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Abstract: Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model
is established, and expressions of power output and thermal efficiency for the model are derived.
Through numerical calculations, with the different fixed total heat conductances (UT) of two heat
exchangers, the maximum powers (Pmax), the maximum thermal efficiencies (ηmax), and the corre-
sponding optimal heat conductance distribution ratios (uLP(opt)) and (uLη(opt)) are obtained. The
effects of the internal irreversibility are analyzed. The results show that, when the heat conductances
of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal
efficiency are constant values. When the heat source temperature ratio (τ) and the effectivenesses of
the heat exchangers increase, the corresponding power output and thermal efficiency increase. When
the heat conductance distributions are the optimal values, the characteristic relationships of P− uL

and η − uL are parabolic-like ones. When UT is given, with the increase in τ, the Pmax, ηmax, uLP(opt),
and uLη(opt) increase. When τ is given, with the increase in UT , Pmax and ηmax increase, while uLP(opt)
and uLη(opt) decrease.

Keywords: finite time thermodynamics; irreversible Lenoir cycle; cycle power; thermal efficiency;
heat conductance distribution; performance optimization

1. Introduction

Finite time thermodynamic (FTT) theory [1–4] has been applied to the performance
analysis and optimization of heat engine (HEG) cycles, and fruitful results have been
achieved for both reciprocating and steady-flow cycle models. For the steady-flow models,
FTT was also termed as finite physical dimensions thermodynamics by Feidt [5–10]. The
famous thermal efficiency formula η = 1−

√
TL/TH , where TH and TL are the temperatures

of the heat source and heat sink of a HEG, was derived by Moutier [11] in 1872, Cotterill [12]
in 1890, and Novikov [13] and Chambadel [14] in 1957 for steady-flow power plants, while
the systematical analysis combining thermodynamics with heat transfer for Carnot cycle
was performed by Curzon and Ahlborn [15] in 1975 for reciprocating model, and FTT
development was promoted by Berry’s group [4].

A large number of works have been performed for reciprocating (finite time) mod-
els [16–25] by applying FTT. While finite size is the major feature for steady-flow devices,
such as closed gas rubine (Brayton cycle) power plants and steam (Rankine cycle) and
organic Rankine cycle power plants, many scholars have performed FTT studies for various
steady-flow cycles with the power output (POW), thermal efficiency (TEF), exergy effi-
ciency, profit rate, and ecological function as the optimization goals, under the conditions
of different losses and heat transfer laws [26–51].

Lenoir [52] first proposed the Lenoir cycle (LC) model in 1860. The simple LC consists
of only three processes of constant-volume endothermic, adiabatic expansion, and constant-
pressure exothermic; the LC is also called the triangular cycle. According to the cycle
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form, LC can be divided into steady-flow and reciprocating. Georgiou [53] first used
classical thermodynamics to study the performances of simple, regenerated, and modified
regenerated steady-flow Lenoir cycles (SFLCs).

Following on from [53], Shen et al. [54] applied FTT theory to optimize the POW and
TEF characteristics of the endoreversible SFLC with only the loss of heat resistance, and
they studied the influences of heat source temperature ratio and total heat conductance
(HC) on cycle performance. Ahmadi et al. [55] used a genetic algorithm to carry out
multiobjective optimization for endoreversible SFLC, and they obtained the optimal values
of ecological performance coefficient and thermal economy under different temperature
ratios.

In this paper, an irreversible SFLC model will be established on the basis of [54], while
the cycle performance will be analyzed and optimized with the POW and TEF as objective
functions, the optimal HC distributions of hot- and cold-side heat exchangers (HACHEX) of
the cycle will be studied under different fixed total HCs, and the characteristic relationships
between POW and TEF versus HC distribution are obtained. The effect of the internal
irreversibility will be analyzed.

2. Cycle Model

Figures 1 and 2 show the T− s and p− v diagrams of the irreversible SFLC. As can
be seen, 1→ 2 is the constant-volume endothermic process, 2→ 3 is the irreversible
adiabatic expansion process (2→ 3S is the corresponding isentropic process), and 3→ 1
is the constant-pressure exothermic process. Assuming the cycle WF is an ideal gas, the
entire cycle needs to be completed between the heat source (TH) and heat sink (TL).
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In the actual work of the HEG, there are irreversible losses during compression and
expansion processes; thus, the irreversible expansion efficiency ηE is defined to describe
the irreversible loss during the expansion process.

ηE =
T2 − T3

T2 − T3S
, (1)

where Ti (i = 2, 3, 3S) is the corresponding state point temperature.
Assuming that the heat transfer between the WF and heat reservoir obeys the law of

Newton heat transfer, according to the theory of the heat exchanger (HEX) and the ideal
gas properties, the cycle heat absorbing and heat releasing rates are, respectively,

.
Q1→2 =

.
mCvEH(TH − T1) =

.
mCv(T2 − T1), (2)

.
Q3→1 =

.
mCPEL(T3 − TL) =

.
mCP(T3 − T1), (3)

where
.

m is the mass flow rate of the WF, Cv(CP) is the constant-volume (constant-pressure)
SH (CP = kCv, k is the cycle SH ratio), and EH(EL) is the effectiveness of hot-side (cold-side)
HEX.

The relationships among the effectivenesses with the corresponding heat transfer unit
numbers (NH , NL) and HCs (UH , UL) are as follows:

NH = UH/(
.

mCv), (4)

NL = UL/(
.

mkCv), (5)

EH = 1− exp(−NH), (6)

EL = 1− exp(−NL). (7)

3. Analysis and Discussion
3.1. Power and Thermal Efficiency Expressions

According to the second law of thermodynamics, after a cycle process, the total entropy
change of the WF is equal to zero; thus, one finds

Cv ln(T2/T1)− CP ln(T3S/T1) = 0. (8)

From Equation (8), one obtains

T2

T1
= (

T3S
T1

)k. (9)

From Equations (2) and (3), one has

T2 = EH(TH − T1) + T1, (10)

T3 = (ELTL − T1)/(EL − 1). (11)

Combining Equations (1), (9), and (10) with Equation (11) yields

T1 =
EHTH(ηE − 1) + (T1 − ELTL)/(1− EL)

{(1− EH)(1− ηE) + {[EHTH + (1− EH)T1]/T1}
1
k ηE}

. (12)

From Equations (2), (3) and (9)–(11), the POW and TEF expressions of the irreversible
SFLC can be obtained as

P =
.

Q1→2 −
.

Q3→1 =
.

mCv[EH(TH − T1)−
kEL(T1 − TL)

1− EL
], (13)
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η = P/
.

Q1→2 = 1− kEL(T1 − TL)

EH(1− EL)(TH − T1)
. (14)

When ηE = 1, Equation (12) simplifies to

T1 − ELTL = (1− EL)[EHTH + (1− EH)T1]
1
k T1

1− 1
k . (15)

Equation (15) in this paper is consistent with Equation (15) in [54], where T1 was
obtained for the endoreversible SFLC. Combining Equations (13)–(15) and using the nu-
merical solution method, the POW and TEF characteristics of the endoreversible SFLC
in [54] can be obtained.

3.2. Case with Given Hot- and Cold-Side HCs

The working cycles of common four-branch HEGs, such as Carnot, Brayton, and Otto
engines, can be roughly divided into four processes: compression, endothermic, expansion,
and exothermic. Compared with these common four-stroke cycles, the biggest feature of
the SFLC is the lack of a gas compression process, presenting a relatively rare three-branch
cycle model.

When the hot- and cold-side HCs are constant, it can be seen from Equations (4)–(7)
that the effectivenesses of the HACHEX which are directly related to each cycle state point
temperature will be fixed values; as a result, the POW and TEF will also be fixed values.

3.3. Case with Variable Hot- and Cold-Side HCs When Total HC Is Given

When the HC changes, the POW and TEF of the cycle will also change; therefore, the
HC can be optimized and the optimal POW and TEF can be obtained. Assuming the total
HC is a constant,

UL + UH = UT . (16)

Defining the HC distribution ratio as uL = UL
UT

(0 < uL < 1), from Equations (4)–(7),
the effectivenesses of the HACHEX can be represented as

EH = 1− exp[−(1− uL)UT/(
.

mCv)], (17)

EL = 1− exp[−uLUT/(
.

mkCv)]. (18)

Combining Equations (12)–(14) and (17) with Equation (18) and using a numerical
solution method, the characteristic relationships between POW and the hot- and cold-side
HC distribution ratio, as well as between TEF and the hot- and cold-side HC distribution
ratio, can be obtained.

4. Numerical Examples

It is assumed that the working fluid is air. Therefore, its constant-volume specific heat
and specific heat ratio are Cv = 0.7165 kJ/(kg·K) and k = 1.4. The turbine efficiency of the
gas turbine is about ηE = 0.92 in general. According to the [51–55],

.
m = 1.1165 kg/s and

TL = 320 K were set.
Figure 3 shows the POW and TEF characteristics when the HCs of the HACHEX and

temperature ratio are different values. When the HCs and temperature ratio are fixed
values, the effectivenesses of the HEX are fixed values, and the corresponding POW and
TEF are also fixed values. The POW and TEF characteristics are reflected in the graph
as a point. As can be seen, when τ(τ = TH/TL) and the HCs of the HEXs increase,
the corresponding POW and TEF increase. Figure 4 shows the influence of ηE on P− η
characteristics when the HCs of HACHEX and temperature ratio are given. As can be
seen, with the increase in ηE (the decrease of irreversible loss), the corresponding P and η
increase.
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Figures 5–8 show the influences of UT on the P− uL and η − uL characteristics when
τ = 3.25 and τ = 3.75. The relationship curves of P− uL and η − uL are parabolic-like
changes. With the increase in uL, the corresponding POW and TEF first increase and then
decrease, and there are optimal HC distribution values uLP(opt) and uLη(opt), which lead to
POW and TEF reaching their maximum values Pmax and ηmax.

Figures 5 and 6 show the influence of UT on P− uL characteristics when τ = 3.25 and
τ = 3.75. As can be seen, with the increase in UT , Pmax increases and uLP(opt) decreases.
When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.25, the corresponding Pmax is 23.04, 56.58,
70.25, and 74.39 W, while uLP(opt) is 0.58, 0.575, 0.574, and 0.573, respectively. When UT
changes from 2.5 to 10 kW/K, the corresponding Pmax increases by about 222.9%, while the
uLP(opt) decreases by about 1.21%. When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.75, the
corresponding Pmax is 33.06, 80.06, 90.24, and 105.06 W, while uLP(opt) is 0.586, 0.579, 0.5785,
and 0.5782, respectively. When UT changes from 2.5 to 10 kW/K, the corresponding Pmax
increases by about 217.8%, while the uLP(opt) decreases by about 1.33%.
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Figures 7 and 8 show the influence of UT on η − uL characteristics when τ = 3.25 and
τ = 3.75. As can be seen, with the increase in UT , ηmax increases and uLη(opt) decreases.
When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.25, the corresponding ηmax is 0.066, 0.111,
0.126, and 0.1303, while uLη(opt) is 0.629, 0.614, 0.605, and 0.6, respectively. When UT
changes from 2.5 to 10 kW/K, the corresponding ηmax increases by about 97.4%, while
uLP(opt) decreases by about 4.61%. When UT is 2.5, 5, 7.5, and 10 kW/K and τ = 3.75, the
corresponding ηmax is 0.0774, 0.129, 0.1458, and 0.1506, while uLη(opt) is 0.644, 0.624, 0.608,
and 0.606, respectively. When UT changes from 2.5 to 10 kW/K, the corresponding ηmax
increases by about 94.6%, while uLP(opt) decreases by about 5.9%.

From Figures 5–8 and Equations (12)–(14), (17), and (18), one can see that, when τ
is given, the POW and TEF are mainly affected by the total HC; with the increase in UT ,
the Pmax and ηmax increase. When the total HC is small, the corresponding Pmax and ηmax
change more significantly. When the total HC is large, the corresponding Pmax and ηmax
change little. When UT is given, with the increase in τ, the uLP(opt) and uLη(opt) increase.
When τ and UT are given, the corresponding uLη(opt) > uLP(opt).
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Figures 9 and 10 show the influences of ηE on P− uL and η − uL characteristics when
τ = 3.75 and UT = 7.5 kW/K. As can be seen, when τ = 3.75 and UT = 7.5 kW/K, with
the increase in ηE (the decrease in irreversible loss), the Pmax and ηmax increase, while the
corresponding uLP(opt) and uLη(opt) decrease. When ηE is 0.75, 0.8, 0.85, 0.9, 0.95, and 1.0,
the corresponding Pmax is 30.2431, 50.4808, 70.7674, 91.0982, 111.4719, and 131.8876, ηmax is
0.0445, 0.0743, 0.1041, 0.1339, 0.1637, and 0.1935, uLP(opt) is 0.601, 0. 593, 0.586, 0.581, 0.576,
and 0.572, and uLη(opt) is 0.619, 0.617, 0.615, 0.613, 0.611, and 0.609, respectively. When ηE
changes from 0.75 to 1.0, the corresponding Pmax increases by about 336.1%, ηmax increases
by about 334.8%, uLP(opt), and uLη(opt) decreases by about 4.83% and 1.62%, respectively.
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5. Conclusions

In this paper, an irreversible SFLC model is established on the basis of [54], while
the POW and TEF characteristics of the irreversible SFLC were studied using FTT theory,
and the influences of τ, UT and ηE on Pmax, ηmax, uLP(opt), and uLη(opt) were analyzed. The
main conclusions are as follows:

(1) When the HCs are constants, the corresponding POW and TEF are fixed values.
When τ and the HCs of the HEXs increase, the corresponding POW and TEF increase.
When τ and HCs of the HEXs are constants, with the increase in ηE (the decrease in
irreversible loss), the corresponding P and η increase.

(2) When the distribution of HCs can be optimized, the relationships of P− uL and η− uL
are parabolic-like ones.

(3) When UT is given, with the increase in τ, Pmax, ηmax, uLP(opt), and uLη(opt) increase.
(4) When τ is given, with the increase in UT , Pmax and ηmax increase, while uLP(opt) and

uLη(opt) decrease. When τ and UT are given, the corresponding uLη(opt) is bigger than
uLP(opt).
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(5) When τ = 3.75 and UT = 7.5kW/K, with the increase in ηE, Pmax and ηmax increase,
while the corresponding uLP(opt) and uLη(opt) decrease.
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Nomenclature

CP Specific heat at constant pressure (kJ/(kg ·K))
Cv Specific heat at constant volume (kJ/(kg ·K))
E Effectiveness of heat exchanger
k Specific heat ratio (-)
.

m Mass flow rate of the working fluid (kg/s)
N Number of heat transfer units
P Cycle power (W)
.

Q Quantity of heat transfer rate (W)
T Temperature (K)
U Heat conductance (kW/K)
UT Total heat conductance (kW/K)
u Heat conductance distribution
Greek symbols
τ Temperature ratio
η Cycle thermal efficiency
Subscripts
H Hot-side
L Cold-side
max Maximum value
opt Optimal
P Maximum power point
η Maximum thermal efficiency point
1− 3, 3S Cycle state points

Abbreviations

FTT Finite time thermodynamic
HACHEX Hot- and cold-side heat exchangers
HC Heat conductance
HEG Heat engine
HEX Heat exchanger
LC Lenoir cycle
POW Power output
SFLC Steady flow Lenoir cycle
SH Specific heat
TEF Thermal efficiency
WF Working fluid
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