmias and regional cardiac hyperinner-
vation have been demonstrated.219,247

Mechanisms for aberrant sympathetic nerve growth; NGF. Given 
the compelling evidence for a role of sympathetic nerve sprout-
ing in generation of both atrial and ventricular arrhythmias, 
what underlying mechanism could induce this aberrant growth 
pattern? Similarly, partial sympathetic re-innervation occurs in 
the transplanted heart; the mechanisms involved in this nerve 
re-growth phenomenon also remain to be determined.248 NGF 
is the obvious candidate for directing nerve growth. After myo-
cardial infarction we, and others, demonstrated a close spatial 
relationship between hyperinnervating neurons in the ventricular 
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serine/threonine phosphatase calcineurin, all reduce NGF release 
from cultured cardiomyocytes.283 In the progression of heart 
failure, therefore, chronic elevated adrenergic tone and mechani-
cal stretch may be instrumental in attenuating cardiac NGF 
expression.

Sympathetic nerve denervation, inflammatory cytokines and 
parasympathetic function. The role of inflammatory cytokines of 
the gp130 receptor family, including interleukin-6 (IL-6), car-
diotropin-1, leukemia inhibitory factor (LIF) and ciliary neuro-
trophic factor (CNTF), has been examined in depth primarily by 
Habecker and colleagues, who have demonstrated cytokine mod-
ulation of sympathetic function after acute myocardial infarc-
tion. In contrast to chronic coronary artery ligation and rapid 
atrial pacing models, after acute ventricular ischemia-reperfusion 
an elevated level of cardiac cytokines promotes sympathetic 
denervation in peri-infarct areas lateral and apical to the site of 
ligation.284 Cytokines also cause local suppression of norepineph-
rine, tyrosine hydroxylase (TH) and norepinephrine transporter 
(NET) and increase TH degradation.285,286 However, an unex-
pected augmentation in extracellular and plasma norepinephrine 
is also seen in ventricles after ischemia-reperfusion, and coupled 
with increased TH and NET levels in stellate ganglia, suggest that 
cytokines provoke a generalized sympathetic activation despite 
local inhibition of noradrenergic components.287-289 Of particular 
relevance to developmental plasticity is the ability of cytokines 
to modulate transcription factors, like Hand2, that have a role in 
sympathetic neuronal differentiation.290 By altering expression of 
transcription factors involved in neuronal differentiation, inflam-
matory cytokines may cause re-expression of a developmental 
phenotype, akin to that which occurs in cholinergic sympathetic 
neurons that are initially adrenergic.291,292 Although cholinergic 
sympathetic neurons do not project to the heart, and constitute 
only a small proportion overall of sympathetic neurons, it is note-
worthy that in heart failure, transdifferentiation of adrenergic 
neurons into cholinergic neurons, probably through LIF and 
CT-1 activation of gp130 receptors, has been demonstrated in the 
adult rat.293 Whether similar alterations occur in human heart 
failure remains to be determined, and the physiological relevance 
of increased sympathetic cholinergic projections to the heart is 
also unknown. However, increased cholinergic release in heart 
failure may be a positive compensatory mechanism given well-
known beneficial effects of vagal stimulation on cardiac function 
(see Parasympathetic plasticity in the adult heart and therapeutic 
vagal stimulation).

In addition to regulation of sympathetic transmitter synthesis 
and transport, and differentiation of phenotype, inflammatory 
cytokines can also regulate neuropeptide expression within sym-
pathetic neurons. Neuropeptides like NPY and galanin, released 
from sympathetic neurons, can inhibit acetylcholine release from 
co-projecting cardiac parasympathetic nerves.15,16,294-300 Release of 
these neuropeptides in situations of increased sympathetic drive, 
as in heart failure, is likely to additionally contribute to reduced 
vagal/parasympathetic tone in the failing heart. Of potential 
interest in this context is that vagus nerve stimulation reduces 
cytokine release from inflammatory cells.301,302 Although the 
heart has not been a focus of the latter studies, it is certainly 

and conduction areas and we showed that maintenance of this 
spatial association was through NGF synthesis and release by car-
diac ganglion neurons.197-199 Not only did cardiac ganglion neu-
rons express NGF, but this expression was dependent on intact 
sympathetic innervation as cardiac sympathectomy reduced NGF 
synthesis. In recent studies, we demonstrated that β-adrenoceptor 
activation on cardiac ganglion neurons promotes NGF synthesis 
by cardiac ganglion neurons. Further, in congestive heart failure, 
where cardiac autonomic function is dysregulated, NGF expres-
sion by cardiac ganglion neurons is also attenuated suggesting 
disruption of autonomic crosstalk (Hasan W, Smith PG; unpub-
lished data). Is there some relevance here to findings in humans, 
and in experimental models, that NGF levels in the failing heart 
are also attenuated as cardiac NE levels decrease?265-267 There 
certainly seem to be some parallels between these findings and 
additionally, once disruption to sympathetic-parasympathetic 
crosstalk occurs, vagal influences that would normally dampen 
sympathetic outflow may no longer be in a position to effect such 
a change. Maintenance of atrial sympathetic-parasympathetic 
connections in heart failure is probably critical therefore toward 
attenuation of disease progression.

The synthesis of NGF by cardiac sympathetic and parasym-
pathetic neurons is certainly intriguing but does it have a physi-
ological role as compared with the “classical” cardiac sources 
of NGF from cardiomyocytes and vascular smooth muscle? In 
this regard, a recent study by Rana and colleagues220 has dem-
onstrated that cultured sympathetic neurons have 3-fold higher 
protein content of NGF than equivalent numbers of atrial cardio-
myocytes. The authors also showed that electrical field stimula-
tion not only increased NGF expression within the neurons but 
also attenuated the same in the cardiomyocytes. Granted that 
this study220 was performed with neonatal tissue, however, it cer-
tainly provides some food for thought concerning the contribu-
tion of neuronally-derived NGF on promotion of sympathetic 
hyperinnervation.

Sympathetic nerve denervation in heart failure and reduced NGF 
levels. Although cardiac sympathetic hyperinnervation is a robust 
phenomenon in several cardiovascular pathologies, it is also estab-
lished that cardiac autonomic nerves are generally dysfunctional 
as pathology progresses. In situations of myocardial infarction a 
patchy sympathetic re-innervation pattern occurs in the newly 
developed scar;268-270 denervation may occur if the infarct inter-
feres with apical pathways.271 As heart failure develops, sympa-
thetic nerves excessively release NE whereas normal NE re-uptake 
is disrupted, promoting myocardial fatigue.267,272-276 Examination 
of the temporal course of cardiac norepinephrine spillover in 
heart failure patients indicates that sympathetic nerve activity is 
increased earlier and to a greater extent than sympathetic activity 
to other organs.277-279 In part, this increased sympathetic activity 
may be due to a parallel attenuation in parasympathetic tone, 
as withdrawal of parasympathetic inhibition of norepinephrine 
release contributes to greater norepinephrine spillover in cardiac 
tissue as compared with other vascular beds.275,280 Eventually, 
with heart failure progression, reduced NGF expression promotes 
widespread myocardial denervation.265,281,282 Intriguingly, adren-
ergic stimulation, mechanical stretch and the stretch activated 
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progresses to heart failure showing clearly the link between car-
diac nerve activity and heart failure development.329 However, in 
the latter study, it is likely that in addition to the postganglionic 
cholinergic nerves, both preganglionic sympathetic and para-
sympathetic terminals were also affected. In contrast, vagal nerve 
stimulation can be protective against ventricular fibrillation, in 
canines following myocardial ischemia, or in rats undergoing 
heart failure.330-334 Indeed, in a recent small clinical trial, chronic 
vagal nerve stimulation was shown to be safe and efficacious for 
patients with heart failure, patients showing improved left ven-
tricular function.335,336

Although vagal stimulation has had some success in experi-
mental and clinical models, whether alterations occur in post-
ganglionic parasympathetic nerves in cardiac pathologies has 
received scant attention. Some limited evidence exists suggesting 
that neurochemical changes occur in the postganglionic neurons. 
A decrease in acetylcholinesterase, the enzyme responsible for ace-
tylcholine breakdown, has been reported in the sino-atrial node 
of canines with heart failure.337 Acetylcholine and its esterase 
expression are usually regulated in parallel,337 suggesting reduced 
cholinergic neurotransmission in heart failure. Indeed, cholin-
ergic stimulation with pyridostigmine (cholinesterase inhibitor) 
reduces ventricular arrhythmia and enhances heart rate variabil-
ity in patients with heart failure.338 Nitric oxide generated at para-
sympathetic nerve terminals is believed to facilitate acetylcholine 
release;339 in heart failure rats with diminished vagal function, 
decreased neuronal nitric oxide synthase expression has been 
reported in the right atria340 consistent with reduced nitergic, and 
consequent cholinergic discharge, at parasympathetic terminals. 
After explant culture, cardiac ganglion neurons increase expres-
sion of NPY and pituitary adenylate cyclase-activating polypep-
tide (PACAP) possibly due to loss of an inhibitory target-derived 
neurturin effect, demonstrating some neurochemical plasticity in 
adulthood.341,342 Peptides such as PACAP can also enhance the 
excitability of cardiac ganglion neurons suggesting a possible pre-
ganglionic role for PACAP.343 Some level of plasticity is also sug-
gested by the findings of reduced nicotinic sensitivity of cardiac 
ganglion interneurons in heart failure.344 Changes in postgan-
glionic cholinergic neuron neurotransmitter synthesis or release, 
alterations in trophic peptides or proteins, and an alteration in 
the preganglionic input, may contribute to increased plasticity of 
parasympathetic neurons in cardiac disease progression.

Parasympathetic plasticity; role of sympathetic neurotransmit-
ters and peptides. Sympathetic nerves can also influence the neu-
rochemical properties of adjacent parasympathetic neurons. In 
orbital smooth muscle for example, loss of co-projecting sympa-
thetic neurons results in upregulation of catecholaminergic traits 
in cranial parasympathetic neurons.197,345 Neurotransmission is 
also altered in these parasympathetic neurons, from pre-junctional 
inhibition of sympathetic neurotransmission, to forming of stim-
ulatory neuroeffector contacts. Whether similar neuroplasticity 
occurs in cardiac parasympathetic nerves has not been extensively 
examined. We have recently identified a reduction in cholinergic 
traits within adult rat cardiac ganglion neurons following either 
surgical or chemical sympathectomy,199 or indeed in heart failure 
(Hasan W, Smith PG, unpublished data). Sympathetic neurons 

possible that some of the beneficial effects of vagal stimulation 
on cardiac function (addressed in Parasympathetic plasticity in the 
adult heart and therapeutic vagal stimulation) are related to inhi-
bition of cytokine effects on sympathetic function, a somewhat 
contradictory conclusion to that arrived earlier for cholinergic 
differentiation of adrenergic neurons in heart failure. What is 
certainly clear is that sympathetic remodeling has many facets 
and modes of regulation and that interactions with the parasym-
pathetic system are a key component for maintenance of normal 
sympathetic innervation and function.

Autonomic nerve dysfunction in diabetes and obesity. Cardiac 
autonomic neuropathy is a frequent complication of diabetic mel-
litus, and diabetic patients are at high risk for developing arrhyth-
mias, silent myocardial ischemia and sudden cardiac death.303-305 
Autonomic tone is disturbed in diabetic hearts and gets pro-
gressively worse, with reduced parasympathetic tone preceding 
sympathetic effects; resting tachycardia is followed by some 
reduction in heart rate as the sympathetic system gets affected; 
however, an impairment in stress tests develops and eventually 
cardiac denervation results in reduced heart rate variability.303-306 
Significantly, structural remodeling of autonomic nerves in the 
diabetic heart occurs for both arms of the autonomic nervous 
system. The density of sympathetic and parasympathetic fibers is 
reduced in atria from diabetic mice,307 although in nodal regions 
cholinergic innervation may be elevated.308 Sympathetic hyper-
innervation does occur in ventricles from diabetic rabbits after 
myocardial infarction; however the extent of hyperinnervation 
is not as great as in non-diabetic animals.256 Autonomic dysfunc-
tion is also a well-known complication of obesity. Overactivity of 
the sympathetic nervous system, including that to the heart,309-

316 and attenuated parasympathetic vagal tone317-320 is present in 
obese individuals, even when normotensive. Recently, we have 
shown sympathetic hyperinnervation in ventricles (McCully BH, 
Hasan W, Streiff CT, Houle J, Woodward WR, Giraud GD, 
et al.; unpublished data) and parasympathetic and sympathetic 
hyperinnervation in atria (Moses M, Macek A, Hasan W; unpub-
lished data) from obese rats; these rats have an increased risk of 
inducible tachyarrhythmias suggesting that structural remodel-
ing of autonomic nerves is contributory to increased arrhythmia 
incidence in obesity. What may be extrapolated from these stud-
ies is that heterogeneous autonomic innervation is likely causal in 
increased incidence of sudden cardiac death brought on by either 
atrial or ventricular arrhythmias in a number of cardiovascular 
pathologies.

Parasympathetic plasticity in the adult heart and therapeu-
tic vagal stimulation. The sympathetic dysfunction in heart 
failure is accompanied by attenuated baroreceptor-mediated 
bradycardia and hence reduced parasympathetic function.321-323 
As mentioned earlier, attenuated parasympathetic function has 
direct consequences for norepinephrine release; withdrawal of 
parasympathetic inhibition of NE release contributes to greater 
NE spillover in cardiac tissue as compared with other vascular 
beds.275,280 Indeed, reduced vagal activity has a strong associa-
tion with mortality in humans, including for arrhythmia gen-
eration and heart failure.321,323-328 In mice with reduced cardiac 
acetylcholine release, depressed left ventricle function ultimately 
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the cholinergic function in a number of neuronal populations 
including those derived from the neural crest.356-360 In embryonic 
sympathetic neurons, cholinergic differentiation is triggered by 
a synexpression group of neurotrophins including CNTF, NT-3 
and GDNF, whereas NGF maintains the catecholaminergic 
phenotype.361,362 Studies on bimodal neonatal sympathetic neu-
rons that maintain dual neurotransmitter status (adrenergic and 
cholinergic) in co-culture with cardiac myocytes,363 have sug-
gested that BDNF, acting via the pan-neurotrophin p75 recep-
tor, induces a rapid switch in transmission toward acetylcholine 
release.358,364,365 In contrast, CNTF promotes a more gradual 
increase in cholinergic markers within these bimodal sympathetic 
neurons.358 Further, ret signaling is necessary for the maturation 
of cholinergic traits within sympathetic neurons.366 A number of 
neurotrophic proteins can therefore promote a cholinergic pheno-
type; however the relative significance of these trophic proteins 
for cardiac ganglion neurochemistry and function has not been 
extensively examined.

Conclusion

There is strong evidence to suggest that developmental programs 
that govern autonomic nerve differentiation, survival and nerve 
patterning can be re-activated in mature neurons in situations 
of cardiac pathology. The crosstalk between both limbs of the 
autonomic nervous system is critical for maintenance of nor-
mal cardiac rhythm and function. Examination of the mecha-
nisms involved in development of these intimate connections 
will potentially allow therapeutic approaches to be harnessed for 
reversing breakdown in these communications in diseased states.
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therefore intimately regulate the phenotype of cardiac ganglion 
neurons. Our sympathectomy studies suggest that both intrin-
sic and extrinsic adrenergic cardiac sources regulate the cholin-
ergic phenotype. In this context, there is some controversy in 
the literature about the well-documented presence of adrener-
gic markers within cardiac ganglion neurons. Cardiac ganglion 
neurons possess a number of catecholaminergic traits including 
tyrosine hydroxylase, dopamine β-hydroxylase, norepinephrine 
transporter and vesicular monoamine transporter-2.189,199,346,347 
However, there is certainly some species-variability in neuro-
chemistry, and the evidence for a complete adrenergic panel in 
one species is debatable. Based on these data, however, some 
investigators have suggested that a pure adrenergic population, 
or a dual cholinergic/adrenergic population, may reside with cell 
bodies actually present within the cardiac ganglia.17,348-355 At least 
in the rat, we were able to definitively demonstrate that glyoxcylic 
acid histofluorescence for catecholamines was absent from large 
(20–40 μm diameter) cardiac ganglion neurons, but was present 
in small (8–10 μm) intensely fluorescent (SIF) cells.199 It would 
certainly be physiologically significant if, in situations of cardiac 
pathology, parasympathetic neurons were able to functionally 
switch to a dual cholinergic/adrenergic or even a pure adrenergic 
phenotype. Parasympathetic neurons therefore retain plasticity in 
their neurochemical phenotype into adulthood and peptides, and 
factors released by sympathetic nerves, are intimately involved in 
modulating parasympathetic function.

Parasympathetic plasticity; role of neurotrophic factors. The 
identity of factors, released by sympathetic nerves, that can main-
tain parasympathetic cholinergic phenotype remain to be deter-
mined. As earlier examined for sympathetic neurons, the role 
of “traditional” target-derived neurotrophic factors is crucial in 
maintenance of parasympathetic neurochemistry and function. 
In adult rats, both ret and GFRα2 are expressed by over 90% 
of cardiac ganglion neurons.187 Since GDNF can signal weakly 
through GFRα2,181 it is possible that both GDNF and neurturin 
may play a role in maintenance of adult cardiac ganglion neu-
rons. Although evidence for a role of GDNF and neurturin in 
modulating neurochemistry within parasympathetic neurons is 
limited, these proteins can promote expression of the choliner-
gic phenotype in sympathetic neurons. Similarly, various neu-
rotrophins have been implicated as inducers and maintainers of 
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