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Abstract

Genome-wide microarrays have suggested that Emdogain regulates TGF-b target genes in gingival and palatal fibroblasts.
However, definitive support for this contention and the extent to which TGF-b signaling contributes to the effects of
Emdogain has remained elusive. We therefore studied the role of the TGF-b receptor I (TGF-bRI) kinase to mediate the effect
of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-bRI
kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray
analysis (p,0.05; .10-fold). Importantly, in the presence of the TGF-bRI kinase inhibitor SB431542, Emdogain failed to cause
any significant changes in gene expression. Consistent with this mechanism, three independent TGF-bRI kinase inhibitors
and a TGF-b neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK
inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-bRI kinase
activity is necessary to mediate the effects of Emdogain on gene expression in vitro.
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Introduction

Emdogain consists of enamel matrix derivatives and the vehicle

propylene glycol alginate (Institut Straumann, Basel, Switzerland)

[1]. The local application of Emdogain has been shown to support

skin wound healing [2,3]. The ability of Emdogain to stimulate

soft tissue regeneration has prompted the combination of

Emdogain with palatal subepithelial connective tissue to enhance

the healing process [4–6]. Emdogain has also been successfully

used for regenerative treatment of various periodontal lesions such

as intrabony defects, class II furcations, and recessions [7–9].

However, the cellular and molecular mechanisms allowing

Emdogain to support tissue regeneration have not been clarified

so far.

In vitro studies support the assumption that Emdogain directly

targets cells that are involved in wound healing. For example,

Emdogain modulates the formation of extracellular matrix and

modulates the differentiation of mesenchymal cells [10,11].

Emdogain can be taken up by periodontal ligament fibroblasts

[12] and can change the mitogenic activity of cells [13]. Among

the genes that are expressed in response to Emdogain are

cytokines [14]. The in vitro cellular responses to Emdogain have

been summarized recently [1,15].

Microarray analyses have provided further insight into the

complex cellular response to Emdogain, as was reported for

periodontal ligament fibroblasts [16,17], osteoblast-like cell lines

(MG-63) [18], marrow stromal cells [19], and epithelial cell lines

[20]. Recently, whole genome gene expression profiling with

gingival and palatal fibroblasts has been performed, revealing

numerous genes such as IL-11 that are typically regulated by

TGF-b [21]. It is thus possible that at least some of the cellular

responses to Emdogain involve TGF-b activity.

This assumption is supported by observations of neutralizing

antibodies against TGF-b substantially reducing the impact of

Emdogain on cell signaling [22], connective tissue growth factor

expression [23] or proliferation [24]. Also, SB431542, a pharma-

cologic inhibitor of the TGF-b type I receptor (TGF-bRI) kinase,

suppresses the in vitro effect of Emdogain on adipogenesis [11]

and osteoclastogenesis [25], but also of calcium channel blockers

[26]. It is thus supposed that TGF-b type I receptor is required to

mediate Emdogain-induced gene expression in palatal fibroblasts.

The key question is, to what extent?

TGF-b signaling controls multiple cellular responses, including

cell growth and differentiation [27]. Ligand binding causes the

type I and type II receptors to form a complex that initiates

activation of the cytoplasmic kinase, which in turn phosphorylates

Smad2/3. A Smad (small mothers against decapentaplegic)

complex is formed that controls the expression of target genes in

the cell nucleus. Ligand binding can also activate a non-canonical

pathway, for example, mitogen-activated protein kinase signaling

including ERK, JNK, and p38 MAPK pathways. Emdogain was

reported to activate Smad2/3 [11,28] and MAPK pathways [28],

further supporting the evidence that Emdogain stimulates TGF-b
signaling.

Existing knowledge led us to ask to what extent Emdogain

exerts its cellular responsiveness via TGF-b signaling. To answer

the question, we determined the gene expression profile of palatal

fibroblasts exposed to Emdogain with and without the presence of

the TGF-bRI kinase inhibitor SB431542. We found that cells
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exposed to SB431542 were completely shielded from the

Emdogain-induced gene expression.

Materials and Methods

Isolation of fibroblasts and exposure to Emdogain
Human palatal fibroblasts were prepared from tissue grafts

removed during periodontal surgery. Palatal grafts were harvested

from three individual patients each. Tissue explants were

cultivated in Dulbecco’s Modified Eagle Medium supplemented

with 10% fetal calf serum (PAA Laboratories, Linz, Austria) and

antibiotics. Fibroblasts that grew out from the explants and had

not undergone more than five passages were used for the

experiments. Palatal fibroblasts were plated at 30,000 cells/cm2

and incubated for 24 hours with Emdogain (Institut Straumann

AG, Basel, Switzerland) at 100 mg enamel matrix derivative per ml

or serum-free medium alone.

Ethics statement
Fibroblasts were retrieved from patients undergoing periodontal

surgery after signed informed consent and approval by the Ethics

Committee of the University of Bern.

Modulation by pharmacologic inhibitors and antibodies
Pharmacologic inhibitors for the TGF-bRI kinase were

SB431542 (Calbiochem, Merck, Billerica, MA), activin receptor-

like kinase-5 ALK5 Inhibitor I (LY-364947; Enzo Life Sciences

AG, Lausen, Switzerland), and ALK5 Inhibitor II (2-(3-(6-

Methylpyridin-2-yl)-1H-pyrazol-4-yl)-1,5-naphthyridine; Enzo),

all at 10 mM. Pharmacologic inhibitors for the three main MAPK

signaling pathways were U0126, SB203580, and SP600125, all at

10 mM (Santa Cruz Biotechnology, SCBT; Santa Cruz, CA). The

smad3 inhibitor SIS3 was obtained from Calbiochem. The TGF-b
pan specific polyclonal Ab, AB-100-NA was obtained from R&D

Systems Inc. (Minneapolis, MN). The bone morphogenetic protein

(BMP) type I receptor kinase inhibitors, dorsomorphin (Sigma, St.

Louis, MO) and LDN193189 (Cayman, Ann Arbor, MI) were

used at 10 mM and 1 mM, respectively. The impact of the TGF-

bRI kinase inhibitors on cell viability was determined by the

conversion of MTT into formazan crystals [29] and Nuclear-ID

Red/Green cell viability reagent (Enzo Life Sciences, Inc.,

Farmingdale, NY).

Microarray analysis
Total RNA was isolated using the High Pure RNA Isolation Kit

(Roche Applied Science, Rotkreuz, Switzerland). RNA quality was

determined using the Agilent 2100 Bioanalyzer (Agilent Technol-

ogies, Santa Clara, CA, USA). Microarray analysis was performed

using the Human GE 4644K V2 Microarray Kit with SurePrint

Technology (Illumina Inc., San Diego, CA, USA) recognizing

mRNA and long intergenic non-coding RNA (lincRNA). Array

image acquisition was performed with the Agilent G2505B

Microarray Scanner and Feature Extraction software version 9.5

(Agilent). Data files were analyzed by GeneSpring GX 7.3.1.

Microarray analysis was performed at Arrows Biomedical

Deutschland GmbH (Münster, Germany).

qRT-PCR analysis and immunoassay
For validation of the microarray results, one gene from the gene

list was selected for qRT-PCR analysis. Reverse transcription (RT)

was performed with Transcriptor Universal cDNA Master (Roche)

and PCR was done with the FastStart Universal Probe Master

Rox (Roche) on a 7500 Real-Time PCR System (Applied

Biosystems, Carlsbad, CA, USA). Probes were designed with the

online Universal ProbeLibrary System (Roche): IL11 Forw: GGA

CAG GGA AGG GTT AAA GG, Rev: GCT CAG CAC GAC

CAG GAC; SNAI1 Forw: GCT GCA GGA CTC TAA TCC

AGA, Rev: ATC TCC GGA GGT GGG ATG; SNAI2 Forw:

TGG TTG CTT CAA GGA CAC AT, Rev: GCA AAT GCT

CTG TTG CAG TG; CTGF Forw: CCT GCA GGC TAG AGA

AGC AG, Rev: TGG AGA TTT TGG GAG TAC GG. TGF-b
Forw: ACT ACT ACG CCA AGG AGG TCA C, Rev: TGC

TTG AAC TTG TCA TAG ATT TCG. The mRNA levels were

calculated by normalizing to the housekeeping gene beta actin

using the DDCt method. The immunoassay for human IL-11 was

obtained from Enzo Life Sciences.

Transfection with siRNA
TGF-b1 siRNA, mock siRNA and the transfection agent were

purchased from SCBT (Santa Cruz, CA). The transfection

Figure 1. Dose- and time-response of Emdogain on IL-11 expression. Palatal fibroblasts were incubated with (A) various concentrations of
Emdogain for 24 hours and for (B) various time-points with Emdogain at 100 mg/ml. RT-PCR was performed for IL-11 **P,0.01 compared to
Emdogain control. The data represent two experiments with a total of three donors (n = 6).
doi:10.1371/journal.pone.0105672.g001
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protocol was followed according to the instructions of the

manufacturer. Inhibition efficacy was determined by basal

expression control of the TGF-b1-regulated genes SNAI1, SNAI2,

and CTGF. Transfected cells were exposed to Emdogain at

100 mg/ml in serum-free medium for 24 hours. Gene expression

analysis was performed targeting IL-11.

Western blot analysis
Palatal fibroblasts were serum-starved and then treated with

Emdogain for 30 minutes. Cell extracts were separated by SDS-

PAGE and transferred onto nitrocellulose membranes. Binding of

the antibody raised against phospho-smad3 (both Cell Signaling

Technology, Danvers, MA, USA) and b-actin (SCBT) were

detected with the appropriate secondary antibody directly labeled

with near-infrared dyes (Invitrogen) and detected with the

appropriate imaging system (LI-COR Biosciences).

Functional annotation and molecular network analysis
To assign biological meaning of the subset of genes, Gene

Ontology screening was performed (GO; DAVID. (david.abcc.n-

cifcrf.gov/home.jsp): GOTERM_BP_FAT (biological process),

GOTERM_MF_FAT (molecular function), GOTERM_CC_FAT

(cellular component), and KEGG Pathway (www.genome.jp/

kegg/pathway.html). DAVID calculates a modified Fisher’s Exact

p value to demonstrate GO or molecular pathway enrichment. P

values less than 0.05 after Benjamini multiple test correction were

considered strongly enriched in the annotation category.

Statistical analysis
The numbers of differentially expressed transcripts in the

microarray data were identified ($10-fold change; p,0.05) under

the analysis of variance and post hoc Benjamini–Hochberg false

discovery rate correction for multiple tests. RT-PCR data were

calculated with the paired T-test.

Results

Dose- and time-dependent responses of Emdogain on IL-
11 expression

To reveal the most suitable experimental conditions, palatal

fibroblasts were incubated with various concentrations of Emdo-

gain for 24 hours (Figure 1A), and with a single concentration of

100 mg/ml for various time-points (Figure 1B). Based on the

previous findings [21], IL-11 was selected as an indicator gene for

the effects of Emdogain in vitro. The dose-response curve

confirmed the commonly used concentration of 100 mg/ml

Emdogain to provoke a maximal increase of IL-11 expression

and also the time-response curve supports the 24-hour incubation

period as ideal for this experimental set-up, prior to the genome-

wide microarray. To rule out any toxic effect of the TGF-bRI

kinase inhibitor, palatal fibroblasts were incubated with Emdogain

with and without SB431542 before life-dead staining (Figure 2A)

and MTT assay (Figure 2B) were performed.

TGF-b receptor I kinase inhibitor suppressed the
expression of all Emdogain-regulated genes

To study the role of the TGF-bRI kinase to mediate the effect of

Emdogain in vitro, isolated palatal fibroblasts from three donors

were exposed to Emdogain with and without the inhibitor

SB431542 and a genome-wide microarray was performed. The

gene expression profiles of palatal fibroblasts revealed that

Emdogain greatly changed the expression of 39 coding genes (.

10-fold, p,0.05, Table 1), similar to what we have recently

reported [21]. Strikingly, SB431542 completely abolished the

expression of all Emdogain-regulated genes (Table 1). Also five

non-coding Agilent Gene IDs that were regulated by Emdogain

failed to do so in the presence of SB431542 (Table 2). Together

these data suggest that the respective fibroblastic response to

Emdogain essentially requires the TGF-bRI kinase activity.

TGF-b receptor I kinase is crucial for IL-11 expression
induced by Emdogain

In line with the microarray data, quantitative RT-PCR

confirmed the strong increase of IL-11 when palatal fibroblasts

were exposed to Emdogain (Figure 3A). Also in this setting, the

TGF-bRI kinase inhibitor SB431542 completely abolished the

impact of Emdogain on expression of IL-11 by palatal fibroblasts.

Furthermore, two other inhibitors for TGF-b receptor I kinase

(ALK5 Inhibitor I or II) also obliterated the Emdogain-stimulated

increase of IL-11. Also the presence of a neutralizing TGF-b pan-

specific polyclonal antibody reduced the Emdogain-induced IL-11

Figure 2. Viability is maintained when cells are exposed to TGF-b receptor I kinase inhibitors. Palatal fibroblasts were incubated with
100 mg/ml Emdogain or serum-free medium alone and the TGF-bRI kinase inhibitors SB431542, ALK5 Inhibitor I or ALK5 Inhibitor II. (A) MTT
conversion assay shows that the presence of the three TGF-bRI kinase inhibitors had no significant impact on cell viability. (B) The nuclear-ID Red/
Green cell viability assay confirms this finding as the distribution of viable green and dead red cells is not affected by SB431542. Experiments were
performed three times.
doi:10.1371/journal.pone.0105672.g002
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expression. The immunoassay further supports this observation by

showing the decrease of IL-11 at the protein level (Figure 3B).

To understand a possible autocrine function of Emdogain,

TGF-b expression was determined and siRNA-blocking experi-

ments performed. Emdogain did not significantly change the basal

TGF-b expression in the fibroblasts (data not shown). Moreover,

blocking TGF-b1 translation by siRNA transfection did not alter

the effect of Emdogain on IL-11 expression (Figure 3C). TGF-b1

siRNA decreased the basal expression of the respective target

genes SNAI1, SNAI2, and CTGF (data not shown). Together,

these findings support the role of TGF-bRI kinase in mediating

Table 1. SB431542 suppressed the expression of coding genes regulated by Emdogain.

Gene ID Change Gene Name

wo/E wo/ESB43

1. A_23_P39955 17.0 21.1 actin, gamma 2, smooth muscle, enteric

2. A_33_P3310929 11.5 21.2 ADAM metallopeptidase domain 12

3. A_23_P14083 13.1 21.3 adhesion molecule with Ig-like domain 2

4. A_32_P105549 10.9 21.2 annexin A8 (and like 1 & 2)

5. A_33_P3385266 210.1 1.2 ATP-binding cassette, sub-family C, member 6 pseudogene

6. A_23_P125233 10.7 21.1 calponin 1, basic, smooth muscle

7. A_23_P151895 41.3 21.3 cartilage intermediate layer protein, nucl. pyrophosphohydrolase

8. A_23_P121695 10.0 1.0 chemokine (C-X-C motif) ligand 13

9. A_23_P362191 218.5 22.1 chromosome 17 open reading frame 44 & 68

10. A_23_P251043 12.1 21.6 chromosome 20 open reading frame 39

11. A_33_P3423854 10.0 21.3 complement component 8, beta polypeptide

12. A_23_P65518 10.2 21.8 dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)

13. A_23_P46936 18.4 22.5 early growth response 2

14. A_32_P51237 197.3 21.1 KN motif and ankyrin repeat domains 4

15. A_33_P3283833 13.1 21.7 forkhead box S1

16. A_23_P396858 17.1 1.3 frizzled homolog 8 (Drosophila)

17. A_23_P105251 18.9 22.1 GLI family zinc finger 1

18. A_32_P140489 12.8 1.0 growth differentiation factor 6

19. A_24_P140608 26.3 21.1 heparin-binding EGF-like growth factor

20. A_33_P3243887 15.7 21.6 interleukin 11

21. A_33_P3260530 32.3 21.2 KN motif and ankyrin repeat domains 4

22. A_24_P827037 10.4 21.4 leucine rich repeat containing 15

23. A_23_P6771 26.8 1.2 LIM and cysteine-rich domains 1

24. A_33_P3214334 12.4 1.9 lymphocyte antigen 6 complex, locus G6F

25. A_33_P3312676 14.0 21.3 myelin transcription factor 1

26. A_33_P3246418 28.9 1.1 MyoD family inhibitor

27. A_33_P3224324 15.7 1.6 NADPH oxidase 4

28. A_23_P138194 26.2 21.3 neutrophil cytosolic factor 2

29. A_23_P151506 22.2 2.7 pleckstrin 2

30. A_23_P210581 12.6 21.2 potassium voltage-gated channel, subfamily G, member 1

31. A_24_P413126 14.7 22.2 prostate transmembrane protein, androgen induced 1

32. A_33_P3369178 27.4 22.1 proteoglycan 4

33. A_24_P13041 12.9 2.5 rhotekin 2

34. A_33_P3299510 10.2 21.5 scleraxis homolog A (mouse); scleraxis homolog B (mouse)

35. A_24_P48204 218.2 1.1 secreted and transmembrane 1

36. A_23_P106389 25.4 1.0 semaphorin 7A, GPI membrane anchor

37. A_23_P434398 210.8 1.2 taxilin beta

38. A_32_P75264 212.0 21.6 transmembrane protein 26

39. A_24_P226970 17.4 1.0 zinc finger protein 365

Palatal fibroblasts were exposed to Emdogain (E) with and without the inhibitor SB431542 (SB43) and a genome-wide microarray was performed. The table shows the
genes with a coding sequence that are at least 10-fold changed by Emdogain. SB431542 completely abolished the expression of all Emdogain–regulated genes. The
data represent the means of one experiment with cells from three individual donors.
doi:10.1371/journal.pone.0105672.t001
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effects of Emdogain on gene expression in vitro, independent of

TGF-b1 produced by the palatal fibroblasts.

Smad-3 and MAPK mediate the effect of Emdogain on IL-
11 expression

We next sought to determine whether TGF-bRI kinase

downstream signaling pathways involve canonical signaling by

adding the smad-3 inhibitor SIS3. Surprisingly, SIS3 increased

Emdogain-induced IL-11 expression (Figure 4A) even though

Emdogain increased smad-3 phosphorylation in Western blot

analysis (Figure 4B). These results suggest that also the non-

canonical signaling pathway controls at least IL-11 expression. In

support of this suggestion, blocking ERK and p38 with U0126 and

SB203580, respectively, significantly reduced the effect of

Emdogain on IL-11 expression (Figure 4A). Taken together, these

results suggest that ERK and in particular p38 attenuate the

expression of Emdogain-regulated IL-11 expression in palatal

fibroblasts.

BMP receptors do not mediate the effect of Emdogain on
IL-11 expression

To further rule out that the effects of Emdogain are mediated

via BMP receptors, palatal fibroblasts were incubated with the

BMP type I receptor inhibitors dorsomorphin and LDN193189.

Neither of the two inhibitors considerably reduced the Emdogain-

induced IL-11 expression (Figure 5A). In line with this observa-

tion, recombinant BMP-2 and BMP-7 only had negligible effects

on IL-11 expression (Figure 5B). Taken together, Emdogain

effects on IL-11 expression occur independently of BMP type I

receptors.

Three domains of gene ontology: biological process,
cellular component, and molecular function

As indicated in Tables 3–5, the 39 Emdogain-regulated coding

genes were associated with 14 biological processes, six cellular

components, and five molecular functions. The most relevant

biological process was ‘‘response to wounding’’, with 6 genes

involved (p = 0.011), whereas the most relevant cellular compo-

nent was ‘‘intrinsic to membrane’’, with 17 genes involved

(p = 0.27). The highest association for a molecular function was

‘‘cytokine activity’’ (p = 0.007), with chemokine ligand 13, growth

differentiation factor 6, and Interleukin-11 being involved in this

cluster. Gene ontology analysis underlined the complex cellular

response of gingival and palatal fibroblasts to Emdogain in vitro.

Discussion

Based on studies using antibodies [22–24] or pharmacologic

inhibitors for the TGF-bRI kinase [11,25], it has been suggested

that Emdogain exerts, at least in part, its in vitro effects via a TGF-

b-like activity. These data appear to indicate that TGF-b signaling

may play an important role in the cellular responses caused by

Emdogain in vitro. In support of this assumption, the genetic

evidence presented in this study demonstrates that TGF-bRI

kinase is fundamental to mediate Emdogain effects on gene

expression in palatal fibroblasts. Our finding that in the presence

of SB431542, none of the 39 Emdogain-regulated genes reaches

the level of significance, greatly supports the concept that TGF-

bRI kinase is critically involved in mediating palatal fibroblast

responses to Emdogain.

Microarray analyses, consistent with our approach, have shown

the complex genetic response of mesenchymal [16–19,21] and

epithelial cells [20] to Emdogain in vitro. Taken together, these

studies revealed the spectrum of genes regulated by Emdogain –

some of which are typical TGF-b-regulated genes; including the

cytokine IL-11 [30]. Other examples are transcription factors such

as NOX4 [31] and PPARG [32]. These reports, along with the

finding that Emdogain demonstrates TGF-b-like activity [11,22–

25], support the hypothesis that Emdogain requires TGF-b
receptor signaling to mediate the changes in gene expression.

Our data showing that blocking TGF-bRI kinase in fibroblasts

completely suppressed the response of cells to Emdogain

corroborates this concept.

IL-11, a pleiotropic cytokine of the interleukin-6 type family

[33], has been chosen as the ‘‘indicator’’ gene to investigate down-

stream TGF-b signaling pathways, as reported for lung fibroblasts

[30], periodontal ligament and gingival fibroblasts [34], and bone

metastatic breast cancer cells [35]. A similar TGF-bRI-dependent

increase in IL-11 expression was observed with another crude

preparation of growth factors, bone conditioned medium [36].

Also other microarray studies demonstrate that Emdogain

supports IL-11 expression in oral fibroblasts [16,21]. In patients

with aggressive periodontitis, IL-11 was decreased in periodontal

pockets, pointing at a shift of the inflammatory equilibrium

towards a more pro-inflammatory state [37–39]. Thus, it can be

speculated that increasing IL-11 levels induced via TGF-bRI

kinase might exert beneficial effects on tissue regeneration.

TGF-bRI, when activated, forms a complex with the type II

receptor and phosphorylates Smad2/3 [27]. Consistent with

previous evidence that Emdogain activates Smad2/3 signaling

[11,28], we confirmed here that Emdogain increased Smad3

phosphorylation and that SIS3, the Smad3-inhibitor, lowered

Emdogain-induced Sema7a expression (data not shown). Surpris-

Table 2. SB431542 suppressed the expression of non-coding sequence regulated by Emdogain.

Agilent Gene ID Change

wo/E wo/ESB43

1. A_23_P102681 14.7 21.4

2. A_23_P166779 20.6 21.4

3. A_24_P223018 214.5 22.0

4. A_33_P3257518 15.0 21.3

5. A_33_P3402329 38.7 21.6

Genome-wide microarray from palatal fibroblasts revealed genes with a non-coding sequence that are at least 10-fold changed by Emdogain (E). SB431542 (SB43)
completely abolished the expression of all Emdogain–regulated genes.
doi:10.1371/journal.pone.0105672.t002
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ingly, SIS3 increased the impact of Emdogain on IL-11

expression. IL-11 expression depends on the canonical pathway

in tumor cells [40], but also involves MAPK pathways [27,41].

Also TGF-b1-stimulated LOX and VEGF expression involved

Smad3 but also MAPK signaling [42] [43]. In line with this

concept, we show that blocking of ERK and p38 lowered the

impact of Emdogain on IL-11 expression, and Emdogain was

already reported to cause activation of the respective kinases

[22,28]. It remains uncertain why SIS3 increased the impact of

Emdogain on IL-11 expression.

BMP receptors might exert some activities of Emdogain [44,45]

via SMAD 1/5/8 [46]. Emdogain can increase the expression of

BMP-2 [21,47], but decrease the expression of BMP-4 in

mesenchymal cells [48]. EMD can further induce the expression

of all BMP receptors, particularly BMPR-2 [47]. Here, BMP

inhibitors were used to delineate BMP effects from TGF-b and

Figure 3. TGF-b receptor I kinase is crucial for IL-11 expression induced by Emdogain. Palatal fibroblasts were incubated with 100 mg/ml
Emdogain or serum-free medium alone and the TGF-bRI kinase inhibitors SB431542, ALK5 Inhibitor I or ALK5 Inhibitor II and a neutralizing TGF-b pan-
specific polyclonal antibody before RT-PCR was performed for IL-11 (A). The data represent 8 experiments including 4 donors. Immunoassay for IL-11
support the data at the protein level (2 experiments with 2 donors). **P,0.01 compared to Emdogain control (B). Palatal fibroblasts transfected with
TGF-b1 siRNA and mock siRNA similarly respond to Emdogain by an increase IL-11 expression (C). The basal expression of TGF-b1-regulated genes
SNAI1, SNAI2, and CTGF were around 50% decreased by TGF-b1 siRNA indicating that the transfection was effective (data not shown). The latter data
represent one experiment with two donors (n = 2). Not shown is that Emdogain fails to change basal TGF-b1 expression.
doi:10.1371/journal.pone.0105672.g003
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activin signaling [46,49]. In the present study, dorsomorphin and

LDN-193189 only marginally changed Emdogain-induced IL-11

expression. These findings support the assumption that BMP

receptor signaling is not a central pathway in this in vitro setting.

Further support for this assumption derives from our data showing

that recombinant BMP-2 and BMP-7 do not change IL-11

expression in palatal fibroblasts. However, dorsomorphin can also

inhibit TGF-b1 signaling through the ALK1 pathway [50] and

prevent TGF-ß-induced CTGF and COL1A1 expression in

synovial fibroblasts [51]. Taken together, the effects of Emdogain

on IL-11 expression require ALK5 but not ACTR-I (ALK2),

BMPR-IA (ALK3), or BMPR-IB (ALK 6). Besides IL-11, other

Emdogain-regulated genes might depend on different downstream

effects than ALK5 signaling, but this requires further studies.

The next question addressed was whether Emdogain-induced

changes in gene expression are mediated via TGF-b1 produced by

the palatal fibroblasts and thus by an autocrine mechanism. This

question is based on the observation that Emdogain can stimulate

TGF-b1 expression in oral fibroblasts [24,52]. We have reason to

suggest that this is not the case. First, Emdogain failed to

significantly increase TGF-b1 expression in palatal fibroblasts.

Second, Emdogain increased IL-11 expression within only 1.5

hours. Finally, transfection with siRNA against TGF-b did not

alter the strong increase of IL-11 induced by Emdogain.

Moreover, an immunoassay raised against TGF-b1 showed

positive signals in Emdogain, which favors the hypothesis that at

least the major impact on the regulation of IL-11 directly derives

from Emdogain.

Figure 4. Smad-3 and MAPK mediate the effect of Emdogain on IL-11. Palatal fibroblasts were incubated with 100 mg/ml Emdogain or
serum-free medium. The impact of the signaling inhibitors on IL-11 expression was determined by RT-PCR. Data represent 5 experiments with 3
donors.
doi:10.1371/journal.pone.0105672.g004

Figure 5. BMP receptors ALK2, ALK3, and ALK6 do not mediate the effect of Emdogain on IL-11 expression. Palatal fibroblasts were
incubated with (A) 100 mg/ml Emdogain or serum-free medium alone and BMP type I receptor inhibitors dorsomorphin (DORSO; 10 mM) and
LDN193189 (LDN; 10 mM). Palatal fibroblasts were also incubated with (B) recombinant human BMP-2 and BMP-7 (both 100 ng/ml). RT-PCR was
performed for IL-11 **P,0.01 compared to Emdogain control. The data represent at least two experiments with cells from three donors (n = 6).
doi:10.1371/journal.pone.0105672.g005
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The Emdogain-regulated genes can be clustered by Gene

Ontology into functional groups related to biological processes,

cellular components, and molecular functions. For example, in line

with previous studies [21], Emdogain affects ‘‘response to

wounding’’, ‘‘intrinsic to membrane’’, and ‘‘cytokine activity’’.

However, in the present study the threshold with 10-fold changes

in gene expression was higher than the previous 5-fold changes

[21], thus only 39 compared to 106 genes went into Gene

Ontology analysis. The overall interpretation of the Gene

Ontology data, however, is that all the observed changes in

biological processes, cellular components, and molecular functions

induced by Emdogain are mediated via TGF-bR1, in particular

ALK-5 signaling.

However, there are still many open questions. Is there one or

more molecules in Emdogain that work via TGF-bRI kinase? Is it

possible that the activation of TGF-bRI is caused by cross

activation and the initial response comes from another receptor

such as epidermal growth factor receptor [53], insulin-like growth

factor receptor [54], BMP signaling [55], Wnt signaling [56], or

integrins [57]? To what extent do other cell types exert their

response to Emdogain via TGF-bRI kinase? Does Emdogain

behave similarly in vivo, considering the implication of protease

and cofactors? Important also is the question of the clinical

relevance of the present finding.

The clinical relevance of the present observations can be based

on the assumption that Emdogain causes cellular responses similar

to pleiotropic TGF-b. Besides what is known from genetic models

[58,59], the local application of recombinant TGF-b causes the

formation of a collagen-rich tissue, for example in the skeletal

muscle [60]. These findings are consistent with the role of

Emdogain in supporting the formation of a collagen matrix in

porcine skin wound healing models [3]. It is thus reasonable to

assume that Emdogain and recombinant TGF-b are similar in

their ability to stimulate the formation of a collagen-rich

extracellular matrix. Additional work is required to determine to

which extent, and if at all, the in vivo response to Emdogain is

mediated by ligands stimulating TGF-b receptor signaling in the

respective target cell.

In summary, our findings suggest that the in vitro cellular

response of palatal fibroblasts to Emdogain exclusively depends on

TGF-bRI kinase signaling. It will now be important to determine

why the genetic response of .100 genes in fibroblasts to the

complex composition of the xenogeneic preparation of enamel

matrix derivative exclusively depends on the bottleneck of TGF-b
receptor signaling. The complexity of the composition of the

Table 3. GO Analyze Functional Annotation Clustering.

GOTERM_BP_FAT

Term Count % Benjamini

Response to wounding 7 17.1 3.9E-1

Wound healing 4 9.8 8,7E-1

Immune response 6 14.6 9,4E-1

Coagulation 3 7.3 9,2E-1

Blood coagulation 3 7.3 9,2E-1

Hemostasis 3 7.3 8,9E-1

Superoxide anion generation 2 4.9 8,9E-1

Regulation of body fluid levels 3 7.3 9,3E-1

Defense response 5 12.2 9,4E-1

Superoxide metabolic process 2 4.9 9,4E-1

Regulation of protein amino acid phosphorylation 3 7.3 9,3E-1

Positive regulation of cell proliferation 4 9.8 9,4E-1

Regionalization 3 7.3 9,4E-1

Regulation of transcription from RNA polymerase II promoter 5 12.2 9,5E-1

doi:10.1371/journal.pone.0105672.t003

Table 4. GO Analyze Functional Annotation Clustering.

GOTERM_CC_FAT

Term Count % Benjamini

Extracellular space 7 17.1 9.9E-2

Extracellular region part 7 17.1 2,4E-1

Plasma membrane 14 34.1 2,6E-1

Intrinsic to membrane 17 41.5 3,4E-1

Extracellular region 9 22.0 3,3E-1

Integral to membrane 16 39.0 3,8E-1

doi:10.1371/journal.pone.0105672.t004
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porcine enamel matrix derivative is highlighted by the chroma-

tography [1] and proteomics [61]. Our unexpected observation

that Emdogain-regulated gene expression in palatal fibroblasts

strictly requires TGF-bRI kinase signaling opens the door for

research on the respective ligands and other potential target cells.
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