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A B S T R A C T

Currently available vaccines prevent HPV infection and development of HPV-associated malignancies, but do not
cure existing HPV infections and dysplastic lesions. Persistence of infection(s) in immunocompetent patients may
reflect induction of local immunosuppressive mechanisms by HPV, providing a target for therapeutic inter-
vention. We have proposed that a mouse, expressing HPV16 E7 oncoprotein under a Keratin 14 promoter (K14E7
mice), and which develops epithelial hyperplasia, may assist with understanding local immune suppression
mechanisms that support persistence of HPV oncogene-induced epithelial hyperplasia. K14E7 skin grafts recruit
immune cells from immunocompetent hosts, but consistently fail to be rejected. Here, we review the literature
on HPV-associated local immunoregulation, and compare the findings with published observations on the K14E7
transgenic murine model, including comparison of the transcriptome of human HPV-infected pre-malignancies
with that of murine K14E7 transgenic skin. We argue from the similarity of i) the literature findings and ii) the
transcriptome profiles that murine K14E7 transgenic skin recapitulates the cellular and secreted protein profiles
of high-grade HPV-associated lesions in human subjects. We propose that the K14E7 mouse may be an appro-
priate model to further study the immunoregulatory effects of HPV E7 expression, and can facilitate develop-
ment and testing of therapeutic vaccines.

1. Introduction

Cervical cancer is responsible for 5% of the global cancer burden
and it is the second most diagnosed cancer in women [1]. Cervical and
other anogenital cancers are typically associated with infection by a
subset of human papillomaviruses (HPVs). The ‘high-risk’ oncogenic
HPV genotypes 16 and 18 are responsible for about 70% of all cervical
cancer cases worldwide and approximately 50% of the cervical cancers
are caused by HPV16 [2,3]. Prevention of infection by high-risk onco-
genic HPVs (HPV16 and 18) has been effective (~95%) with the de-
velopment of virus-like particle-based vaccines [4]. Currently, there are
three approved multi-valent (Gardasil® and Gardasil® 9, Merck) and
bivalent (Cervarix®, GlaxoSmithKline) commercially available effica-
cious vaccines. However, the adoption of these vaccines in resource-
limited countries has been hindered by high costs of the vaccines,
jeopardising the prevention of HPV infection despite proven clinical
efficacy [1,5]. Furthermore, current vaccines do not protect against
existing infections, offer an undetermined capacity in maintaining
protection over time and will not have a major impact on cancer

incidence for at least another 30 years. Thus, it remains a research
priority to discover improved therapies that can resolve HPV-associated
disease in patients who do not benefit from currently available vac-
cines.

HPVs are epitheliotropic double-stranded DNA viruses that infect
the basal keratinocytes on surface epithelia of skin and mucous mem-
branes. Replication of virus is dependent on the expression of non-
structural viral genes E1, E2, E6, E7 and the structural L1 and L2 capsid
proteins. The E1 and E2 proteins regulate viral DNA replication, while
E6 and E7 deregulate cell cycle control and promote epithelial pro-
liferation and delay epithelial differentiation. The late structural viral
proteins L1 and L2 are responsible for virion assembly and lytic release
and form the basis of currently available prophylactic vaccine for-
mulations. Most HPV infections are cleared rapidly by the immune
system, but extended virus persistence increases the risk of progressive
dysplastic transformation of normal epithelium, eventually into cancer
[6]. The clinical stages of cervical pre-malignancy are classified into
worsening grades of dysplasia (cervical intraepithelial neoplasia (CIN)
grades 1, 2, and 3; CIN1, CIN2, CIN3). CIN1/2 lesions frequently
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spontaneously regress in immune-competent individuals, but progres-
sion to CIN3 gives a high risk of eventual cancer development [4]. The
spontaneous clearance of lower grade CINs is associated with an ef-
fective cellular immune response. Lower CIN grades are marked by
increased CD4+ T cell infiltration [7] whereas a higher CD8+/CD4+
ratio is observed in CIN3 and cancer stages [8]; dysregulation of im-
mune cell dynamics is requisite for lesion persistence and progression.

To determine why the immune system fails to clear persistent HPV
infections and associated dysplastic epithelial lesions, we need better
understanding of the cellular and molecular mechanisms regulating
immunity in HPV-infected skin, which is challenging as HPV infects
only human epithelia. Canine, bovine and rabbit papillomavirus lesions
are generally self-limiting and rarely promote malignancy, similar to
‘low risk’ HPV types in humans. A mouse papillomavirus (MmuPV1)
can replicate in some lines of immunocompromised laboratory mice
[9–12]. Susceptible animals are otherwise outbred, and reagents are
limited. Nevertheless, animal models for canine oral papillomavirus
(COPV) [13], rabbit oral papillomavirus (ROPV) [14] and MmuPV1
infections [10,11] confirm that regression of lesions requires func-
tioning cellular immunity. Further, rejection of transplanted tumours
that express HPV16 E6 and E7 proteins can be achieved in mice if an
effective CD8+ cytotoxic T cell lysis response is mounted [15–18].
However, immunotherapies that are effective against murine tumours
expressing HPV antigens generally have not been effective in human
HPV-associated diseases [4].

To investigate the immune microenvironment resulting from per-
sistent HPV oncoprotein expression, we have utilised a mouse model in
which keratinocytes within murine skin expresses the HPV16 E7 on-
coprotein as a transgene driven by keratin 14 promoter (henceforth
referred to as K14E7 mice), with E7 protein levels comparable to those
in infected human cervix [16]. The HPV16 E7 transgene is also ex-
pressed in the thymus, producing transgenic mice that tolerate the HPV
E7 protein [19]. While keratinocytes express only the E7 oncoprotein,
rather than E6 and E7 as in HPV-infected tissues in humans, they de-
velop epithelial hyperplasia and dysplasia despite not fully replicating
the viral oncogene expression kinetics during cervical pre-malignancy.
Furthermore, K14E7 skin presents with an elevated immune cell in-
filtrate similar to those observed in human CIN lesions [20,21].
Therefore, we believe that the K14E7 mouse provides a valid compar-
ison to persistent HPV oncogene expression in human HPV-related
epithelial disease. We have utilised a skin grafting/transplantation
model based around the K14E7 mouse model to evaluate factors that
may influence immunotherapy efficacy in the context of therapeutic
vaccination against HPV-related cervical cancer and CINs. Further,
K14E7 skin grafts consistently fail to be rejected when transplanted
onto immunocompetent syngeneic recipients, with or without im-
munisation; E7-immunized mice are able to reject E7-transduced
transplantable tumours [22–25] but not E7-expressing skin grafts, a
finding contrasting with the rejection of skin grafts that express other
non-self proteins as transgenes, including chicken ovalbumin and
human growth hormone [26–29]. K14E7 skin grafts can be induced to
be rejected by administration of live or killed Listeria monocytogenes
[23], or by adoptive transfer of large numbers (> 105) of immunisa-
tion-activated E7 peptide-specific CD8 T cells [25], excluding the pos-
sibility that E7 antigen presentation by target keratinocytes is in-
sufficient to enable graft rejection. The primary aim of this paper is to
provide a review of the literature on immune responses in HPV-asso-
ciated human lesions, and to correlate the observations with those in
the K14E7 transgenic mouse.

2. Materials and methods

2.1. Literature search

Search terms used for identifying articles on the PubMed®/
MEDLINE® database were: HPV AND (cervical cancer OR cervical

intraepithelial neoplasia) AND (immune OR cytokines OR chemokines
OR lymphocytes OR dendritic cells OR T cells OR myeloid cells OR NK
cells OR NKT cells OR MAIT cells OR IEL OR ILC OR macrophages OR
monocytes OR neutrophils) NOT (cell line OR HIV). The literature
search was performed on 18/07/2017.

2.2. Human cervical cancer progression microarray and K14E7 mouse
RNA-sequencing data

The publically available microarray data from the den Boon et al.
manuscript [30] was downloaded from the GEO database (GSE63514)
and used to test for enrichment of the K14E7 signatures in cervical
cancer and CIN cohorts. Procedures involved in murine skin grafting,
sample collection, RNA extraction, cDNA library preparation, sequen-
cing and data pre-processing for the mouse skin RNA-sequencing (RNA-
seq) data have been previously described [20,31]. Primary data are
available via NCBI sequence read archive (SRA ID: SRP113560, Bio-
Project accession ID: PRJNA395772). The ‘UP’ and ‘DOWN’ gene sig-
natures (gene sets) of K14E7 mice were curated using the top-ranked
~200–300 genes up/down-regulated in K14E7 skin versus age-matched
C57BL/6 skin from the RNA-seq analysis. The ranking of genes was
performed using standardised differential gene expression testing based
on Empirical Bayes moderated t-statistics embedded within the Linear
Models for Microarray Data (LIMMA) R package [32]. The gene ex-
pression heat maps were generated using HeatMapImage module
within the GenePattern public server [33].

2.3. Gene set testing procedures

Gene symbols from the murine gene sets (GRCm38.p5/mm10) were
converted to human orthologous symbols (GRCh38.p5) for the gene set
tests with Gene Set Enrichment Analysis (GSEA) [34]. GSEA is a pop-
ular analysis tool that can be used to assess whether samples in a mi-
croarray or an RNA-seq experiment would display correlation with
biological phenotypes defined by a priori classified gene sets/signatures,
such as gene sets contained in the Molecular Signatures Database
(MSigDB) [34]. It is a competitive gene set test that uses sample per-
mutation/re-sampling to detect the enrichment of genes at the top or
bottom of gene sets, correlating the enrichment between either of two
phenotypes. This is typically performed a large database of gene sets
where a false discovery rate (FDR) is applied to the nominal p-value
calculations to adjust for multiple testings. In this paper, we used GSEA
on a small list of gene sets (n=2 for K14E7 ‘UP’ and ‘DOWN’ gene sets,
and n=4 ‘UP’ and ‘DOWN’ gene sets from K14E7 grafting data) to
broadly evaluate if the mouse K14E7 gene sets would be enriched in the
human microarray data. To supplement this approach, we used two
additional gene set tests: Correlation Adjusted MEan RAnk (CAMERA)
[35] and Rotation (ROAST) gene set tests [36]. These two methods are
included in the LIMMA R package and can be applied to data fitted to a
linear model, such as RNA-seq count data analysed using the LIMMA-
Voom pipeline [32,37], displaying improved statistical power even for
small data sets [35]. CAMERA is a competitive gene set test that eval-
uates whether ranking of genes in a gene set is highly ranked relative to
all other genes not in the gene set, while accounting for inter-gene
correlation in a linear model fit [35]. ROAST is a self-contained gene set
test that tests whether genes in the gene set are differentially expressed,
returning the proportion of genes that are up- or down-regulated in the
gene set [36]. A pre-ranked GSEA analysis was also performed where
we tested for enrichment of CIN3 or Cancer ‘UP’ and ‘DOWN’ gene sets
in a pre-ranked list of genes from K14E7 skin versus C57BL/6 skin,
ranked according to t-statistics values assigned by LIMMA. The CIN3
and cancer gene signatures were curated using the top ~200–300 sig-
nificant differentially expressed genes identified via LIMMA.

CAMERA and ROAST were also used for gene set testing for en-
richment of immunologic gene sets curated at the MSigDB. The gene
sets were downloaded from the Walter and Eliza Hall Institute of
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Medical Research Bioinformatics Resources website: http://bioinf.
wehi.edu.au/software/MSigDB/ where complete human and con-
verted murine versions of the MSigDB C7 gene sets (annotated with
Entrez Gene IDs) are available.

2.4. CIBERSORT

The CIBERSORT gene expression deconvolution package was used
to estimate the immune cell composition in the grafting RNA-seq data
[38]. Read counts (per million), equalised for library size using edgeR
[39], were used as input for the analysis. The LM22 signature was used
as the immune cell gene signature and the settings for the run were:
1000 permutation with quantile normalisation disabled. Two-way
ANOVA with Tukey's multiple corrections was used to infer the statis-
tical significance of the predicted immune cell populations where
P<0.05 was considered significant.

3. Results

3.1. Comparing the immune cell infiltrate and cytokine profile presented in
the literature with the K14E7 mouse model

A literature search on the PubMed®/MEDLINE® database was used
to identify recent (within the last 10 years) relevant literature in-
vestigating the immune landscape of cervical cancers and CINs in
human studies. Excluding review articles and articles that were not
written in English, there were 490 primary research articles identified.
Of these, 42 articles reported on the local changes within cervical le-
sions or draining lymph nodes (Supplementary Table 1) and 38 articles
reported on genetic variants in genes encoding for cytokines, chemo-
kines and other immune-related molecules associated with CIN and
cancer progression. The first group of articles were chosen for further
review as they were deemed to be more relevant to reports of changes
to immune cell composition or cytokine/chemokine profiles in human
cervical cancer and CIN lesions. It should be noted that, despite strin-
gent search terms and unbiased review of the results returned by the
search, a literature review is by nature limited and therefore our list
does not claim to be exhaustive. We focus the subsequent section on the
most frequently named cell types and markers in the list of articles
reviewed that were reported to be associated with disease outcome in
≥5 papers.

3.1.1. Regulatory T lymphocytes and cytokines
There is general agreement that cervical cancer and severe CIN le-

sions are frequently infiltrated with large numbers of T cells, char-
acterised as CD3+ [40–42] and/or CD4+ [42–45] and CD8+ T cells
[42,43,45–47], and that T cell infiltrates increase with disease severity.
Expression of the Forkhead box P3 (FOXP3) transcription factor, an
accepted marker for T regulatory (Treg) cells, was positively associated
with disease severity in 10 of 11 reported studies [42–45,48–53]. In-
terestingly, reduced Treg cells (FOXP3+ cells) and interleukin 17 (IL-
17)+ cells were associated in one study with poorer disease free sur-
vival in cervical adenocarcinoma [54]. Recruitment of Treg cells to
tumours is held to induce a locally immunosuppressive environment,
confirmed by association with increased expression of IL-10, an im-
munoregulatory cytokine that is frequently associated to be produced
by Treg cells, and with increasing disease severity in cervical lesions
(11/13 papers reviewed) [43,46,50,52,55–61]. Increased IL-10 pro-
duction in HPV-associated cancer was detected as mRNA or protein in
local and circulating T cells, dendritic cells (DCs) and macrophages. No
association of IL-10 with disease progression was seen using IL-10
mRNA from cytobrush biopsies of cervical mucosa cells [51], or protein
levels from low-grade CIN lesions [62]. Scott et al. monitored the rate of
HPV clearance upon infection in a longitudinal study and they detected
increased levels of several cytokines, including IL-10, in cervicovaginal
lavage samples from HPV positive patients. This observation was

associated with reduced likelihood of HPV clearance for both high-risk
HPVs and low-risk HPVs [63]. In keeping with the expectation that Treg
cells and IL-10 should suppress effector T cell and antigen presenting
cell functions within tumours, and thus prevent appropriate anti-tu-
mour cytolytic responses, cervical cancer patients without lymph node
metastases tend to display increased CD8+T cells/Treg ratios and a
more favourable outcome [45]. Van der Burg et al. observed HPV-spe-
cific FOXP3- CD4+ T cells displaying suppressor functions [64]. Kojima
et al. observed an increased percentage of CD4+ that express the in-
hibitory checkpoint programmed cell death 1 (PD-1) receptor in per-
sisting HPV-associated cervical lesions, when compared to those that
regressed [44]. These T cells may arrive in the tissue with regulatory
functions such as are expressed by conventional Treg cells from the
thymus and peripheral lymphoid organs, or might be induced locally to
become regulatory. However, regression of low or high grade CIN le-
sions have also been associated with increased CD4+ and CD8+ T cells
and CD4/CD25 or CD8/CD25 ratios [65–67], highlighting the lack of
clarity about immune factors/markers that would favour regression of
CIN lesions.

The role of interferon gamma (IFN-γ) produced by T cells, natural
killer (NK) cells and NKT cells in regression of HPV-associated lesions is
uncertain. IFN-γ can promote anti-tumour responses by further acti-
vating effector immune cells. However, chronic IFN-γ secretion in
cancer has been associated with immunosuppression [50] and can
promote resistance to immune checkpoint blockade therapy [68]. Of 8
reviewed articles addressing IFN-γ expression and HPV-associated dis-
ease progression, three reported that elevated IFN-γ expression was
associated with disease progression of high-grade CIN lesions and
cancer [41,50,69]. Infiltrating CD4+, CD8+ and invariant NKT (iNKT)
cells were the main sources of IFN-γ in these three studies [50]. Hu
et al. [41] further demonstrated that increased iNKT cells were in-
creased in high-grade lesions (CIN2 and CIN3) compared to normal
cervix controls. McKenzie et al. similarly reported that CIN2/3 tissue
attracted cells expressing T cell and NK markers (CD3+, CD8+,
CD56+, CD16+) [70]. Yang et al. and Scott et al. reported reduced
IFN-γ levels in cervical exudates [60] or cytobrush biopsies of cells from
the mucosal layers of the cervix [51], in contrast to mRNA or protein
measurements of larger tissue biopsies that would have a more complex
tissue architecture with infiltrated immune cells, or to isolated immune
cells [41,50,69]. Song et al. reported that elevated IFN-γ expression was
associated with regression of low-grade lesions (CIN1) and did not in-
vestigate higher-grade lesions [71]. Sharma et al. reported that IFN-γ
secretion by PBMCs was decreased in cervical cancer patients compared
to normal controls. However, the levels of the cytokines within the
lesions were not examined [58]; while van der Burg et al. showed that
HPV-specific CD4+ T cells isolated from draining lymph node biopsies
of cervical cancer patients (n=3) displayed regulatory/suppressor T
cell functions, and that co-culturing these T cells with CD4+CD25-
responder T cells challenged with cognate HPV antigens induced sup-
pression of the responder T cells, resulting in reduced IFN-γ production
[64].

3.1.2. Antigen presenting cells
Tumour-associated macrophages and professional antigen pre-

senting cells (APCs) have been implicated in the regulation of im-
munosuppression during cervical cancer progression. Four of four re-
viewed studies on macrophages in CIN reported a positive correlation
between numbers of macrophages and increasing severity of CIN lesions
and cancer [40,46,50,72]. Dendritic cells represent another population
of APCs that may play a role in this setting, but their contributions to
the disease is less clear. Two studies reported decrease in CD1a+ DCs
classified as immature DCs [73] or CD1a+ Langerhans cells [74] in the
cervical stroma and/or epithelium of CIN3 and cancer patients. Other
studies reported increase in CD1a+ DCs [50], or were inconclusive due
to variability in their quantification [45]. Conversely, Hayati et al. [73]
and Piersma et al. [45] reported that proportions of mature DCs
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(CD83+ or CD208+) were higher in cancer and CIN3 versus healthy
controls. The presence of CD83+ DCs was also increased in cancer
biopsies as a consequence of inhibited CCR7-dependent migration of
mature DCs towards draining lymph nodes, which would hinder
adaptive immune responses against the tumour [75]. Secreted products
of the innate immune system, including colony stimulating factor 1
(CSF-1), IL-10 and vascular endothelial growth factor (VEGF) are
thought to play a role in recruiting and conditioning macrophages and
DCs, as well as being produced by these cells themselves. CD14+CD33-
CD163- matured proinflammatory ‘M1′ macrophages are significantly
associated with improved prognostic outcomes for disease survival
[76]. APCs were also required to appropriately prime allogenic T cells
for anti-tumour effects for cervical cancer therapy [77]. Conversely,
DCs in cervical cancers can display ‘tolerogenic’ behaviour, and have
been shown to be potent producers of the immunosuppressive in-
doleamine 2,3-dioxygenase 1 (IDO1) molecule [50]. They can also be a
source of inhibitory ligands for immune checkpoint molecules on Treg
or dysfunctional T cells [60,78].

Generally, the reviewed articles support the hypothesis that heigh-
tened inflammatory responses are associated with chronicity and per-
sistency of disease. How the transformed epithelium, or HPV proteins,
induce this inflammatory response remains to be elucidated; expression
of HPV oncoproteins during early events of HPV infection can however
potentiate chronic inflammatory responses. Cervical cancer derived IL-
6 was shown to be an important signal for induction of expression of
CCL20, a chemokine associated with recruitment of CD4+/IL-17+ T
cells, by fibroblasts, maintaining chronic inflammation in severe CIN
lesions [79].

3.2. Consensus in cellular and cytokine changes between human cervical
cancers, high-grade CIN lesions and K14E7 mouse model

Disease models that can emulate the immune environment in CIN
may be useful for evaluating immunotherapy options for HPV-asso-
ciated disease. We have proposed that a transgenic C57BL/6 mouse,
where the HPV16 E7-protein is expressed from a keratin promoter in
epithelial cells (K14E7), may be a preclinical tool to assess the biology
and immunology of chronic/persistent HPV-related disease. K14E7
mouse skin displays epithelial hyperplasia and is markedly infiltrated
with immune cells [20]. The mechanisms of lymphocyte recruitment to
CIN lesions is similar to that of the K14E7 mice – for example, CCL20 is
significantly enriched in K14E7 skin and results in elevated recruitment
of CCR6+ CD4 T cells [20], similar to the findings in human CIN [79].
There are also markers of local immune suppression within the K14E7
skin, including significantly up-regulated expression of Treg and/or
immunosuppression-related genes, identified in the list of differentially
expressed genes deemed to be statistically significant from RNA-seq
analysis of the K14E7 mouse ear skin [31] (Fig. 1), and this findin is
consistent with human studies. Up-regulated genes include Foxp3, Il10,
Ctla4, Pdcd1 (PD-1), Pdcd1lg2 (PD-1 ligand 2; PD-L2) and molecules
such as Icos, Gzmb, Il2rb2 and Il2ra, which have been reported to be
expressed on subpopulations of cutaneous Treg cells [80]. However, it
is important to note that previous attempts to neutralise regulatory
lymphocytes in K14E7 mice in our hands did not yield significant al-
leviation of immunosuppression; while CD8 effector T cell suppression
could be rescued when CD4+CD25+ T cells are neutralised in K14E7
mice [81], specific depletion of conventional Foxp3+ Treg cells in ei-
ther K14E7 donors or recipients did not enable graft rejection [82].
Taken together, this suggests that additional suppressive factors con-
tribute to the immunosuppressive environment in K14E7 skin.

We have identified that rejection of K14E7 transgenic skin from
immunocompetent mice can be achieved through genetic or pharma-
cological ablation/depletion of select infiltrating and/or resident im-
mune cell types (e.g. T cells and iNKT cells) and soluble factors (e.g.
IFN-γ, IL-17, IL-1β and IDO1) in the E7 transgenic skin (summarised in
Table 1). Elevated IFN-γ production from iNKT cells was identified to be

a major determinant of immunosuppression, and a critical component
that contributes to graft tolerance; K14E7 skin grafts that are NKT-de-
ficient or IFN-γ-deficient were robustly rejected from immunogenic
recipients [83]. The immunosuppression mediated by infiltrating NKT
cells in K14E7 skin grafts was independent of IFN-γ, IL-10 and IL-17, as
NKT cell reconstitution to skin grafts with or without the expression of
either of the three cytokines completely inhibited graft rejection [82].
CD8 effector T cell functions were suppressed by the presence of NKT
cells, as well as chronic IFN-γ expression, in the K14E7 skin environ-
ment [82]. MHCII+CD11c+ DCs in the skin expressed the highest level
of IFN-γ-receptor (IFN-γR) and the increased expression of the im-
munosuppressive IDO1 in K14E7 mice was dependent on IFN-γR ex-
pression. Further, inhibition of IDO1 activity via oral administration of
1-Methyl-DL-tryptophan (1-D/L-MT) to K14E7 graft donor and C57BL/
6 recipient mice was able to induce partial graft rejection (~50%) [84].
We reason that the K14E7 immunosuppressive environment alters the
ability of APCs to react against the persistent E7 antigen. Consistent
with this hypothesis, Langerhans cells from K14E7 skin expressed
higher levels of immunosuppressive molecules such as IDO1, arginase 1
and IL-10, but paradoxically expressed lesser major histocompatibility
complex II (MHCII) and PD-1 ligand 1 (PD-L1) [85]. Additionally, APCs
displayed impaired antigen presenting capabilities [86,87]; and al-
though K14E7 skin displayed higher absolute numbers of DCs compared
to wild-type controls, there was an increase in relative proportions of
CD103+ and CD11b+ DCs but reduced Langerhans cells [87]. This
was supported in another mouse model where the authors demon-
strated that epidermal Langerhans cells were depleted from the epi-
dermis upon expression of HPV E7, using an inducible lentiviral system
[88].

We hypothesise that these factors, when present in the K14E7 skin
environment, co-ordinately induce ineffective CD8 effector T cell re-
sponses against K14E7 skin grafts. More recently, the overarching hy-
pothesis has been refined in that E7-induced hyperplasia rather than
expression of E7, is responsible for the recruitment, programming and/
or retention of these immunosuppressive cells and molecules in the
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K14E7 hyperplastic epithelium milieu, as mice expressing E7 protein
from the Keratin 14 promoter, and with a mutated retinoblastoma
protein that is functionally effective but cannot bind E7, have no hy-
perplasia and no inflammatory infiltrates [20,31,89]. Hyperplastic
murine K14E7 transgenic skin thus models some important aspects of
the cellular infiltrate and immunosuppressive cytokine secretion profile
in cervical cancer and high-grade CIN lesions in human patients.

3.3. K14E7 skin shares transcriptional features with human high-grade
squamous intraepithelial lesions

Defining the molecular changes associated with the establishment of
cervical cancer pre-malignancy can reveal underlying mechanisms and
highlight potential means to improve cancer and pre-cancer risk as-
sessment, diagnosis, prognosis, and treatment. To elaborate on our in-
itial RNA-seq analysis generated from K14E7 and C57BL/6 skin [31],
we performed gene set tests to broadly evaluate whether gene changes
found in K14E7 mice would be similarly observed in microarray data of
the clinically recognised stages of cervical cancer progression [30].
K14E7 ‘UP’ or ‘DOWN’ gene signatures (gene sets) were curated from
the top-ranked differentially expressed genes in K14E7 skin (versus
C57BL/6 skin) and murine gene symbols from the K14E7 gene sets were
mapped to orthologous symbols in human. 270 of the 293 genes con-
tained in the ‘UP’ gene set (~92%) and 181 of the 203 genes contained
in the ‘DOWN’ gene set (~92%) were successfully matched with human
gene symbols/probes found on the cervical cancer progression micro-
array data set. The classic method for gene set enrichment analysis
(GSEA) [34] was used to test the enrichment of the K14E7 gene sig-
natures in the following phenotype comparisons: i) CIN3 versus CIN1/
CIN2 and ii) cancer versus CIN3. In this analysis, human CIN3 displayed
significant positive enrichment of the K14E7 ‘UP’ gene set where ~53%
of genes in the K14E7 ‘UP’ gene set were highly ranked and correlated
with CIN3 phenotype and not CIN1/CIN2 (Fig. 2A). While the enrich-
ment did not achieve statistical significance, the ~28% of genes in the
K14E7 ‘UP’ gene set were positively enriched in CIN3 and not in in-
vasive cancer (Fig. 2B). The K14E7 ‘DOWN’ gene sets did not attain
statistical significance in the GSEA but displayed a general trend of
being positively enriched in CIN1/CIN2 or cancer versus CIN3 (Fig. 2A
and B); up-regulation of ‘K14E7′ down genes were observed in CIN1/
CIN2 and cancer but these genes were down-regulated in CIN3, similar
to the regulation pattern in K14E7 skin versus C57BL/6 skin.

Gene set testing using Correlation Adjusted MEan RAnk gene set
tests (CAMERA) [35] supports the results from GSEA; human CIN3
displayed positive enrichment of both K14E7 ‘UP’ and ‘DOWN’ sig-
natures (Fig. 2C). In addition, Rotation gene set test (ROAST) identified
that a significant proportion of genes contained in the K14E7 ‘UP’ gene
set (~50%) was up-regulated in CIN3 versus CIN1/CIN2 (Fig. 2D).
Approximately 27% of genes in the K14E7 ‘DOWN’ gene set were also
observed to be down-regulated in CIN3 versus CIN1/CIN2 but this did

not attain statistical significant (Fig. 2D). The enrichment of the K14E7
gene sets by cancer (versus CIN3) was less clear; gene sets were in-
versely associated with cancer in CAMERA analysis (Fig. 2C) and al-
though ROAST identified that genes contained in both gene sets were
identified to be down-regulated in cancer, there is a large proportion of
genes displaying ‘mixed’ regulation pattern (~80%) (Fig. 2D). The
GSEA was also tested in a reciprocal fashion with a pre-ranked gene list
ordered by t-statistics values (assigned after LIMMA linear modelling)
of genes in the K14E7 skin versus C57BL/6 skin comparison/pheno-
types. The pre-ranked gene list was tested with gene signatures curated
from the top ~200–300 up- or down-regulated genes in i) CIN3 versus
CIN1/CIN2 and ii) cancer versus CIN3 accordingly. It is important to
note that although mice and human share many orthologous genes, the
pre-ranked gene list of K14E7 skin versus C57BL/6 skin was truncated
to ~70% after conversion to do this comparison. Nevertheless, pre-
ranked GSEA using this truncated ranked list still displayed similar
association as before; K14E7 skin displayed significant positive en-
richment of the CIN3 ‘UP’ gene set where ~43% of genes in the CIN3
‘UP’ gene set were highly ranked and correlated with K14E7 phenotype
and not C57BL/6 mice (Fig. 3A). Conversely, ~56% of genes in the
cancer ‘UP’ gene set positively enriched the C57BL/6 phenotype in a
significant fashion and not K14E7 skin (Fig. 3A). The CIN3 ‘DOWN’
gene set did not attain statistical significance in the GSEA but displayed
a general trend of being positively enriched in C57BL/6 skin whereas
the Cancer ‘DOWN’ gene set was significantly enriched in the K14E7
phenotype (Fig. 3B).

The 143 genes that significantly contributed to enrichment of the
K14E7 ‘UP’ gene set (~53%) in CIN3 in the GSEA analysis in Fig. 2A
showed a general trend of increased expression in CIN3 and decreasing
expression intensity in CIN2 followed by CIN1 (Fig. 4, left panel). The
relative expression level of these genes in the K14E7 and C57BL/6 mice
are shown on the right panel of Fig. 4 (all genes were significantly up-
regulated in K14E7 mice versus wild-type controls). In this list, ~50%
are genes related to cell division and proliferation, kinetochore as-
sembly, regulation of mitosis and DNA repair machinery (Fig. 4, high-
lighted in pink). Several of these cell cycle related genes have been
previously associated with HPV-positive cervical cancers and some are
used as biomarkers for diagnostic purposes in this setting. For example,
overexpression of the nuclear markers – topoisomerase (DNA) II alpha
(TOP2A), marker of proliferation Ki-67 (MKI67), baculoviral inhibitor
of apoptosis repeat-containing protein 5 (BIRC5), centromere protein F
(CENPF) and minichromosome maintenance complex component 2 and
5 (MCM2 and MCM5) – can indicate increased cell division in the
context of tumour development. They have each been previously re-
ported to be overexpressed in HPV-positive CIN or cancer and some
have been evaluated for use as biomarkers [90–92]. Other genes, such
as the genes encoding for aurora kinase A and B (AURKA and AURKB),
have been implicated as survival signals for HPV-infected cells and
inhibition of AURKA/B using Alisertib induced cell death in HPV-

Table 1
Summary of factors that influence K14E7 graft fate.

Inducing molecules Infiltrating and residing cells Secreted molecules Donor skin graft Skin grafts rejected? References

IL-23 and IL-1β CD4 T cells and γδ T cells IL-17 K14E7xIL-17-/- Yes [28,120]
K14E7 and K14E7xIL-1Ra-/- on IL-1Ra-/- recipients Yes
K14E7xIL−12/23p40-/- No

IL-18 NKT cells IFN-γ K14E7xJα18-/- Yes [82,83,121]
K14E7xCD1d-/-

K14E7xIFN-γ-/-
IFN-γ IFN-γ-R+ migratory dendritic cells IDO1 K14E7 skin graft administered with inhibitor of IDO1 Yes [84]

(1-D/L-MT)
CCL2 and CCL5 Mast cells K14E7xKitw-sh/w-sh Yes [122]
CCR6 CD4 T cells K14E7xRAG-/- Yes [20]

CD8 T cells
CD4+CD25+ K14E7xFoxp3-/- (K14E7xDEREG) No [81,82]
Treg cells
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transformed cervical cancer cell lines [93,94]. It important to note that
the utility of this drug was also evaluated in the K14E7 skin grafting
model where Alisertib-treated E7-expressing skin grafts displayed in-
creased apoptotic bodies compared to untreated controls [93]. Immune
response-related genes constitute ~30% of remaining list of genes
(~15% of total/143 genes) (Fig. 4, highlighted in green). While several
of these immune response-related genes are typically associated with
pro-inflammatory function, the increased expression of the cytotoxic T-
lymphocyte associated protein 4 (CTLA4), interleukin 2 receptor sub-
unit alpha (IL2RA), inducible T-cell costimulator precursor (ICOS), C-C
motif chemokine 22 (CCL22), C-C motif chemokine receptor 1 (CCR1)
and C-X-C motif chemokine ligand 10 (CXCL10) have been associated to
be expressed on conventional Treg, effector Treg [53,95,96] and adi-
pose tissue-derived Treg cells [97], supporting increased frequency/
infiltration of regulatory cells in HPV-associated high-grade squamous
intraepithelial lesions and K14E7 skin.

3.4. Top 50 immunologic gene signatures are similarly enriched in human
CIN3 and murine K14E7 skin but not human cervical cancer

To further investigate the changes to immune response related
genes highlighted from the K14E7 signatures gene set testing, we ex-
panded the analysis to test for significant enrichment of the im-
munological related gene signatures derived from the ~4800 im-
munological gene sets curated in the Molecular Signature Database
(MSigDB) [34]. The following phenotype comparisons were tested: i)
CIN3 versus CIN1/CIN2, ii) Cancer versus CIN3 and iii) K14E7 versus
C57BL/6. Because the classic GSEA approach would require large
sample numbers to be efficient for their sample permutation statistics
(> 10 per phenotype), and hence are only applicable for the CIN and
cervical cancer microarray data, we used CAMERA and ROAST to
perform the gene set testing for the three comparisons as they are re-
ported to retain good statistical power and control for type 1 error rates
correctly even for small sample sizes, provided that the data used for
the contrasts are fitted to a linear model (e.g. linear models embedded
in LIMMA applied to microarray and RNA-seq data) [35,36]. The full
table for the CAMERA analysis is provided in Supplementary Table 2.
The top 50 enriched immunologic gene sets ranked in CIN3, with the
corresponding false discovery rate adjusted significance, are shown in
Fig. 5; the top 50 enriched immunologic gene sets were also sig-
nificantly enriched in K14E7 mice skin versus C57BL/6 mice. In CIN3
versus CIN1/CIN2, 673 immunologic gene sets were significantly en-
riched in CIN3 at FDR<0.01, with only 1 gene set predicted to be
down-regulated. In K14E7 mice, 330 gene sets were significantly en-
riched and 287/330 were predicted to be up-regulated. Importantly, a
total of 235 immunologic gene sets were commonly significantly en-
riched (FDR<0.01) in CIN3 and K14E7, and all 235 were predicted to
be up-regulated. In cancer versus CIN3, none of the top 50 immunologic
gene sets were significant enriched (Fig. 5) and surprisingly, only 1
gene set (GSE45837_WT_VS_GFI1_KO_PDC_DN; genes down-regulated
in wild-type plasmacytoid DCs) reached statistical significance of
FDR<0.01. This gene set was predicted to be down-regulated in
cancer versus CIN3 but up-regulated in CIN3 versus CIN1/CIN2
(Supplementary Table 2). In summary, the immunologic gene sig-
natures that correspond to the immunological architecture within CIN3
versus CIN1/CIN2 and K14E7 versus C57BL/6 are maintained/shared,
but not in cancer versus CIN3. This might reflect that immunological
changes that occur in high-grade squamous intraepithelial lesions are
largely conserved during cancer, and indirectly implies that im-
munotherapies that may be developed may be effective for both CIN3
and cancer.

3.5. Transcriptomic changes associated with persistence of murine K14E7
skin grafting procedure is also found in human in high-grade squamous
intraepithelial lesions

The transcriptomic changes associated in our skin grafting model
was also evaluated. This was achieved by performing RNA-seq on RNA
extracted from the skin grafts of K14E7 or C57BL/6 donor ear skins that
were transplanted to the flank of recipient C57BL/6 mice 14 or 28 days
post-grafting (DPG). These time points were empirically chosen as time-
points where we expect skin grafts to display a potential ‘successful’ or
‘failed’ rejection effect as with grafting E7-expressing skin grafts de-
pleted of CD1d-restricted NKT cells [83]. GSEA comparisons were
performed using the top ~300 up/down-regulated genes from 14DPG
or 28DPG K14E7 skin graft RNA-seq data (compared to 14DPG or

Fig. 2. Gene set testing of K14E7 ‘UP’ and ‘DOWN’ gene signatures in human CIN3 versus CIN1/CIN2 and cervical cancer versus CIN3. (A-B) GSEA analysis of (A) CIN3 versus CIN1/CIN2 or (B)
cancer versus CIN3 of K14E7 ‘UP’ or ‘DOWN’ signatures. Ranking of genes in the ‘UP’ gene signatures (red) or ‘DOWN’ gene signatures (blue) are shown at the bottom of each GSEA plot.
Position and frequency of genes contributing the most to each enrichment are highlighted in orange. (C) Barcode enrichment plot of t-statistic ranked genes from LIMMA for CAMERA
gene set testing. The enrichment value corresponds to the relative ‘weight’ value in LIMMA. (D) ROAST gene set testing of CIN3 versus CIN1/CIN2 or cancer versus CIN3. Proportion of
genes corresponding to up or down regulated and assigned direction and p-value are shown. Genes are assigned to the up or down bins according to the probability formula specified in
ROAST. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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frequency of genes contributing the most to each enrichment are highlighted in teal for
genes in CIN3 signatures or purple for genes in Cancer signatures. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 4. Heat map of relative gene expression of genes
that contribute the most to the enrichment of K14E7
‘UP’ gene set in CIN3 versus CIN1/CIN2. Relative gene
expression in K14E7 mice and C57BL/6 mice are pro-
vided in the right panel. The colour scheme for both
heat maps correspond to the relative expression level
normalised to a range from 0 to 1 using the minimum
and maximum values within each row/gene and re-
presented as a colour gradient from blue to red. Sample
groups for each are additionally provided with coloured
annotations. Gene symbols that correspond to cell
cycle-related genes are annotated in pink and gene
symbols that correspond to immune-related genes are
annotated in green. Uncategorised gene symbols are in
black. (For interpretation of the references to color in
this figure legend, the reader is referred to the web
version of this article.)
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28DPG C57BL/6 skin grafts) as the gene signatures with the cervical
cancer progression microarray dataset, as per Fig. 2. This comparison
showed the same trend as before, with CIN3 enriching for both 14DPG
and 28DPG skin grafts ‘UP’ gene signatures (Fig. 6A and B). Up-reg-
ulation of ‘DOWN’ signatures were enriched in the opposing phenotypes
(CIN1/2 and Cancer) (Fig. 6A and B).

The skin grafting model, based around the K14E7 mouse, has been
used to discover and understand which factors influences graft persis-
tence, and which of these may be targeted to promote effective im-
munotherapy. As mentioned previously, we have identified one such
instance where NKT cells derived from K14E7 donor skin grafts inhibit
priming of CD8 T cells by APCs in the draining lymph nodes [82,83],
presumably preventing effective adaptive immunity priming against the
E7-expressing skin grafts. However, whether this effect is directly
translated to functional defects in CD8 T cell activity in the skin grafts is
unknown, and this hypothesis has been difficult to assess using flow
cytometry based approaches. Thus, we decided to determine via RNA-
seq whether there is a distinct molecular pattern associated with graft
rejection within E7-expressing skin grafts undergoing rejection. We
have previously showed that depletion of NKT or iNKT cells from E7-
expressing donor skin was sufficient to induce graft rejection in im-
munocompetent C57BL/6 recipients [27,83]. Hence, we performed skin
grafting of CD1d-/-xK14E7 donor ear skin onto the flank of C57BL/6

recipient mice and performed RNA-seq on RNA collected from the skin
grafts at the same time points, 14DPG and 28DPG. In this experiment,
we collected CD1d-/-xK14E7 skin grafts that have begun to display signs
of rejection at 14DPG, as well as CD1d-/-xK14E7 skin grafts that have
yet to display graft shrinkage at 28DPG (Fig. 7A). As per Fig. 5, we used
CAMERA to broadly associate the immunological signatures (contained
within MSigDB) that may be altered in the CD1d-/-xK14E7 skin grafts
undergoing rejection (versus K14E7 skin grafts at the same time points).
The full table for this analysis is also included in Supplementary
Table 2. The top 50 gene sets enriched in CD1d-/-xK14E7 14DPG and
28DPG skin grafts were largely shared between the two time points
although the significance values in the 28DPG list were generally lower
than 14DPG (Supplementary Table 2). In contrast, the top 50 im-
munological gene sets enriched by 14DPG and 28DPG K14E7 skin grafts
(versus 14DPG and 28DPG C57BL/6 skin grafts respectively) were si-
milar to the top 50 gene sets enriched by CIN3 versus CIN1/CIN2 and
K14E7 skin versus C57BL/6 skin as per Fig. 5 (Supplementary Table 2).
The top 5 CD8 T cell related gene sets within the top 50 enriched by
14DPG CD1d-/-xK14E7 skin grafts are shown Fig. 7B. Interestingly,
CD1d-/-xK14E7 14DPG skin grafts displayed significant enrichment of
gene sets that suggests activation of effector T cells at 14DPG, such as
GSE33424_CD161_INT_VS_NEG_CD8_TCELL_UP (genes upregulated in
highly functional memory CD8+ T cells) and

Fig. 5. CAMERA gene set testing of immunologic gene sets in MSigDB C7. Differential gene expression testing for CIN3 versus CIN1/CIN2 (green column), cancer versus CIN3 (pink column)
and K14E7 versus C57BL/6 (black column) were performed using LIMMA. The Empirical Bayesian t-statistics from the analysis was used for the ranking of genes in each comparison for
CAMERA gene set testing. The significance value of the CAMERA gene set test, Log10 transformed false discovery rate (FDR) adjusted p-values, for each gene set are plotted along the
viridis colour scale (purple, blue, green to yellow) in each bubble as well as on the x-axis where the direction regulation of the of the gene set (up or down; +1 or −1) is multiplied to the
significance value. The size of the bubbles correspond to the proportion of genes that are up or down-regulated in each gene set calculated by ROAST where up-regulated pathways were
plotted with proportion of up-regulated genes and vice versa. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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GSR41867_DAY6_EFFECTOR_VS_DAY30_EXHAUS-
TED_CD8_TCELL_LCMV_CLONE13_UP (genes up regulated in functional
effector CD8 T cells).

Further, we used CIBERSORT [38], a gene expression deconvolution
package that estimates the composition of immune cell types in a bulk
sample using defined gene signatures, to probe whether immune cell
compositions are altered in the different grafting groups. The LM22
gene signature provided with the package was used in this analysis and
it contains gene signatures of 22 human immune cell subtypes rigor-
ously curated and validated by the developers [38]. We note that the
analysis is limited, because the LM22 gene signature was curated for
microarray data and some genes in the LM22 gene signature were not
found in our mouse RNA-seq data. However, the developers have noted
that they have “observed significant correlation for specific LM22 popula-
tions on paired microarray/RNA-seq TCGA datasets, indicating reasonably
robust cross-platform performance”, and 505 of the 547 genes were suc-
cessfully matched to orthologous symbols for the analysis. Fig. 8A
shows the relative percentage of the 22 immune cell subtypes estimated
to be present within the various skin graft samples in a stacked bar plot.
Of note, there is a dramatically increased proportion of CD8 T cells
(light orange) and CD4 memory activated T cells (brown) in
CD1d-/-K14E7 14DPG samples, and not the other groups analysed
(Fig. 8A). Upon closer examination, we can identify significant decrease
in resting dendritic cells, naïve CD4 T cells and resting memory T cells
in CD1D-/-xK14E7 skin grafts compared to K14E7 skin grafts (Fig. 8B),
as well as significant increase in M2 macrophages, activated memory
CD4 T cells and CD8 T cells in CD1D-/-xK14E7 skin grafts compared to
K14E7 skin grafts (Fig. 8B).

4. Discussion

From the published literature and the transcription data analyses
described in this paper, the K14E7 transgenic mouse provides a model
to study the immunological consequences of persistent/chronic high-
risk HPV-related high-grade squamous intraepithelial lesions. Both
cellular and molecular observations from these mice correlate well with
human clinical literature. However, we acknowledge that there are
differences between mouse and human immune systems and between
cervical epithelia and squamous skin. Consequently, there may be
subtle differences in the local immune response to E7 protein and in-
duced hyperplasia. Our analysis is limited to the comparison of the
transcriptomic profiles of the human and mouse data sets – while all
tested mRNA differences between normal and E7 transgenic mouse skin
have been reflected in protein levels, some untested differences might
not correlate. We also note that gene changes might be due to technical
differences in ranking metrics employed by the various gene set tests
and differential gene expression analysis tools. Lastly, our K14E7 mouse
model does not mimic a natural course of the human carcinogenic
process, which involves the ongoing acquisition of damaging genetic
mutations in tumours in addition to the chronicity of the disease and
altered immune response. Nevertheless, the analysis has provided us
with an insight into the transcriptional regulation that is maintained/
shared between the mouse model and human high-grade squamous
intraepithelial lesions. The analysis has additionally revealed local
molecular changes associated with graft rejection of E7-expressing skin.

An alternative HPV transgenic mouse model exists in the form of the
K14-HPV16 model, which expresses all HPV16 early genes (E1, E2, E4,
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Fig. 6. Gene set testing of K14E7 on C57BL/6 14DPG and 28DPG ‘UP’ and ‘DOWN’ gene signatures in human CIN3 versus CIN1/CIN2 and cervical cancer versus CIN3. (A-B) GSEA analysis
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signatures are shown at the bottom of each GSEA plot. Position and frequency of genes contributing the most to each enrichment are highlighted (14DPG, pink; 28DPG, blue). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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E5, E6 and E7) [98,99], in contrast to the single or dual E6/E7-ex-
pressing transgenic mice from which we derived our K14E7 mice. The
rationale for this cloning strategy was to factor in the roles that the
other early genes might play in early events of cell transformation.
These transgenic mice also display severe dysplastic squamous epithe-
lial lesions with increasing age, similar to observations in human cer-
vical disease [99]. However, the same study also reported that trans-
genic mice that do not express E1 or E2, but still expressing the other
HPV early genes, were phenotypically identical to the transgenic mice
that expressed all HPV16 early genes [98]. This mutant model did not
display a more severe phenotype, suggesting that early events due to
expression of E1 and E2 play very minor roles for disease progression in
a chronic setting. In contrast, single oncogene expression of E5, E6 or
E7, or dual expression of E5/E6, E5/E7 or E6/E7 can result in epithelial
hyperplasia; in some instances, this led to induction of spontaneous
squamous cell carcinoma-like pathology in the mouse skin [100].
However, triple transgenic expression of E5, E6 and E7 induced less
pronounced tumours than the dual HPV oncogene expressing counter-
parts, suggesting an inhibitory role of E5 on E6/E7-induced carcino-
genesis [101]. This discrepancy on the role of E5 in the carcinogenic
process may be due to differences in the natural kinetics of E5, E6 and
E7 expression in an infected cell. Hence, their cooperation for carci-
nogenesis may be time and stage dependent in different individuals.
While the co-expression of E5/E6, E5/E7 and E6/E7 do have synergistic
effects, E7 is the most damaging of the three and consequently the most
critical for cervical cancer development [reviewed in [102]]. Par-
enthetically, expression of HPV16 E7 is likely a major contributor of the
immunological consequences accompanying high-grade squamous in-
traepithelial lesions.

Other K14-restricted HPV oncoprotein transgenic mouse models
have been described and these models have been used to investigate the
oncogenic potential of HPV proteins expressed by other HPV types,
such as HPV8 [103] and HPV18 [104]. Specifically, although long-term
overexpression of HPV8 E2 gene in K14E2 transgenic mice induced
transformation of skin keratinocytes, the rate was very low without

addition of further carcinogens [103]. In the HPV18-K14E7 mouse
model, there was no demonstrable effect on cervical cancer develop-
ment although all transgenic mice developed severe cataracts [104],
similar to initial observation of mice expressing HPV16 E6 and E7 in the
ocular lenses (under the αA-crystallin promoter; αA-HPV16-E6/E7)
[105]. While our analyses performed in this study have been restricted
to the comparison of K14E7 murine skin expressing E7, the mouse
model has been used for studying cervical disease. K14E7 mice have
been shown to be able to develop cervical carcinoma when other car-
cinogens are present, such as administration of oestrogen as a co-
carcinogen in the mouse cervix [106]. The oestrogen-induced carcino-
genesis model has been used to evaluate the utility of therapy options
such as hormone replacement therapy in the form of a progestin drug
(medroxyprogesterone acetate) [107]. Xenografts of HPV16 E7 plasmid
transfected human foreskin on immunodeficient recipient mice have
also been used as a humanised mouse model of HPV-associated disease
[108]. Other tumour xenograft models in humanised mice are being
explored as models for head and neck HPV-related malignancies and for
testing therapeutic vaccine modalities in these settings [109,110]. We
emphasise that there are other non-murine animal models that have
been used in studying HPV-associated carcinogenesis and therapeutic
strategies, such as experimentally infected cattle, dogs, and rabbits with
bovine- canine- and rabbit papillomaviruses respectively. However, the
cost and ethical issue of these models limit their clinical utility
[111,112]. More recently, immunocompromised laboratory mice in-
fected by MmuPV1 have shown promising results for investigating early
stages of papillomavirus infection but infection in immunocompetent
mice did not develop papillomavirus-associated malignancy, limiting
the applicability of this model at this stage [9–12].

Currently, there is considerable attention towards the development
of therapeutic vaccination as a mode of anti-HPV immunotherapy for
targeting pre-existing infections. In a recent study, Brown et al., used
live intra-vital imaging to elegantly demonstrate that healthy skin cells
promote the spontaneous regression of cells harbouring damaging
mutations at a surprisingly high rate [113], supporting the hypothesis

Fig. 7. CAMERA gene set testing of CD8 T cell immunologic gene sets from MSigDB C7 in grafting comparisons. (A) Photographs of representative grafts from the various donors and recipients
prior to sample collection at 14DPG or 28DPG. (B) Top 5 CD8 T cell related immunological gene sets from CAMERA gene set testing. The significance value of the CAMERA gene set test,
Log10 transformed false discovery rate (FDR) adjusted p-values, for each gene set are plotted along the viridis colour scale (purple, blue, green to yellow) in each bubble as well as on the
x-axis where the direction regulation of the of the gene set (up or down; +1 or −1) is multiplied to the significance value. The size of the bubbles correspond to the proportion of genes
that are up-regulated in each gene set calculated by ROAST. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that a healthy tissue microenvironment can efficiently recognise and
eliminate transformed cells. Certainly, a baseline level of immune
competence by the epithelium is required to help reject cancer. In an
ideal situation, therapeutic vaccines against HPV should augment this
effect and amplify the interactions between the immune system and the
epithelia for efficient removal of infected cells. However, there have
been considerable challenges in this space; clinical trials evaluating
protein/peptide-, viral vector-, and E7-DNA-based therapeutic vaccines
have been inconclusive. For example, protein/peptide vaccines linking
the E7 antigen to different pathogen proteins, such as Haemophilus in-
fluenza protein D [114], and HSP65 from Mycobacterium bovis
[115,116] were able to invoke a greater immune response from subjects
as a result of increased immunogenicity, showing increased vaccine-

induced IFNγ production in CD4 and CD8 T cells and ~50% lesion
shrinkage [116]. However, the rate of spontaneous regression was si-
milar between the vaccinated and unvaccinated cohort. Promising re-
sults from a clinical trial that administered HPV16 E6/E7 peptide
vaccines to recruited stage 3 vulvar intraepithelial neoplasia patients
demonstrated good induction of CD4 T and CD8 T cell responses and
long lasting clinical protection [117]. However, a similar approach
utilised for CIN2 and CIN3 therapeutic vaccine development was ac-
companied with a concomitant induction of CD4+FOXP3+CD25+

regulatory T cells, dampening the response [118]. This highlights a lack
of understanding of the crosstalk between the immune system and the
HPV-infected skin microenvironment.

To our knowledge, there have been two reports on the use of

Fig. 8. CIBERSORT analysis of immune cell composition in grafting groups. (A) Relative percentage of the estimated immune cells in the various grafting groups. Each of the 22 immune cell
types are assigned a different colour on the plot. (B) Relative fractions from (A) are plotted as a dot plot and two-way ANOVA analysis with Bonferonni's post-test was performed,
specifically comparing CD1d-/-xK14E7 on C57BL/6 skin grafts versus K14E7 on C57BL/6 skin grafts at 14DPG or 28DPG separately. Significance is denoted by *P<0.05; **P< 0.01;
***P< 0.001; ****P< 0.0001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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combination immunotherapy involving PD-L1 blockade with HPV16
therapeutic vaccination in mouse models, eliciting improved anti-tu-
mour responses in both cases [85,119]. However, vaccine studies
showing efficacy against the transplantable TC-1 tumour cell line ex-
pressing HPV16 E6 and E7, despite promising results in mouse studies,
have failed to predict effective responses in human clinical trials [4].
While these are useful models to assess the efficacy of tumour rejection
or HPV infection clearance in an acute setting, the mechanisms in-
volved may be different for pre-malignant lesions on immunocompetent
individuals where chronic changes induced by HPV16 are dominant.
This is evident from the fact that transplanted TC-1 tumours are very
aggressive but can be efficiently prevented and treated in mice with an
immunisation protocol. In contrast, we argue that mouse models that
chronically express HPV16 oncoproteins on basal keratinocytes can
better emulate the persistence of HPV-associated dysplasia and allow
for insights into factors that promote lesion or HPV clearance. We
propose that the K14E7 transgenic mouse and K14E7 skin grafting
model may be of particular use for preclinical testing of HPV im-
munotherapies.
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