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No single therapy benefits the majority of patients in the practice of oncology as responses differ even among patients with
similar tumor types. The variety of response to therapy witnessed while treating our patients supports the concept of personalized
medicine using patients’ genomic and biologic information and their clinical characteristics to make informed decisions about
their treatment. Personalized medicine relies on identification and confirmation of biologic targets and development of agents to
target them. These targeted agents tend to focus on subsets of patients and provide improved clinical outcomes. The continued
success of personalized medicine will depend on the expedited development of new agents from proof of concept to confirmation
of clinical efficacy.

1. Introduction

Cancer is a major public health problem in the United
States and worldwide [1]. In 2010 the United States had
an estimated 1.53 million new cancer cases for all sites
with nearly 570,000 cancer-related deaths [1]. As the second
leading cause of death for all age groups in the United States,
continued efforts to improve cancer therapy are critical to
improve patient quality of life and survival outcomes.

The development of cancer therapy stems from the
design and results of clinical trials. Traditional clinical trial
design was primarily developed in the 1970s when few cancer
therapies were available [2, 3]. This traditional design is
derived from an evidence-based medicine module treating
patient populations with similar tumor tissue types [2, 4].
Development of a therapeutic agent with intent to obtain
approval from the Federal Drug Administration (FDA) tends
to progress stepwise through preclinical testing for proof of
concept and pharmacologic testing included in or followed
by phase 1 testing of drug dosing and safety, phase 2 study
of clinical efficacy, and phase 3 studies that traditionally
demonstrate a clinical benefit compared to placebo or
current standard of care [4, 5]. Historically this pattern of
clinical investigation has been time consuming, taking 20
years or more to complete from development of concept to

proof of clinical benefit, has been expensive, and depends on
patient resources as the number of patients able and willing
to participate in clinical trials, especially early when safety
and pharmacokinetic trials are limited [4–8].

Overall survival (OS) is often acknowledged as the
traditional endpoint for phase 3 clinical trials leading to
FDA approval [9–11]. Initially, in the early 1980s approval
of drugs by the FDA was based on tumor response, but
the risk of toxicity from cancer therapy did not support
this endpoint leading to a requirement of improvement in
survival or patient symptoms [2, 10]. Between January 1,
1990, and November 1, 2002, nonsurvival endpoints were
the basis of approval for 75% of oncology drug approvals
including tumor response, time to progression (TTP), and
relief of tumor-related symptoms [10, 12–14].

In this paper we will review how development of targeted
agents has changed from the discovery of the first targeted
therapy, imatinib, to the approval of new targeted therapies
in prostate cancer. We will also discuss potential ways to
expedite development of new therapy as the landscape of
cancer treatment progresses beyond traditional cytotoxic
chemotherapy to improved targeted agents that require
biomarker identification and patient stratification that allows
matching of the right patients to the right therapy [15–17].
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2. The Discovery of Targeted Agents

2.1. Imatinib. The hematologic stem cell disorder chronic
myeloid leukemia (CML) was first described in 1845 [18].
Early treatments included potassium arsenate, interferon
alpha, hydroxyurea, and busulfan with modest results in the
chronic phase of the disease and limited benefit in advanced
disease [18, 19]. Through high-resolution karyotyping, a
small deletion at the end of chromosome 22 was identified
and the first direct link between a specific chromosomal
abnormality and any malignancy was made with the discov-
ery of the Philadelphia chromosome by Peter Nowell and
David Hungerford in1960 [18, 20]. Ten years later, 1973,
Janet Rowley discovered the reciprocal translocation t(9;
22)(q34; 11) through the technique of chromosomal banding
[18, 21].

Almost another ten years passed before the BCR-ABL
fusion gene was discovered in 1982 and nearly another
decade later was identified as the cause of CML in
mice in 1990 [18]. A 2-phenylaminopyrimidine derivative
CGP53716 was found to inhibit the PDGF receptor and
v-ABL in vitro and in vivo and became known as signal
transduction inhibitor 571 (SDI571) as studies demonstrated
its inhibition of cellular growth in CML [22–26]. In June
1998 a phase 1/2 clinical trial in chronic phase CML patients
resistant to interferon therapy was initiated and along with a
follow-up phase II trial showed that SDI571 was very effective
in treating chronic phase CML and had palliative effects
in the acute blast crisis phase [27–29]. By an accelerated
approval process, SDI571 or imatinib was approved by the
FDA in May 2001 which was the end of a 50-year effort from
the discovery of the Philadelphia chromosome to approval of
the first targeted therapy [18].

2.2. Trastuzumab. The first solid organ malignancy to have
an FDA approved targeted therapy was breast cancer [30].
The discovery that avian erythroblastosis tumor viruses
encoded the oncogene HER-1 implicated receptor tyrosine
kinases in cancer development in the 1980s [31]. This was
followed by the discovery of the neu gene from chemically
induced rat neuron/glioblastomas [31, 32] which was found
to have homology with the erbB receptor tyrosine kinases
[33]. The human counterpart to the rat neu oncogene was
localized to chromosome 7q21 and named HER2 in 1985
[31] and that same year was found to be overamplified in
human mammary carcinoma [34].

HER2 overexpression is found on 20% of breast cancer
cells, the majority due to gene amplification [35]. This
discovery of HER-2 and its association with a poor prognosis
prompted the investigation of this tyrosine kinase receptor
for targeted therapy. Murine monoclonal antibodies target-
ing the extracellular domain of HER2 created by the then
young pharmaceutical company Genentech Inc. inhibited the
growth of cell lines that overexpressed HER2 in vitro and
in vivo. To reduce the immunogenicity of this antibody, it
was fused to a human IgG creating a humanized monoclonal
antibody called trastuzumab [30].

The first phase 1 study of trastuzumab began in 1992
followed by additional phase 1 trials [30] and small phase

2 studies [36, 37]. Pivotal, large multinational phase 2 studies
completed at the same time confirmed the efficacy and safety
of trastuzumab. Enrolling 222 women between April 1995
and September 1996 with HER2 overexpressing, pretreated,
metastatic breast cancer from 7 different countries, Cobleigh
et al. [38] completed a phase 2 study with a primary endpoint
of tumor response. Similar to the smaller, earlier studies the
ORR was 15%, median duration of response was 9 months,
and the median survival was 13 months [38]. The responses
in these studies were significant due to enrollment of patients
with poor risk factors [36–38].

The synergy of trastuzumab with cytotoxic chemother-
apy agents seen in early studies [37, 39, 40] led to the
pivotal multinational phase 3 study comparing chemother-
apy in combination with trastuzumab to chemotherapy
alone. Among 12 countries, the first patient was enrolled
June 12, 1995 and accrued a total of 469 patients with
HER2-positive metastatic breast cancer. Patients received
an anthracycline or paclitaxel with cyclophosphamide. The
primary endpoint for median TTP for chemotherapy and
trastuzumab was 7.4 months compared to 4.6 months
for chemotherapy alone. The addition of trastuzumab to
anthracycline therapy increased ORR from 42% to 56%,
while addition of trastuzumab to paclitaxel increased ORR
from 17% to 41%. The OS combining both groups was 20
months for chemotherapy and 25 months for combination
therapy [41]. These pivotal multinational trials were followed
by a phase 2 study of trastuzumab as first-line monotherapy
in HER-2-positive metastatic breast cancer. Evaluation of
secondary endpoints demonstrated ORR of 26% for all
patients in the study. As seen in the preceding studies,
patients with 3+ immunohistochemical staining for HER-2
or FISH for gene amplification had the higher responses [42].

In September 1998 the FDA approved trastuzumab for
use in women with metastatic breast cancer whose tumors
overexpress the HER-2 protein. FDA-approved indications
included treatment of patients as first-line therapy in
combination with paclitaxel and as a single agent after
prior chemotherapy. This initial approval for trastuzumab
was followed in December 2000 by enrollment into phase
3 trials using trastuzumab in the adjuvant treatment of
early-stage HER-2-positive breast cancer. These studies were
sponsored by the National Cancer Institute and conducted
by researchers of the National Surgical Adjuvant Breast and
Bowel Project (NSABP B-31) and the North Central Cancer
Treatment Group (NCCTG N9831) [43]. A third adjuvant
trial, the Herceptin Adjuvant trial (HERA), started enrolling
in Europe in March 2001 [44].

The results of all three trials were reported in the same
edition of the New England Journal of Medicine in 2005.
Romond et al. [43] reported the joint analysis of the results
of the NSABP B-31 and NCCTG N9831 trials as their designs
were similar, comparing doxorubicin and cyclophosphamide
followed by paclitaxel with or without trastuzumab. The
primary endpoint of these trials was disease-free survival
(DFS). The DFS in the trastuzumab arm 4 years after
randomization was 85.3% versus 67.1% in the control arm
[43]. The HERA trial reported the interim analysis results
of 1 year of trastuzumab versus observation administered
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after completion of all chemotherapy and radiation therapy.
Over 5,000 women were enrolled to evaluate a primary
endpoint of DFS which was 85.8% versus 77.4% in the
control arm [44]. Based on the joint analysis of the NSABP B-
31 and NCCTG N9831 trials, the FDA approved trastuzumab
as part of a treatment regimen containing doxorubicin,
cyclophosphamide, and paclitaxel for adjuvant treatment of
patients with early-stage HER2-positive, node-positive breast
cancer in November 2006. Based on the HERA interim
analysis, the FDA added approval as a single agent in HER2-
positive, node-positive breast cancer or node-negative breast
cancer with high-risk features following chemotherapy.

The most recent approval for trastuzumab in breast
cancer came in May 2008 based on the results of the Breast
Cancer International Research Group 006 (BCIRG-006) trial
that was published earlier in 2011 in the New England
Journal of Medicine. This is the fourth large multinational
trial evaluating anthracycline chemotherapy alone versus
trastuzumab with anthracycline or docetaxel chemotherapy
again demonstrating a DFS and OS benefit with combination
therapy [45]. The discovery of the HER2 gene in 1984 to
the last FDA-approved indication for trastuzumab in breast
cancer in 2008 spanned almost 25 years.

Clinical trial design and momentum has become more
streamlined than the cumbersome process experienced with
the development of early targeted agents imatinib and
trastuzumab. The development, study, and approval process
of these drugs were prolonged for many reasons including
dependency on newly developed technology, inexperience
with the new targeted agents, patients willingness to be
involved in clinical trials, and large-scale development
requirements on pharmaceutical companies [2, 4–6, 17].
We are seeing a more efficient process of development of
both chemotherapy agents and targeted agents, highlighted
recently by the advances made in prostate cancer therapeu-
tics.

2.3. Cabazitaxel. Taxanes are cytotoxic chemotherapy agents
in use for at least the past 20 years for treatment of solid
organ malignances as either a single agent or as part of a
multiagent regimen [46]. A limitation to their use, especially
with first-generation taxanes, is their binding affinity to
multidrug resistance (MDR) proteins or efflux pumps [46,
47]. The taxane XRP6258 was selected for development for
its low affinity binding to these MDR proteins [46, 47].
In phase 1 study of 25 pretreated patients with advanced
solid tumors, there were two patients in which anticancer
activity was noted, both with refractory prostate cancer [46].
Cabazitaxel was well tolerated amongst the patients treated
in the phase 1 trial. The phase 2 dosing of 20 mg/m2 was
chosen as patients had grade 4 neutropenia at the 25 mg/m2

dosing following the traditional 3 × 3 × 3 phase 1 clinical
trial design [46]. Early recognition of response in the prostate
cancer population led to a critical decision to advance to
phase 3 study without a preceding phase 2 evaluation [48].
The TROPIC trial opened January 2007 and completed
September 2009 enrolling 755 patients from 26 countries
comparing prednisone plus cabazitaxel versus mitoxantrone

for metastatic castration-resistant prostate cancer after pro-
gression following docetaxel treatment and previous hor-
mone therapy. The primary endpoint was OS which was
15.1 months with median progression-free survival (PFS)
of 2.8 months in the cabazitaxel group compared to OS of
12.7 months with PFS of 1.4 months in the mitoxantrone
group [49]. The phase 1 data for cabazitaxel was presented at
the American Society of Clinical Oncology conference May
2001, and 9 years later the FDA approved cabazitaxel for
use in combination with prednisone for hormone refractory
prostate cancer after or during docetaxel chemotherapy in
June 2010.

2.4. Sipuleucel-T. The second recent prostate cancer therapy
to receive approval by the FDA was the immunotherapy
sipuleucel-T. The early promise of immunotherapy with
autologous dendritic cells was demonstrated in sequential
phase 1 and phase 2 studies published in December 2000
[50] after clinical studies in the late 1990s demonstrated
that dendritic cell therapy could elicit a clinically beneficial
immune response [51, 52]. The phase 1 and phase 2
studies by Small et al. [50] demonstrated that the treatment
was well tolerated. In the phase 2 study, patients received
sipuleucel-T from a leukapheresed product after phase 1
infusion of increasing doses. In this trial the TTP correlated
with the development of an immune response and with
the dose of dendritic cells received [50]. This preliminary
evidence warranted further exploration with several phase
3 clinical trials that its May 2010 FDA approval was
based upon, ten years after the phase 1 and 2 clinical
studies. The first, published in 2006, enrolled 127 patients
with asymptomatic metastatic hormone refractory prostate
cancer and randomized them in a 2 : 1 fashion to receive
sipuleucel-T or placebo with TTP as the primary endpoint.
The study did not achieve statistical significance for this
endpoint; however, it did suggest a survival advantage in the
therapeutic group [53]. Integrated data from 2 randomized
phase 3 trials with the primary endpoint of TTP and a
secondary survival analysis after a 36-month followup in
the intention to treat population supported this observation.
The median survival was 23.2 months for sipuleucel-T and
18.9 months for placebo; however, again the studies did
not meet statistical significance for the primary endpoint,
demonstrating a trend to delay in disease progression [54].
Finally the Immunotherapy for Prostate Adenocarcinoma
Treatment study (IMPACT) was published in 2010, enrolling
512 patients to treatment or placebo in a 2 : 1 fashion with a
primary endpoint of OS. There was a statistically significant
4-month improvement in median survival for sipuleucel-T
treated patients, 25.8 months versus 21.7 months. Again, no
effect on TTP was observed [55].

2.5. Abiraterone. In 2011 the oral selective and irreversible
inhibitor of CYP17, abiraterone acetate, was approved
in combination with prednisone for castrate-resistant
prostate cancer after treatment with docetaxel chemotherapy.
After preclinical studies demonstrated evidence of 17a-
hydroxylation inhibition in the late 1980s and early 1990s,
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abiraterone acetate was tested for the first time in a series
of phase 1 clinical trials in both castrate and noncastrate
males demonstrating further suppression of testosterone in
castrate males and compensatory hypersecretion of lutein-
ising hormone that overcome testosterone suppression in
the noncastrate males [56]. The activity of abiraterone
acetate in castrate resistant prostate cancer was again seen
in phase 1/2 clinical trial design by Attard et al. [57] in
chemotherapy-naı̈ve patients where a 50% decline in PSA
was seen in a majority of patients along with a decrease
in measurements of circulating tumor cells and evidence of
radiologic responses [57]. Additional analysis demonstrated
reversal of resistance in 33% of patients with the addition
of dexamethasone at disease progression. Similar response in
PSA decline was also seen in patients who previously received
ketoconazole therapy [58]. Further encouraging evidence of
the therapeutic efficacy of abiraterone acetate was seen in
two multicenter phase 2 trials both with primary end points
of 50% reduction in PSA in patients with castrate resistant
prostate cancer previously treated with docetaxel [59, 60].
The randomized, placebo-controlled, multicenter, phase 3
trial that led to FDA approval enrolled 1195 patients to
receive abiraterone acetate with prednisone or placebo with
prednisone in a 2 : 1 ratio. Treatment was given until there
was a 25% increase in PSA which defined disease progression,
unacceptable toxicity, or withdrawal. The interim analysis
after 552 deaths demonstrated a statistically significant
improvement in OS and the updated survival analysis after
774 deaths confirmed the survival benefit. The interim
analysis demonstrated a median survival of 14.8 months
for abiraterone acetate versus 10.9 months for placebo;
the updated analysis also demonstrated a 4-month median
survival advantage of 15.8 months versus 11.2 months
[61].

2.6. Future. The future of cancer therapy development and
expedited drug approval will likely be based to a greater
extent on identification of small subsets of patients to whom
targeted therapy can be designed and clinical trials tailored
to rapid identification of clinical benefit [15, 17]. This
pathway of drug development is exemplified by the recent
discovery and approval of the anaplastic lymphoma kinase
(ALK) inhibitor crizotinib. The identification of the EML4-
ALK fusion gene in nonsmall cell lung cancer (NSCLC) was
reported in 2007 [62], and within 3 years ORR of 57%
and median 6 months PFS of 72% in pretreated patients
with NSCLC with the EML4-ALK translocation was reported
[63]. There was also early identification of mechanisms of
resistance [64]. Within 4 years, after presentation at the 2011
American Society of Clinical Oncology annual meeting of
initial phase 2 study results of crizotinib in ALK-positive
NSCLC, the FDA approved for treatment of locally advanced
or metastatic disease in August 2011 [65]. This timeline
from proof of concept to proof of clinical efficacy is in stark
contrast to the decades it took to develop early targeted
agents including imatinib and trastuzumab described earlier
[66].

3. Conclusion

From inception of concept to phase 3 trial design, it took an
average of 10 years for FDA approval of these new prostate
cancer drugs which is an improvement in providing earlier
access to innovative therapy but still indicates that there is
continued room for improvement [67]. Factors that may
decrease time to drug approval include improved biomarker
identification to identify small subsets of target patients as
was seen in the development of crizotinib. Identification of
such biomarkers will allow for trials designed and directed
to particular patient populations increasing the likelihood
of a clinical outcome rather than phase 1 trials designed to
search for target patient populations, a daunting task for
the multitude of therapies in phase 1 trial design at any
given time [2, 6, 17, 68, 69]. Identification of patients for
enrollment into clinical trial may also improve, not only with
identification of patients that harbor target biomarkers but
also with early discussions with patients about willingness to
enroll in clinical trials and early collection of this information
[2, 68]. Clinical trial designs can adopt a more integrated
model that is adaptive to available knowledge shared during
the development of studies and adaptive to improved knowl-
edge regarding genomic heterogeneity of tumors [8, 16, 17].
In addition information sharing amongst investigators can
be beneficial to avoid re-creation or reporting of identical
clinical trials allowing for earlier trial design advancement
leading to an expedited pathway of therapy discovery to
validation [4, 68].
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