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2,7,11,16-Tetra-tert-Butyl Tetraindenopyrene Revisited by an
“Inverse” Synthetic Approach
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Ute Zschieschang,[b] Hagen Klauk,[b] and Michael Mastalerz*[a]

Abstract: A new synthetic route to tetraindenopyrene

(TIP)—a bowl-shaped cut-out structure of C70—is reported.

The key step in this approach is a fourfold palladium-cata-
lyzed C@H activation that increases the yield more than 50

times in comparison to the approach originally described by
Scott and co-workers. Besides examination of its optoelec-

tronic properties and study of its aggregation in solution,

TIP was also re-investigated by dispersion-corrected DFT

methods, which showed that dispersion interactions signifi-
cantly increase the bowl-to-bowl inversion barrier. Further-

more, TIP was used as a semiconductor in p-channel thin-
film transistors (TFTs).

The discovery of fullerene C60 in 1985[1] stimulated chemists to

synthesize this molecule,[2] other fullerenes or cut-outs there-

of—the so called buckybowls.[3] Buckybowls have interesting
properties themselves, but have also been used for the

bottom-up synthesis of fullerenes, for example, by flash
vacuum pyrolysis.[4] Besides corannulene,[5] sumanene[6] is the

simplest substructure of C60 and therefore it is not surprising
that these two compounds are the most frequently studied.[3a]

In contrast to C60-related buckybowls, similar approaches to

compounds representing substructures of C70 (Figure 1) are
much rarer.[7] In this respect, Kuo’s C38H14 and C40H14 bowls are

among the largest realized so far, with bowl depths of up to
2.33 a.[8] Other substructures of C70

[9] such as rubicenes[10] or di-

benzorubicenes show smaller bowl depths of 1.68 a[10b] or
twisted[10a, 11] conformations in the solid state. Some of these
molecules have been employed as the semiconductor in p-

channel thin-film field-effect transistors, with a maximum re-
ported charge-carrier mobility of 1 cm2 V@1 s@1).[11]

Another substructure of C70 is tetraindenopyrene (TIP, 2,
Figure 1), which had been the subject of theoretical investiga-

tions by Havenith et al.[12] and was later synthesized by Scott

and co-workers.[13] The key step of Scott’s TIP synthesis was a

quadruple Pd-catalyzed direct arylation of pyrene 1, which pro-
vides a yield of only about 0.5 % of TIP 2. In the same publica-

tion, a one-pot procedure from 1,3,6,8-tetrabromopyrene and
2-bromophenyl boronic acid was described, but yields were

again in the range of 0.5 %.[13] Despite the very low yield of the
cyclization step, the photophysics of TIP 2 were thoroughly in-

vestigated at that time. Based on these properties, the authors

suggested that TIP may be a potential candidate for organic
electronics or materials chemistry, such as long wavelength

dyes for special high-temperature applications. Very recently,

Figure 1. Top left : structure of C70 with tetraindenopyrene (TIP) 2 highlighted
in red. Right: synthetic approach by Scott,[13] bottom: this work.
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the synthesis of a structurally related tetra-n-octyl TIP by an
alumina-mediated HF elimination was reported.[14] Unfortunate-

ly, neither full characterization nor detailed discussion on pho-
tophysical or electrochemical properties were included. It is

known that the K region of pyrene has a substantial olefin
character, and thus the C@H activation may occur by a Heck

coupling mechanism, rather than by a C@H activation in which
the hydrogen is abstracted from a benzene ring.[15] Therefore,
we developed an alternative approach towards TIP 2 based on

C@H activation of tetrachloropyrene 3 (Figure 1).[16]

The synthesis of pyrene derivative 3 was described previous-
ly, starting from pyrene in six consecutive steps.[16, 17] We devel-
oped a different synthetic route for 3, starting from the com-

mercially available hexahydropyrene 4 (Scheme 1) which was
selectively fourfold-brominated to 5 and isolated in 84 % yield

by simple filtration.[18] Subsequent Suzuki–Miyaura cross-cou-

pling under Fu conditions (Pd2dba3, HPtBu3BF4) and oxidation
of the unsaturated propylene tethers by DDQ gave pyrene 7 in

56 % yield over two steps (for details, see the Supporting Infor-
mation).

The next step was the tetrachlorination of pyrene 7, which
was achieved with a slight excess (4.5 equiv) of N-chlorosucci-

nimide (NCS) in chloroform to obtain 3 in 94 % yield

(Scheme 1). It is worth mentioning that the chlorination was
described previously using a large excess (>50 equiv) of sulfur-

ylchloride.[16] With the modified synthetic route described here,
pyrene derivative 3 can be synthesized in just four steps from

commercially available hexahydropyrene 4 in an overall yield
of 44 %. Furthermore, no purification by column chromatogra-

phy is required, allowing the synthesis of 2 on gram scale. In

comparison, the previously described synthetic route started
from pyrene with an overall yield of 4 % in six steps and re-

quired two steps of purification by column chromatogra-
phy.[16–17, 19]

All compounds were fully characterized (see the Supporting

Information). By vapor diffusion of n-pentane into saturated
solutions of 5 and 6 in dichloromethane, crystals of sufficient

quality for single-crystal X-ray diffraction analyses were ob-

tained (Figure 2). Tetrabromide 5 crystallized in the orthorhom-
bic space group Pnna with Z = 4. The crystal packing is driven

by halogen bonding between two bromides with
dC-Br···Br = 3.63 a and dispersion interactions of the bromides

with the aliphatic hydrogen (dC-H···Br = 3.08–3.36 a, Figure 2 a),
forming two-dimensional sheets.[20] The distance between adja-

cent sheets is dominated by Br–p interactions (dBr-p = 3.63 a),[21]

and these layers are twisted by 16.08 with respect to each
other (Figure 2 b, c). Tetraaryl hexahydropyrene 6 crystallized in

the triclinic space group P-1 with Z = 2 (Figure 2 d). The mole-
cules interact only by weak dispersion interactions of the pe-

Scheme 1. Synthesis of tetrachloro tetraaryl pyrene 3. a) Br2, Fe, CH2Cl2,
80 8C, 30 min; b) 4-tBuPhB(OH)2, 8 mol % Pd2dba3, 30 mol % HPtBu3BF4, THF,
K2CO3 aq (1 m), 80 8C, 16 h; c) 3 equiv DDQ, toluene, 130 8C, 4 h; d) NCS,
CHCl3, 80 8C, 42 h.

Figure 2. Single-crystal X-ray structures of tetrabromohexahydropyrene 5 (top) and tetraarylhexahydropyrene 6 (bottom) as stick models.
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ripheral tert-butyl groups with the central naphthyl subunits
(Figure 2 e).

For the final cyclization by palladium-catalyzed direct aryla-
tion under C@H activation, typical reaction conditions

(PdCl2(PCy3)2, DMAc, 200 8C, 48 h)[22] were used to give the tar-
geted TIP 2 in 29 % yield, along with the threefold-cyclized

product 8 in 20 % yield (Scheme 2). We also performed the cyc-
lization using a wide range of conditions (e.g. , various concen-
trations, solvents, temperatures, duration, alternative Pd sour-

ces, alternative bases), but did not obtain greater than 29 %
yields for 2 nor a higher ratio between the yields for 2 and 8.

The two compounds can be distinguished by 1H NMR spec-

troscopy. Whereas TIP 2 shows four clearly defined signals be-
tween d= 7.0 and 7.5 ppm (corresponding exactly to the previ-
ous report[13]), trindenopyrene 8 shows a more complex signal

pattern consisting of 14 signals (two signals overlap at 7.8 and
7.7 ppm) between d= 6.9 and 8.2 ppm (Figure 3 bottom). Mass
spectrometry shows a molecular ion peak for 2 of m/z 722.495
(m/z calcd for C56H50

+ : 722.391), which is two mass units small-
er than that of triindenopyrene 8 (m/z calcd for C56H52

+ :
724.407 found: 724.484), consistent with the missing C@C

bond.
TIP 2 showed a strong concentration dependence (c = 0.10–

3.08 mm) of the chemicals shifts in the 1H NMR spectra in

CD2Cl2 (Figure 4), which is indicative of strong p–p-stacking.[23]

At room temperature, protons Hb (Dd= 0.37 ppm) and Hc

(Dd= 0.19 ppm) are more weakly influenced than Ha (Dd =

0.92 ppm) and Hd (Dd= 0.63 ppm), because Hb and Hc are steri-

cally shielded by the adjacent tert-butyl group against stack-

ing.
Assuming infinite p-stacks, the averaged association

KE was determined to be 2.45 V 103:0.77 V 103 m@1 (DG =

@19.0 kJ mol@1) at 293 K by a least-squares curve fitting of the

infinite (isodesmic) association model (for details see the Sup-
porting Information).[23a, 24] This association constant is much

higher than values reported, for example, for hexabenzocoro-

nene-based thiophene dendrimers (KE up to 710 m@1 in
CDCl3)[25] and within an order of magnitude of values reported

for various perylene- and naphthalene bisimides.[24d] From

measurements performed at temperatures ranging from 243
to 293 K, we determined DH =@15.8 kJ mol@1 and DS =

11.9 J mol@1 K@1 from a van’t-Hoff plot; this suggested that the
aggregation in solution is driven by both enthalpy and entro-

py.[26] The strong aggregation tendency is also reflected by a
moderate solubility of 2 in CH2Cl2 of (4.00:0.63) mg mL@1. At-

Scheme 2. Synthesis of tetraindenopyrene 2 by C@H activation.

Figure 3. 1H NMR spectra (400 MHz) of a) TIP 2 and b) trindenopyrene 8 in
CD2Cl2 at room temperature.

Figure 4. 1H NMR spectra (400 MHz) of TIP 2 in CD2Cl2 at concentrations be-
tween 0.10 and 3.08 mm at 293 K.
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tempts to grow single crystals from various solvents produced
needle-shaped crystals, which unfortunately could not be

structurally refined by X-ray diffraction.
TIP 2 was revisited by theoretical calculations. Scott men-

tioned that the TIP has a bowl-shaped structure.[12, 13] However,
only the bowl-to-bowl inversion barrier calculated by DFT

(B3LYP/6-31G*) was discussed, and no further details, such as
geometrical parameters or energy levels of frontier molecular
orbitals, were provided (see also the Discussion below).[14] To

obtain further insights into the structural details of TIP 2, dis-
persion-corrected (D3)[27] DFT methods (B3LYP/6-311G(d,p))
were used to calculate molecular properties. It was found that
the input geometry (MM2 optimized models) is crucial to the

outcome of the DFT optimization. Starting from a planar input,
the DFT optimization using ultra-tight convergence criteria also

produced a planar geometry. A frequency analysis of the result

shows an imaginary frequency with 15.5i cm@1, which is indica-
tive of a transition state. A second optimization, this time per-

formed with an already contorted input, resulted in a bowl-
shaped structure that no longer shows an imaginary frequen-

cy; this indicates that it is a realistic energy minimum
(Figure 5). The bowl depth is 0.69 a (if measured to the original

2,7-positions of the pyrene) or 1.44 a (maximum bowl depth)

and thus similar to the bowl depth of dibenzorubicene
(1.68 a).[10b] The dispersion-corrected calculations gave a great-

er bowl depth than those performed without the D3 correc-
tion term (1.18 a) ; this result deviates by about 20 %(!), thus

indicating that dispersion has a significant effect in stabilizing
a contorted structure. The tert-butyl groups do not contribute

substantially to the curving by dispersion interactions (see the

Supporting Information).
Based on the dispersion-corrected model, the bowl-to-bowl

inversion barrier was calculated to be 6.47 kJ mol@1 (DG =

11.9 kJ mol@1, Figure 6). This is substantially higher than with-
out dispersion correction (2.99 kJ mol@1) and even higher than

the previously published value (1.38 kJ mol@1).[13] Although the
estimated inversion barrier is higher, it still means that TIP 2
fluctuates 51 billion times per second between the bowl-
shaped minima, much too fast to be determined by variable-

temperature NMR measurements. In comparison, corannulene
shows an experimentally determined inversion rate of 200 000

per second at room temperature with a corresponding inver-

sion barrier of D*G = 43:1 kJ mol@1 (10.2:0.2 kcal mol@1).[2]

Additional information on the electronic structure of TIP 2
were obtained by AICD[28] and NICS calculations (HF/6–31 +

G(d), Figure 5). The outer benzene rings (A) show typical aro-

matic character with comparable NICS(@1) and NICS(+ 1)
values of @8.8 and @8.7. NICS(@1) is the concave and

NICS(+ 1) the convex side of the bowl. Aromaticity is also ob-

served for the D-rings (NICS(@1) =@11.7 and NICS(+ 1) =@7.3,

Figure 6. Inversion process of 2 via a planar transition state with the calcu-
lated difference in energy (black) and free enthalpy (red) derived from DFT
calculations (B3LYP/6–311G(d,p)).

Figure 5. Geometry-optimized model (B3LYP/6–311G(d,p)) of the bowl-shaped TIP 2. a) Top view. b) side view. AICD plots (HF/6–31 + G(d)) of 2 from c) the
top/concave side with the magnetic field pointing out of the paper plane and red arrows indicating the direction of the ring current. d) Side view. Canonical
MOs of 2 (B3LYP/6–311G(d,p)) with the corresponding orbital energy. e) LUMO; f) HOMO. All calculations were corrected for dispersion (D3).
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due to the higher electron density on the bowl’s concave side.
As known from unsubstituted pyrene,[12] the C-ring shows

smaller aromaticity, with NICS(@1) =@5.3, and here the curva-
ture has by far the greatest influence on the virtual chemical

shift, with NICS(+ 1) =@0.6. The five-membered B-rings are
nearly nonaromatic, with NICS(@1) = 1.3 and NICS(+ 1) = 3.7,

and with a tendency toward antiaromatic character, similar to
PAHs with fused five-membered rings such as corannulene[29]

or others.[30] The ring currents derived by AICD calculations

(see red arrows in Figure 5 c) are in accordance with the trends
observed by the NICS calculations.

The DFT-calculated energies of the FMOs are EHOMO, DFT =

@5.5 eV and ELUMO, DFT =@3.0 eV (Figure 5 e and f). Although no

oxidation was recorded within the redox window of the sol-
vents employed (CH2Cl2 and o-DCB) at anodic potentials, two

quasireversible reduction potentials were found in both these

solvents (Figure 7). In CH2Cl2, the reduction potentials are
E1=2

red; 1 =@1.41 V and E1=2
red; 2 =@1.74 V. In o-DCB the two reduc-

tion peaks were found at slightly lower potentials (E1=2
red; 1 =

@1.48 V and E1=2
red; 2 =@1.84 V). The first reduction potentials are

higher by about 0.3–0.4 V compared to [60]PCBM (E1=2
red; 1 =

@1.08 V) and [70]PCBM (E1=2
red; 1 =@1.09 V).[31] Making a common-

ly used assumption, the electron affinity can be estimated as

EA =-E1=2
red; 1 + 4.8 eV),[32] corresponding to EA =@3.46 eV in

CH2Cl2 and EA =@3.42 eV in o-DCB.

The calculated and experimentally determined FMOs sug-
gest that TIP 2 is potentially interesting for organic electronics

applications, both as an electron- and as a hole-conducting
semiconductor. Initial experiments using 2 in thin-film transis-

tors (TFTs) indicate hole mobilities of 4 V 10@4 cm2 V@1 s@1 in TFTs

fabricated on silicon substrates and 1 V 10@4 cm2 V@1 s@1 in TFTs
on flexible polyethylene naphthalate (PEN) substrates and on/

off current ratios up to 103 measured under ambient condi-
tions (for details, see the Supporting Information).

In summary, we have introduced an alternative synthetic ap-
proach to achieve TIP 2 in five consecutive steps and with a

50-fold higher yield both for the final cyclization step (29 vs.

0.5 %[13]) and for the overall synthesis (13 vs. 0.25 %). TIP 2 was

revisited by dispersion-corrected DFT calculations, revealing
that the bowl-to-bowl inversion barrier is substantially higher

than previously estimated. Furthermore, TIP 2 was used to fab-
ricate p-channel TFTs, indicating charge-carrier mobilities up to

4 V 10@4 cm2 V@1 s@1 and on/off current ratios of up to 103. To
the best of our knowledge, this is the first example of a transis-

tor based on a nonfunctionalized hydrocarbon buckybowl.[33–35]

The possibility of easily scaling up the synthesis of precursor 3
without the necessity for purification by column chromatogra-

phy will allow us to provide TIP 2 in sufficiently high amounts
to explore its chemistry and physics; this is ongoing in our lab-
oratory.

Experimental Section

For experimental details, see the Supporting Information.
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