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SUMMARY

Tuberculosis (TB) treatment involves a multidrug regimen for six months, and until
twomonths, it is unclear if treatment is effective. This delay can lead to theevolution
of drug resistance, lung damage, disease spread, and transmission. We identify a
blood-based 9-gene signature using a computational pipeline that constructs and in-
terrogates a genome-wide transcriptome-integrated protein-interaction network.
The identified signature is able to determine treatment response at week 1–2 in
three independent public datasets. Signature-based R9-score correctly detected
treatment response at individual timepoints (204 samples) from a newly developed
South Indian longitudinal cohort involving 32 patients with pulmonary TB. These re-
sults are consistent with conventional clinical metrics and can discriminate good
from poor treatment responders at week 2 (AUC 0.93(0.81–1.00)). In this work,
we provide proof of concept that the R9-score can determine treatment effective-
ness, making a case for designing a larger clinical study.

INTRODUCTION

Tuberculosis (TB), caused by a deadly pathogenMycobacterium tuberculosis, has retained the status of be-

ing the largest killer among all infectious diseases. According to WHO, about 10 million TB cases are re-

ported annually globally, and about 1.45 million TB-related deaths were reported in 2018 alone (WHO,

2019a). India, given its large population, carries one of the highest burdens of TB and contains a quarter

of the world’s cases with 2.69 million cases and about 449,700 deaths (WHO, 2019a). The standard treat-

ment recommended by WHO for treating uncomplicated TB is a four-drug combination regimen, isoniazid

(INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (ETH), typically given for two months, referred

to as the intensive phase, followed by INH and RIF for four months, termed the continuation phase (gener-

ally referred to as Category-I treatment). WHO recommended a directly observed treatment, short-course

(DOTS) control strategy to ensure that patients have access to medications through the treatment period

and enhance patient adherence, which is widely implemented in high burden areas (Karumbi and Garner,

2015; Central TB Division et al., 2012, 2017). With this, the treatment success rate in uncomplicated cases

has increased significantly (Central TB Division et al., 2017; Kurz et al., 2016). However, the ground truth is

that thousands of cases of drug failure due to drug resistance or other complications are continuing (WHO,

2019a). The problem of the emergence and spread of multidrug-resistant (MDR) and extremely drug-resis-

tant (XDR) TB is alarming, leading to a large number of cases with treatment failure, clearly reflected in a

large number of deaths (Dheda et al., 2017). Second-line therapies are available for treating such cases,

which are given for more extended periods, ranging from 9 to 20 months depending upon the treatment

regimen (Lange et al., 2019; WHO, 2019b; Migliori et al., 2017). In some cases, MDR TB is detected with

GeneXpert, whereby one of the second-line therapies is started (Theron et al., 2014; Dorman et al.,

2018; Di Tanna et al., 2019). However, in all other cases, where no clear information is available, treatment

is typically started with Category-I and evaluated periodically and switched to different treatment cate-

gories if found necessary after 2 to 4 months of initiating therapy.

To determine the effectiveness of therapy, clinicians currently rely on overall clinical presentation, sputum

conversion, and periodic chest X-rays, where an improvement in clinical scores is typically taken as
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effectiveness (Chakraborthy et al., 2018; Central TB Division et al., 2016, 2020). However, these tests have

several limitations. Sputum smear microscopy has low sensitivity (34%–80%), is operator-specific, and

cannot be used to differentiate between the tubercle and non-tuberculosis mycobacteria reliably or be-

tween live and dead bacilli (Davies and Pai, 2008; Steingart et al., 2006). Typically, a 2-month sputum culture

conversion is widely used to check treatment effectiveness and is associated with a relapse-free cure (John-

son et al., 2009; British Thoracic Association, 1981). However, this test takes a long time, is prone to contam-

ination, has poor sensitivity and specificity for predicting treatment failure, and relapse in individual pa-

tients (Phillips et al., 2013, 2016; Gillespie et al., 2014; Merle et al., 2014; Shenai et al., 2016). A delay in

initiating the appropriate therapy has the risk of promoting the evolution of resistance, extensive lung dam-

age, the spread of disease to other organs, and transmission of the causative bacilli to other people (Vir-

enfeldt et al., 2014; Cox et al., 2008; Yang et al., 2017). A non-sputum-based biomarker that is capable of

detecting response will therefore be very valuable (Walzl et al., 2011). A lack of improvement upon therapy

indicates either a drug-resistant infection or the development of some complications in the patient (Nahid

et al., 2019; Law et al., 2017). Identification of cases with ineffective treatment is necessary to make the

required clinical decisions such as further investigation and treating complications, lengthening the TB

treatment duration, switching to second-line or alternate treatment regimens, isolating the patient, and

monitoring the patient more closely, which are required to reduce morbidity, limit disease transmission,

and prevent drug resistance (Holden et al., 2019; Bradford et al., 1996; Cegielski et al., 2014).

Host molecular markers are being increasingly explored, as knowledge of the transcriptome variations in

active disease and upon antitubercular treatment is increasingly being accumulated (Cliff et al., 2015;

Bloom et al., 2013; Berry et al., 2010; Sambarey et al., 2017a). As blood is an easily accessible tissue, it would

be advantageous to have a sensitive blood test that can detect response to TB treatment and track its prog-

ress. Blood transcriptomes of TB subjects, before and during treatment, have been reported for multiple

cohorts (Cliff et al., 2013; Bloom et al., 2012; Tientcheu et al., 2015; Ottenhoff et al., 2012), which have shown

that there is symmetry in the gene expression variation pattern in disease and its resolution upon treat-

ment. Recently, two gene panels evaluating the success of treatment have also been reported (Warsinske

et al., 2018; Thompson et al., 2017). Of these, the 3-gene signature, which consists of GBP5, DUSP3, and

KLF2 genes, was found to be characteristic of active disease and was subsequently found to correlate

with treatment response as well (Sweeney et al., 2016; Warsinske et al., 2018). The RESPONSE5 signature

consisting of four coding genes (SMARCD3, UCP2, MAP7D3, and STT3A) and one non-coding gene (RP11-

295G20.2) was discovered by an analysis of gene expression data and selection of feature-pairs that best

correlated with treatment response (Thompson et al., 2017). The signatures0 performance in differentiating

treated (TR) versus active disease/treatment naive week-0 TB subjects (TB0) suggests the promise of finding

a clinically useful biomarker. Given that the transcriptomes are large datasets and exhibit complex trends of

variation upon treatment in different individuals, it is essential to rigorously interrogate the data in diverse

populations with multiple genetic and geographical backgrounds, especially where the disease is

endemic. Earlier studies on treatment biomarkers were done in countries other than India (Sweeney

et al., 2016; Warsinske et al., 2018; Thompson et al., 2017). However, it is imperative to do these studies

in other high burden countries such as India and compare the outcome with other studies to identify a

robust set of biomarkers that is independent of geographical location and population genetics.

In this work, we seek to identify a non-sputum-based biomarker to determine the effectiveness of therapy at six

months of treatment in a South Indian population and further evaluate if the effect can be identified at a much

earlier time point. Using blood transcriptomes and a computational pipeline involving protein interaction net-

works, we identify a subnetwork that captures the molecular perturbations associated with response to treat-

ment and identifies a 9-gene RNA signature. We show that it performs well in two public cohorts and in another

new cohort from a South Indian hospital that we followed for a year.Our signature shows agreement with clinical

scores and can detect response as early as 1–2 weeks of initiation of treatment.We formulated a score (R9-score)

to capture the combined effect of the signature, which blindly detected cases of treatment complications and

showed that they correlatedwith clinical findingsof successful treatment.Our cohort also included a few cases of

poor response to TB, which our score was able to detect well.

RESULTS

Study populations

Whole blood transcriptome data of four different cohorts of subjects with TB that were publicly available

are used in this study (Table 1). In addition, a new longitudinal cohort of patients with TB was followed over
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Table 1. A table representing demographic details of publicly available population cohort used for the study as discovery (GSE89403 and GSE122485 (week 0 and month 6 data only)) and

validation cohort (GSE31348 and GSE40553) along with a newly developed longitudinal cohort of patients with TB from the Indian population (BLTB data) that were used for validation

S.no. Dataset Country Data type

Total no.

of samples

Total

active TB

patient

Treatment

follow-up

data

Treatment

failure

Age

(range)

Gender

(M/F)

TB

confirmation

Prior

TB Treatment HIV Co-morbidities

Number of

healthy

control

1 GSE89403 South

Africa

RNA-Seq

(Whole blood)

914 99 Week 0,

week 1,

week 4,

week 24

9 31 (17–66) 60M/39F Sputum culture 39 ATT No No 35

2 GSE122485 India RNA-Seq

(Whole blood)

14 4 Week 0,

month 6,

month 12

No 31 (21–44) 4M Sputum culture

and smear

No ATT No No 3

3 GSE31348 South

Africa

Microarray

(Whole blood)

135 27 Week 0,

week 1,

week 2,

week 4,

week 26

No 28 (18–65) – Sputum smear No ATT No No No

4 GSE40553 South

Africa

Microarray

(Whole blood)

166 29 Week 0,

week 2,

month 2,

month 6,

month 12

No 34 (21–65) 19M/10F Sputum culture

and smear

6 ATT No No No

5 BLTB-data India qRT-PCR

(Whole blood)

226 32 Week 0,

week 2,

week 3,

month 1,

month 2,

month 3,

month 4,

month 5,

month 6,

month 8,

month 10,

month 12

10(Poor

responders)

29 (18–64) 17M/15F Sputum smear No ATT No No 22

Further details of the number of samples available at each treatment time point across different patient category is available in Table S1A. (M:Male, F: Female, ATT: 6-month anti-TB treatment therapy,Week0:

Before the start of treatment, Week1: One week after treatment) ll
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the course of treatment, and a new Healthy cohort from the same geographic location was also studied

(Figure 1 and Tables 1 and S1A). For discovery, GSE89403 dataset (GSE89403-Thompson), containing

RNA-Seq transcriptomes of 99 pulmonary TB subjects at week 0 and followed up over the course of stan-

dard TB treatment at week 1, week 4, and week 24 (only week 0 and week 24 samples from ‘‘definite cured’’

individuals were used for biomarker discovery) as well as GSE122485 (GSE122485-Sambarey), a whole

blood RNA-Seq transcriptome dataset from South Indian pulmonary tuberculosis subjects containing

data from four treatment naive week 0 subjects, three age-matched healthy controls, and three subjects

after standard TB treatment at month 6 (Thompson et al., 2017; Sambarey et al., 2017b), were used. We

used only week 0 and month 6 data for discovery and all the other data of in-between time points

(GSE89403-Thompson) for validation. Two other public datasets belonging to different cohorts,

GSE31348 (GSE31348-Cliff) and GSE40553 (GSE40553-Bloom) (Cliff et al., 2013; Bloom et al., 2012) were

used for validating the signature (Table 1). The GSE31348-Cliff is an mRNA microarray dataset for a longi-

tudinal cohort of 27 subjects with pulmonary TB from South Africa who were followed up over the course of

standard TB treatment for six months. It contains data for five time points, at week 0, week 1, week 2, week

4, and week 26 over the treatment course. GSE40553-Bloom contains data for pulmonary TB subjects—

eight from UK and 29 from South Africa at week 0 and followed up over standard TB treatment at week

2, month 2, month 6, and month 12. In addition, to test the validity of the signature on the Indian popula-

tion, we built a South Indian TB cohort (as described in the STARMethods), which we term as the Bangalore

longitudinal TB cohort (BLTB), comprising 32 patients who were followed up for six months to a year. Blood

samples of patients from BLTB cohort were used for testing the validity of the signature and retrospective

comparison with their clinical records (Figure 1A). Whole blood samples of 22 individuals that were Inter-

feron-gamma release assay (IGRA) negative, HIV negative, and had normal chest X-rays were used as

healthy controls (Figure 1B).

An unbiased multi-step screen identifies a 9-gene signature that is characteristic of response

to treatment

We configured a computational pipeline to shortlist genes reflective of the progress of TB treatment. The

pipeline is an unbiased screen that starts with all the known coding genes in the whole genome captured by

transcriptomics and progressively shortlists genes at each of its steps based on different criteria (Figure 2).

A key step in the pipeline is network analysis that performs an unbiased screen to identify genes associated

Figure 1. CONSORT flow diagram for BLTB and Healthy cohort

(A)Diagnosis and inclusion of subjects with active TB in BLTB cohort. Total 204 blood samples from the included 32

subjects were collected at week 2, 3, month 1, 2, 3, 4, 5, 6, of TB treatment and month 8, 10, and 12 after treatment.

(B) Diagnosis and inclusion of healthy individuals. Included 22 subjects were IGRA-ve (Interferon Gamma Release Assay),

HIV-ve (HIV), with normal chest X-ray and hemogram profile. *Demographic profile for subjects enrolled in study as BLTB

and Healthy cohort is mentioned in Tables 1,S1C, and S1D.
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with the most perturbed paths in the condition being studied (TB0 vs. TR). Sambarey et al., Metri et al., and

Ravichandran et al. have earlier shown that a similar network approach is capable of identifying condition-

specific perturbations that are biologically relevant and thus useful for biomarker discovery (Sambarey

et al., 2017b; Metri et al., 2017; Ravichandran et al., 2021). Briefly, our method uses a knowledge-based

comprehensive human protein–protein interaction network (hPPiN) previously constructed by us (Table

S2A), renders it specific to each given condition by integrating gene expression data into it, and sensitively

mines most perturbed subnetworks and their most influential epicentric nodes (Sambaturu et al., 2016,

2021; Ravichandran and Chandra, 2019). The network analysis carried out for the discovery datasets for

TB0 (week 0) samples versus TR (month 6) yielded subnetworks of size 2,457 nodes, 4,459 edges for

GSE89403-Thompson, and 2,710 nodes, 4,649 edges for GSE122485-Sambarey, and shared 1,454 common

genes between them (Table S2B).

To understand if this common subnetwork contained genes known to be biologically relevant to the condi-

tion being studied, we carried out a functional enrichment analysis. We observed that the subnetwork was

significantly enriched (q-value< 0.05) in functional categories that belong to IFN-g signaling, Toll-like recep-

tor (TLR) signaling, NF-kB signaling, MAPK signaling, PI3/AKT signaling, TNF-a signaling, and JAK-STAT

signaling pathways, all involved in the innate immune response to TB (Figure 3). In fact, most genes present

Figure 2. The biomarker discovery pipeline for blood-based TB treatment prognosis markers

The various filtration steps of the pipeline (blue) along with the number of genes selected at each step (black) are

represented. Datasets used for the study are colored in red. Two public datasets, GSE89403-Thompson and GSE122485-

Sambarey, were used for biomarker discovery. For validation and performance evaluation of the identified biomarkers,

two independent public datasets GSE40553-Bloom and GSE31348-Cliff along with newly developed BLTB cohort were

used. TB: active-TB/treatment-naive TB, TR(6M): 6-month TB treatment, HC: Healthy control *Demographic profile for

subjects enrolled in study as BLTB and Healthy cohort is mentioned in Tables 1,S1C, and S1D.
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in these subnetworks are known to be directly or indirectly associated with the pathobiology of TB. For

example, FCGR1A and BATF2 are involved in pro-inflammatory responses (Roy et al., 2015; Sutherland

et al., 2013; Roe et al., 2016), SOCS3 is involved in an anti-inflammatory pathway (Zanin-Zhorov et al.,

2005; Mistry et al., 2007) and is known to have a role in controlling the Mtb infection along with STAT3 (Rot-

tenberg andCarow, 2014),CD274 is involved in Treg expansion (Trinath et al., 2012),MMP9 andANXA3have

a role in granuloma formation (Ramakrishnan, 2012; Riou et al., 2012; Park et al., 2005), andGBP1 is reported

to solicit host defense proteins including the phagocyte oxidase, antimicrobial peptides, and autophagy

effector to kill intracellular bacteria (Kim et al., 2011). This indicates that our network analysis has correctly

identified known components of the host response to TB infection. The network analysis resulted in a short-

list of 1,454 genes. The next steps in the pipeline apply various filters and eliminate genes that do not satisfy

each step’s criteria. Briefly, the filters pertain to (a) retaining only those genes that were present as a func-

tional module and clustered together (1,042 genes were retained), (b) retaining only the DEGs from the sub-

networks (FCR 2 and q-value < 0.05), and (c) retaining only those that show symmetric variation in TB0, TR,

andHC (Figure 2 and Table S2C). Healthy samples (HC) were studied to restrict only those genes that exhibit

disease-associated changes. Symmetry in gene expression variations (upregulation in disease and downre-

gulation upon treatment) is known to exist in TB and hence the inclusion of this as a filter. Adding this crite-

rion adds further specificity to the shortlisted genes as it eliminates all those that varymerely due to the drug

(Cliff et al., 2013). This resulted in a shortlist of nine genes (BCL6, FCGR1A,GBP1, SERPING1, BATF2, AIM2,

SMARCD3, ANXA3, and SOCS3) as a discriminatory panel between TB0 and TR samples (Table S2C). We

found that all the nine genes showed a reversal in gene expression within week 1 of treatment, and the trend

was more pronounced at week 24 for the same patients in the GSE89403-Thompson dataset (Figure S1). A

similar trend was observed for GSE31348-Cliff and GSE40553-Bloom datasets (Figures S2 and S3). In order

to test the dependency of the discovered markers on the choice of the discovery datasets, we used each

available dataset individually for computing the response networks (one of the first steps in our discovery

Figure 3. The response network of TB0 vs.TR

The response network of TB0 vs. TR showing the top-ranked perturbations which form a connected subnetwork and are common between discovery datasets

(GSE89403-Thompson and GSE122485-Sambarey). Genes belonging to same functional category are clustered into uniquely color-coded modules.

Significantly enriched (q-value < 0.05) pathway information from the Reactome database for these modules is also indicated. The network is provided in

Table S2B.*Steps required to carry out network analysis along with the scripts are detailed in Data S1, S2, and S3.
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pipeline) and performed an overlap analysis for the nine signature genes (Figure S4).We observed common

KEGG pathway terms to be significantly enriched for all the response networks (Figure S4D). We also

observed eight of the 9-gene signature (all except SMARCD3) overlap among all datasets (Figures S4A–

S4C), depicting the robustness of the network approach used to shortlist genes as biomarkers.

Next, we evaluated the performance of the 9-gene panel in classifying TB0 and TR samples, in the discovery

and the validation datasets, by using Logistic Regression analysis. The 9-gene panel was found to correctly

classify TB0 and TR samples at six months with AUC (Area Under Curve) values R 0.92 in the discovery

cohort (GSE89403-Thompson: 0.95 (95% CI 0.93–0.97)) as well as in the validation cohorts (GSE40553-

Bloom: 0.99 (95% CI 0.99–0.99), GSE31348-Cliff: 0.92 (95% CI 0.85–0.99)), as judged by 5-fold cross-valida-

tion (Figures 4A and 4B and Table S3A). We then tested how well our panel discriminates TB0 from TR at

earlier time points (only data at the 6-month time point fromGSE89403-Thompson was used for discovery).

We find that at week 1–2, the panel was capable of classifying the samples with AUC of 0.79 (95% CI 0.76–

0.81), 0.78 (95% CI 0.64–0.91), and 0.91 (95% CI 0.83–0.98) for GSE89403-Thompson, GSE40553-Bloom, and

GSE31348-Cliff, respectively. Overall, the AUC value increased over the course of the treatment (Figures 4A

and 4B). The performance of the 9-gene panel in the discovery and the validation cohorts clearly indicate its

potential to serve as a biomarker signature to detect response to TB treatment.

The R9-signature is consistent with clinical correlates of response to treatment in the BLTB

cohort

To test the clinical significance of the 9-gene panel in the South Indian population, we developed a longi-

tudinal cohort BLTB as described in the STARMethods.We tested the expression levels of the nine genes in

each subject at weeks 0 and 2,months 1, 2, 3, 4, 5, and 6 of TB treatment and in some subjects also at week 3,

and months 8, 10, and 12. Overall, the dataset consisted of 204 samples from 32 subjects that spanned un-

treated and post-treatment samples at different time points (Tables S1A and S1C). For each patient, six

different clinical scores, Chest X-ray: Timika score (Chakraborthy et al., 2018), ESR level, TB scores I and II

(Rudolf, 2014; Rudolf et al., 2013), Karnofsky performance score (Schag et al., 1984; Péus et al., 2013), and

sputum AFB smear test were recorded along with a clinical examination (Table S4). Among the clinical

scores, the TB score I and II were used to gauge disease severity at diagnosis (week 0), whereas the Timika

score based on the Chest X-ray, the ESR, and sputum smear conversion were used for monitoring treatment

outcome through the treatment period. All subjects were sputum positive at week 0. The Karnofsky perfor-

mance score did not varymuch inmost subjects, and because it is highly subjective, it was not considered for

further analysis. Based on the clinical scores and independent evaluation of the patients0 overall well-being
by the clinical team (a panel of physicians and pulmonologists who routinely treat TB cases in a tertiary care

hospital), the subjects were grouped into two broad categories representing cases of (i) good response to

treatment (good responders) and (ii) lack of adequate response or cases of complications (intermediate/

poor responders). Twenty-two subjectswere seen tobe in the category of good responderswith an unevent-

ful response to the standard DOTS therapy (Figure 1A). Ten subjects appeared to be intermediate/poor

Figure 4. Performance of the 9-gene panel in public cohorts

(A and B) Receiver operating characteristics (ROC) curves for distinguishing TR and TB0 at different treatment time points for (A) Discovery dataset

(GSE89403-Thompson) and,(B) Validation datasets (GSE40553-Bloom (SA) and GSE31348-Cliff). The area under the curve (AUC) with 95% CI (CI) values are

indicated at each time point for a given dataset in a different color. AUC was observed to increase from the start (week 1 or week 2) to end (week 24 or month

6) of TB treatment depicting treatment progression in subjects with TB.
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Table 2. Clinical comments for the recruited patients in the BLTB cohort

S. No. Patient code (age/sex) R9 2W (2weeks) R9 6M (6months) Clinical comments

Good responders

1 P_26 (25/F) 5.06 7.47 Treatment response good and sustained both

in terms of sputum and chest X-ray

2 P_19 (40/F) 11.55/3W 7.75 Treatment response good and sustained both

in terms of sputum and chest X-ray

3 P_13 (18/M) 4.46 7.46 Treatment response good and sustained both

in terms of sputum and chest X-ray

4 P_11 (22/M) 3.14 33.99 Treatment response good and sustained both

in terms of sputum and chest X-ray

5 P_15 (19/F) 7.16 5.17 Response to treatment in terms of sputum

conversion in time but chest X-ray

improvement at a slower pace

6 P_7 (40/F) 3.35 0.62 Treatment response quick and sustained

7 P_18 (38/M) 2.87 17.81/4M NA

8 P_5 (18/F) 2.73/3W 12.8/5M Treatment response good and sustained both

in terms of sputum and chest X-ray

9 P_2 (28/M) 2.07/3W 5.44 Responded to treatment quickly

10 P_6 (18/F) 1 Treatment response good in terms of sputum

conversion; however, chest X-ray residual

abnormalities were there

11 P_27 (18/F) 1.84 1.55/5M Treatment response good and sustained both

in terms of sputum and chest X-ray

12 P_23 (19/F) 1.14/1M 1.47/5M Treatment response good and sustained both

in terms of sputum and chest X-ray

13 P_29 (20/M) 1.09/1M 1.42 Presented with cough and fever for 4 months.

Initial treatment response good, sputum

conversion achieved, and chest X-ray

improved

14 P_4 (34/M) 1.76 52.77/8M Treatment response good and sustained both

in terms of sputum and chest X-ray

15 P_1 (64/M) 1.87 2.22/5M Sputum conversion at 2nd month and Chest X-

ray score 100 till 5 months; however, the

patient responded

Poor responders

16 P_21 (26/M) 0.5 /1M 1.22 The chest X-ray score was 65 until 1st month.

Sputum conversion documented at 5th month

17 P_32 (22/M) 0.34 2.00/4M 1-month cough and Hemoptysis 1 episode.

Sputum conversion at 2nd month

18 P_24 (20/F) 0.82 3.02 The chest X-ray score was 90 until 4th month.

Sputum conversion at 4th month

19 P_9 (62/M) 1.19/3W 22.65/5M Chest X-ray score was 70 and increased toward

the end of treatment. Diagnosed with lung

carcinoma

20 P_16 (18/F) 5.01/1M 7.51 Chest X-ray score was 90 and remained high till

4th month. Developed pneumothorax during

1st week of treatment. Sputum conversion at

5th month. Cured after 6 months of treatment

21 P_14 (46/M) 1.45/1M 1.08 The chest X-ray score was 60 and remained

high till the 6th month. Sputum conversion at

1st month

(Continued on next page)
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responders (referred to as poor responders hereafter) at more than one time point (as the chest X-ray scores

and ESR were both on the rise) and developed complications such as pneumothorax or hemoptysis or had

other co-morbidities and showed symptoms of increased infection burden at intermediate time points.

Some of them exhibited good response at the month-6 time point (Tables 2 and S4).

The whole blood gene expression of the identified 9-gene signature was tested using qRT-PCR (Gene primers

used for qRT-PCR analysis are listed in Table S5). All genes showed the expected trend in gene expression

variation (Figure S5). The signature genes were able to discriminate TB0 from TR samples at month 6 with

AUC 0.98 (95% CI 0.94–1.00) in good responders (Figure S6). We capture the combined effect of the 9-

gene panel by computing a geometric mean of the fold changes of the individual genes (Equation 9, R9-score)

and tested it on samples from each patient at different time points of treatment. The R9-score values were

significantly higher in the good responders compared to poor responders, clearly demonstrating the validity

of the 9-gene signature in the BLTB cohort (Figure 5A). Figure 5B shows a heatmap of the R9-scores for 25 sub-

jects (BLTB cohort) for whom data were available for four or more time points. In addition to the 25 subjects

shown in Figure 5B, samples for sevenmore subjects at three to four early time points were available. The sub-

jects were followed up for six months and responded to treatment, but blood samples were not available. We

compared the R9-scores with the clinical scores and the observed treatment outcomes (listed in Tables S4 and

Table 2. Continued

S. No. Patient code (age/sex) R9 2W (2weeks) R9 6M (6months) Clinical comments

22 P_28 (19/M) 1.8 0.5 Poor responder clinically and radiologically.

Developed pneumothorax after 1st month.

Sputum conversion after 3rd month

23 P_3 (30/F) 0.48 8.06 Chest X-ray score was 70 and remained high

consistently. Sputum conversion at 3rd month,

but again turned positive at 4th month.

Category I ATT (2HREZ, 4HRE) failure, shifted

to category ll ATT (2SHERZ, 1HERZ, 5HRE).

Rifampicin resistance by GeneXpert (MDR-TB).

Advised second-line drug under category lV

Outcome: Under treatment

24 P_17 (40/M) 0.15 0.25/4M Chest X-ray score was 40, sputum smear 3+.

Sputum conversion at 4th month. Delayed

response clinically and radiologically

25 P_30 (20/F) 0.03 0.03 Chest X-ray score was 115 and remains high

consistently. Sputum smear 3+. Developed

pneumothorax on the left and later to the right

lung. Sputum conversion at 2nd week and

consistent till 6th month. Treatment increased

to 9 months due to complications. GeneXpert

result was –ve

Additional patients

26 P_10 (42/M) 1.1 Clinically and radiologically responded to

treatment

27 P_12 (47/M) 1.2 Response was poor initially, later responded

28 P_20 (28/F) 2.73 Treatment response good and sustained both

in terms of sputum and chest X-ray

29 P_22 (29/M) 2.73/3W Treatment response good

30 P_33 (31/M) 1.18 Treatment response good

31 P_25 (21/F) 1.57 Treatment response good

32 P_31 (29//F) 2.31/1M Treatment response good and sustained both

in terms of sputum and chest X-ray

R9 2W is the R9-score value for week-2, R9 6M is the R9-score value for month-6. If data point is not present for the week-2 or month-6, then the nearest available

data point is reported. W: Week, M: Month.
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2) to test the performance of the R9-score. The ESR and Timika scores, and where available, the sputum con-

version, were used for checking agreement with our R9-scores at each time point (Figures 5B and 5C). We

considered R9-scores to be in agreement with clinical scores if both the scores qualitatively followed the

same trend, such as an increase in the R9-scores and the reduction in Timika scores and ESR values. For the

22 good responders, we observed there is 93.55% (95% CI 0.89–0.99) agreement between the R9-score and

the clinical evaluation (Figure 5D). Similarly, for 10 cases of poor response/complications, we observed

83.63% (95% CI 0.74–0.93) agreement. Among the poor responders predicted by the R9-score and also by

the clinical parameters, one patient (P_3) testedpositive forMDRTB usingGeneXpertMTB/RIF assay atmonth

4, consistent with the R9-score of 0.26 for month 3 and 1.15 formonth 4. This patient was switched to Category-

II treatment due to refusal of Category-IV treatment. Subsequently, at month 12, we observed an R9-score of

0.48, indicative of poor response. The hospital records indeed indicate that P_3 did not respond to the

Category-II treatment either and was eventually switched to Category-IV. The other poor responders had de-

layed response clinically and radiologically. P_30, P_17, and P_28 had a high bacterial burden (sputum smear

Figure 5. R9-scores for treatment response groups of subjects with active TB in the BLTB cohort

(A) A boxplot representing a significantly higher R9-scores (t-test p < 10�5) in good responders compared to poor responders across all the time points of

patients in BLTB cohort. The horizontal line in themiddle of the box shows themedians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5

times the IQR from the 25th and 75th percentiles. The x axis represents the response category for patients in BLTB cohort, and the y axis indicates the R9-

score. The black dots represent R9-score for individual subjects at an individual time point. The median R9-score value (red dot) is connected by a red line to

indicate the score trend between patient groups. A zoomed-in portion for the R9-score comparison between the patient category is shown (left panel).

(B) A heatmap representing the R9-score for individual subjects (columns) at each time point (rows).R9-score >1.5 is green, 1 G0.5 is yellow and < 0.5 is red.

Gray cells indicate missing data points. An agreement (qualitativematch) between R9-score and clinical evaluation is represented by a tick and disagreement

is represented by a cross.

(C) The R9-score matrix for additional seven good responders with data for less than four treatment time points (see Figure 1A).

(D) A stacked bar plot representing the agreement between the R9-score and the clinical data for each treatment response category in the BLTB cohort. The x

axis represents the patient response group, and the y axis represents all available R9-score data points for that response group’s subjects. A qualitative

match (agreement) between clinical evaluation and R9-score trend is colored in cyan and the total percentage of match is represented. A mismatch

(disagreement) in the clinical evaluation and R9-score trend is colored in red and the total percentage is represented above the bar. The 95% CI (CI) value is

also indicated for each patient category.

(E) Receiver operating characteristics (ROC) curves for distinguishing good and poor responders at Week 2 of TB treatment therapy using R9-score. The area

under the curve (AUC) with 95%CI value is indicated for the ROC curve. The optimal threshold for the curve is 0.64 where the TPR is high and FPR is low. *qRT-

PCR data for each patient with calculated RQ and RCN values are provided in Data S4.
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test 3+ at week 0: before TB treatment), leading to delayed sputum conversion and pneumothorax develop-

ment. Treatment was extended from 6 to 9 months for P_30 due to pneumothorax complications. In addition,

subjects with complications (e.g., pneumothorax (P_16) and hemoptysis (P_32)) did not have a smooth pro-

gression of treatment. Sputum conversion was observed late in the treatment (around the fifth month for

P_21 and P_16, and fourthmonth for P_24), which is captured by our score. Table 2 describes the case histories

for all the subjects. We then tested the performance of R9-score in discriminating between good and poor re-

sponders at earlier time points. R9-score was able to discriminate the two categories with AUC 0.93 (95% CI

0.81–1.00) at week 2 of standard TB treatment (Figure 5E and Table S3B). Overall, the R9-score is seen to

have a high potential to be used in the clinic.

R9-score, TB-score, and RESPONSE5 score comparison in validation datasets and BLTB cohort

Recently, twoother gene signatures have been reported tomonitor TB treatment response. The first is a 5-gene

signature (RESPONSE5) that containsonenon-codingRNA(RP11-295G20.2) and four codinggenes (SMARCD3,

UCP2, MAP7D3, and STT3A) (Thompson et al., 2017). Of these, SMARCD3 is also a part of our signature.

RESPONSE5 consists of a score based on six pairs of the five genes. It was reported that the RESPONSE5 signa-

turepredictedweek-24PET-CT status atbaseline,week1, andweek4 (AUC=0.72/0.74). The second reported

biomarker is a 3-gene signature (GBP5,DUSP3, and KLF2) (Sweeney et al., 2016), which was used to compute a

TB-score that was reported to be significantly associated with the 6-month radiological outcome and was re-

ported to identify treatment failure cases at the end of treatment with AUC 0.93 (Warsinske et al., 2018). We first

checked the expression values of individual genes of the TB-score andRESPONSE5 score in a few samples from

good (N = 11) and poor responders (N = 4) from our BLTB cohort (Figure S7). We found that DUSP3 andGBP5

showed upregulation in week 0 (vs. HC) samples, consistent with that seen in other cohorts. KLF2, which was

reported to be downregulated in TB-score signature, is seen to be upregulated in our BLTB cohort in good re-

sponders (week 0 vs. HC), showing an opposite trend. It is, however, downregulated marginally (0.62-fold) in

poor responders. SMARCD3 and RP11-295G20.2 showed trends consistent with the previous cohorts (upregu-

lation atweek 0 compared toHC).MAP7D3, STT3A, andUCP2 showanopposite trend (upregulation compared

to HC) in gene expression in the BLTB cohort’s good responders (as compared to downregulation that was re-

ported by Thompson et al. in the RESPONSE5 study) (Thompson et al., 2017). STT3A andUCP2 are downregu-

latedmarginally (0.35and0.33-fold, respectively) inpoor responders. In all, significantdifferencesare seen in the

gene expression variation patterns in different cohorts (Figure S7).

Next, we computed the TB-score and RESPONSE5 score and compared them with the R9-score for different

datasets, including our BLTB cohort. The TB-score was computed for all three GSE IDs as described by Swee-

ney et al. (2016). We used the relative copy number (RCN) values instead of the delta cycle threshold (dCt)

values for the BLTB cohort, as the Ct values are inversely related to gene expression. The computed TB-score

(using dCt values) will have an opposite trend as compared to microarray or RNA-Seq data, where the gene

expression is directly related to signal intensity and gene count (Figure S8). RESPONSE5 score was computed

as described by Thompson et al. (2017), for the BLTB cohort. We could not compute the RESPONSE5 score for

three public datasets as the score formulation is based upon the qRT-PCR-based Ct values, and its applica-

bility tomicroarray or RNA-Seq-based transcriptomedata has not been demonstrated. R9-score for three pub-

lic datasets (GSE31348-Cliff, GSE89403-Thompson, and GSE40553-Bloom) were computed as mentioned in

the STAR Methods section (Equation 6). We note that the ‘‘not cured’’ pool of samples, in general, are not

available inmost datasets andwere present only in theGSE89403-Thompsondataset. This dataset (also called

the CTRC cohort) is also the largest among all available datasets and contains data atmultiple timepoints over

the course of treatment. For biomarker discovery, we included this dataset but considered only week 0 and

month 6 samples of ‘‘definite cured’’ individuals. For the present analysis, all other time points of this dataset

and the pool of ‘‘not cured’’ samples available were used for validation purposes.

Comparison between the three scores (Figures 6 and S9 and Table S6) indicates the following: (i) In good

responders of the BLTB cohort and all three public datasets, the R9-score was observed to increase as the

treatment progress, showing successful response to TB treatment therapy (Figures 6A–6C and 6J); (ii) In

poor responders of the BLTB cohort and the ‘‘not cured’’ patients of GSE89403-Thompson, no significant

difference in the R9-score was observed upon treatment, thus capturing unsuccessful treatment in those

individuals (Figures 6D and 6M); (iii) In good responders of the BLTB cohort and all three public datasets,

both TB-score and RESPONSE5 score decreased significantly as treatment progressed, thus capturing

cases of successful treatment response (Figures 6E–6G, 6I and 6K) and in ‘‘not cured’’ cases for

GSE89403 dataset, no significant difference in TB-score was observed after treatment (Figure 6H); (iv) In
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Figure 6. R9-score, TB-score, and RESPONSE5 score comparison in three public cohorts and the BLTB cohort

(A–N) Boxplot showing R9-score for patients from (A) GSE31348-Cliff, (B) GSE40553-Bloom, (C and D) GSE89403-Thompson, and (J andM) BLTB dataset; TB-

score for patients from (E) GSE31348-Cliff, (F) GSE40553-Bloom, (G and H) GSE89403-Thompson, and (I and L) BLTB dataset; RESPONSE5 score for patients

from (K and N) BLTB dataset. The horizontal line in the middle of the box shows the medians; box limits indicate the 25th and 75th percentiles; whiskers

extend 1.5 times the IQR from the 25th and 75th percentiles, and dots represent outliers. The y axis represents the score, and the x axis represents the

treatment time. For the BLTB dataset, the individual patient score is represented in a black dot. The median (red dot) at different time points are connected

through a red trace. The R9-score was observed to increase upon TB treatment indicative of response to therapy (A–C and J). After month 6 of TB treatment,

the R9-score showed no change/decrease in poor responders of BLTB (M) and ‘‘not cured’’ or failure cases of the GSE89403-Thompson (D) dataset, depicting

poor or no response to TB treatment therapy. TB-score (I and L) and RESPONSE5 score (K andN) were observed to decrease upon TB treatment in patients in

BLTB cohort (both good and poor responders), thus failing to capture poor responders. RESPONSE5 score could not be computed for the three public

cohorts as the score formulation is based upon the qRT-PCR based Ct values of the genes, which were not available. Multigroup comparison was performed

with ANOVA for each cohort, and two-group comparisons (for selected time points) were performed using Wilcoxon-test, and the p value is represented.

*p< 0.05, **p< 0.01, ***p<0.001. *Individual patient scores at different treatment time points are provided in Table S6.
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the BLTB cohort, TB-score and RESPONSE5 score failed to capture the poor responders (Figures 6L and

6N) whereas R9-score successfully captured the same (Figure 6M). From the above, we conclude that R9-

score shows good performance in all the tested cohorts, whereas TB-score and RESPONSE5 score were

not able to capture the poor responders through the course of TB treatment in the BLTB cohort. At the in-

dividual patient level, also a rise in the R9-score for patients who responded to treatment (Figures S9A–S9C

and S9J) and a drop or no change in the score for the poor responders (Figures S9D and S9M) was

observed. The week 2 R9-score was higher for good responders as compared to poor responders in the

BLTB cohort (Figures S9J and S9M). In addition, for the BLTB cohort, higher score values were observed

in the good responders as compared to poor responders (Figure 5B) across different treatment time points.

However, the extent of rise or fall in the R9-score was heterogeneous (Figures 5B and S9 and Table S6).

Further, Warsinske et al. and Thompson et al. report that both TB-score and RESPONSE5 score can stratify TB

subjects at week 0 into good and poor responders (or cured and failure categories). However, for the samples

tested in the BLTB cohort, we did not observe any significant difference in TB-score and RESPONSE5 score at

week 0 between the good and poor responders (Figure S10). We explored if the 9-gene biomarker panel can

predict response and hence serves as a prognostic marker at week 0 itself. For this, we considered the two

datasets (GSE89403-Thompson and BLTB cohort) that have samples from ‘‘cured/good responder’’ and

‘‘not-cured/poor responder’’ categories.Wecomputedamodified score (Week-0 score) using the samepanel

(see STAR Methods) and observed significant difference (p value < 0.05) in the score between the two cate-

gories (Figure S11). Overall, the score is significantly lower for ‘‘not-cured/poor responder’’ compared to

the ‘‘cured/good responders’’ and thus able to segregate the two categories at week 0 itself with an AUC

of 0.72 (95% CI 0.49–0.94) for GSE89403-Thompson and 0.73 (95%CI 0.52–0.94) for BLTB cohort. We note

that a further trial with larger sample size is necessary to assess the clinical utility of theWeek-0 score. Overall,

our signature performs well in the three datasets pertaining to cohorts from different geographical locations.

DISCUSSION

Despitedecadesof research and interventions, tuberculosis remains a critical public healthproblem, especially

in the developing world. New diagnostic strategies are needed, including point-of-care solutions to cure pa-

tients with TB and minimize disease transmission risk to other individuals (Pai and Schito, 2015; Pai and Furin,

2017; Walzl et al., 2011, 2018). There is an acute need for developing robust biomarkers to detect TB and the

assessment of therapy failure. In this study, we present a much-needed, non-sputum-based biomarker for

detection of response to treatment. Using both computational and experimental approaches, we have identi-

fied a host-based blood transcriptomic signature (R9) that efficiently identifies response to therapy and detects

poor responders within a week of TB treatment, which is months faster than any conventional test. Our results

suggest that theR9-score is likely to be associatedwith thedisease’s therapy response and clinical progression.

The scoreswere computedblindly without using any knowledge of patient case histories. It is encouraging that

all good responderswerecorrectly identified.The responsewas seen in somesubjects at early timepoints itself,

suggesting that itmaybeuseful to carryout a systematic study to test theabilityof R9-score topredict treatment

prognosis at anearly timepoint.Given the formulation,higher theR9-score, higher is the response to treatment.

Theoretically, we reasoned that an R9-score of�1 implies no change in the gene expression between TB0 and

TR; hence there is no response to treatment.A scoreof<1 implies an increase in severityof thediseaseandpoor

response to treatment, andanR9-score>1.5 indicates adecrease in thedisease severity andhencea successful

response to treatment. A larger sample size will be necessary to clearly establish these thresholds.

Given the complexity in the host response to TB, a single gene marker is insufficient to cater to a large pop-

ulation section, especially those of multiple genetic backgrounds. The use of a 9-gene panel overcomes

this limitation since at least a few of the nine genes can be expected to show the required trend in a given

patient. Our panel is capable of performing well in large datasets from different geographic locations de-

picting its robustness against diverse populations, possibly also different M. tuberculosis strains. The

signature genes have appreciable roles in TB pathogenesis, making the panel biologically relevant, in

contrast to panels that mechanism-blind data-driven approaches can provide.

During the course of our work, two other signatures, TB-score and RESPONSE5 score, were published (Swee-

ney et al., 2016; Warsinske et al., 2018; Thompson et al., 2017). We tested these in our BLTB cohort and found

that they could not discriminate between good responders and poor responders at week 0 and hence cannot

be readily used for triaging in the BLTB cohort. Our results clearly indicate that there are significant differences

in the pattern of gene expression variation in some genes in different cohorts, perhaps due to differences in
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genetic backgrounds, mycobacterial strain differences, or variations in the environment. This emphasizes the

strong need to discover more robust and more encompassing biomarker candidates and test them on mul-

tiple ethnicities, especially in regions with high disease burden. The point of a biomarker signature and a score

is to generate a clinical decision support tool. The basic questions a clinician is faced with while treating a pa-

tient with TB are: (a) Is TB0s diagnosis confirmed? (b) what is the disease severity? Is the individual in the high-

risk category (severity, risk of spreading, complications, MDR, or XDR TB) and needs to be monitored more

closely? (c) is the individual likely to respond to first-line therapy? or (d) should a second-line treatment be

given? (e) is the treatment progressing in the right direction? and (f) when to stop treatment? Although an ideal

biomarker may provide answers to all these questions, such a biomarker may not even exist, especially one

that applies to different populations. Realistically, a given biomarker may have a high capacity to answer

one question but not the others, indicating why it is important to explore different biomarkers. Both TB-score

and RESPONSE5 score answer questions (a) and (c) and to an extent also (b) whereas our signature answers

questions (a) and (e) and even the questions (b) and (d) in about a week after treatment and also has the po-

tential of being tested for (f) through a separate trial. Moreover, our signature monitors individual subjects

through the course of treatment and determines if the individual is responding to the given treatment at

any given time point. This has a considerable advantage in terms of having the most appropriate reference,

which is a subject’s own week 0 sample, which removes any inherent bias. A drawback is that a sample has

to be taken from the same patient at multiple time points. However, this does not pose a major problem

because patients are regularly monitored under the DOTS scheme and return to the clinicians periodically

for assessment and renewals of their prescriptions. The sample required is a few milliliters of blood, which

is easily accessed from the patient. It is feasible to collect blood samples of TB subjects even in remote places

and send the samples for testing gene expression values of the nine genes using qRT-PCRwhere such facilities

are available. The R9-score can also help evaluate the success of new drugs in clinical trials. Monitoring these

biomarkers0 progresses in individual subjects will shed light on the individual’s response to therapy and help

delineate early and late responders, paving the way toward precisionmedicine or personalized treatment reg-

imens. A marker that can determine if a patient is responding to therapy accurately and early is expected to

facilitate quicker access to the effective treatment and hence minimize the risk of lung damage and spread to

other organs.Our signature shows a lot of promise in this direction and serves as an excellent candidate for the

next phase of testing involving multiple centers and larger cohorts.

Limitations of the study

A limitation of the study is the small sample size for poor responders, which is the case with the previous two

studies reported in the literature as well. For multiple reasons, obtaining samples especially over a follow-up

of poor responders have been a major challenge. Difficulty in identifying and correctly labeling a poor

responder further emphasizes an urgent need for a sensitive molecular test such as R9, described in this study.

A second limitation is that the threshold for the score is platform-dependent. It works for the qRT-PCR-based

data and needs further assessment for microarray and RNA-Seq-based gene expression quantification. A

further limitation is that, for the BLTB cohort, while sputum smears and chest X-rays were available, sputum cul-

tures were not, as the sputum samples are not routinely cultured in local clinical practice. However, we moni-

tored the patients at multiple time points with different clinical scores and were able to establish the response

to treatment. Some challenges in developing the signature further into a blood test that can be used routinely

are the cost and infrastructure to run qRT-PCR assays for the signature of this size. The infrastructure for such

testing has become more accessible during the current pandemic in resource-limited settings. We foresee

thepossibility of an R9 test being carried out onblood samples of patientwith TB, similar to thenasal and throat

swab tests that are currently carried out for COVID-19 diagnosis. However, further work is required for this to

develop into a cost-effective clinical test. Lastly, this is an exploratory study to establish proof of concept.

This study included adult cases with the first episode of TB who underwent first-line treatment therapy and

excluded children. The next stage would be to also include TB patients with HIV, diabetes, alcohol misuse,

or with other co-morbidities, those on second-line treatment, and those with a previous history of TB, and ex-

trapulmonary TB as they are at a higher risk of treatment failure.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should contact to Prof. Nagasuma Chandra (nchandra@iisc.

ac.in)

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Written informed consent was obtained from all study participants included in the study. Ethical approval

for this study was obtained from the Institutional Ethics Committee (SDS/IEC/01/2016–17 and 11-

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

iTaq Universal SYBR Green Supermix Bio-Rad Cat.# 172-5125

Critical commercial assays

iScript cDNA Synthesis Kit Bio-Rad Cat.# 170-8891

RiboPure-Blood Kit Ambion Cat.# AM1928

Experimental models: Organisms/patients

Demographic details of the individuals included

as BLTB cohort provided as Table S1C

This paper Table S1C

Demographic details of the individuals included

as Healthy controls provided as Table S1D

This paper Table S1D

Oligonucleotides

qRT-PCR primers details provided as Table S5 This paper Table S5

Software and algorithms

Cytoscape v3 Shannon et al., 2003 https://cytoscape.org/

ReactomeFIViz Wu and Haw, 2017 https://reactome.org/tools/

reactome-fiviz

Enrichr Xie et al., 2021 https://maayanlab.cloud/Enrichr/

KEGG Kanehisa et al., 2021 https://www.genome.jp/kegg/

scikit learn package v0.20.3 Hosmer et al., 2013;

Pedregosa et al., 2011

https://scikit-learn.org/stable/

Dijkstra0s algorithm implemented in Zen library http://www.networkdynamics.org/

static/zen/html/api/algorithms/

shortest_path.html

N/A

Other

qRT-PCR data for BLTB cohort individuals provided

as Supplementary data file

This paper Data S4
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15032017). The detailed information related to the subjects included in the study are described in this sec-

tion, and in tables (Tables 1 and S1).

Building a TB longitudinal cohort (BLTB: Bangalore longitudinal TB cohort)

Ethical approval to collect whole-blood samples from pulmonary-TB subjects was obtained from the Insti-

tutional Ethics Committee at Rajiv Gandhi University of Health Sciences, Bangalore (SDS/IEC/01/2016-17),

and the Institutional Human Ethics Committee (IHEC) at the Indian Institute of Science (11-15032017), Ban-

galore, India. In total 44 subjects, with newly diagnosed pulmonary TB, as confirmed by sputum AFB smear

test (Ziehl-Neelsen staining), and chest X-ray were recruited after informed consent between January 2017

and October 2018 at SDS Tuberculosis Research Center and Rajiv Gandhi Institute of Chest Diseases, Ban-

galore. All subjects were HIV negative with no previous TB disease or any other co-morbidity (Inclusion

exclusion criterias are described in Table S1B). Sputum smear grades were used to determine bacterial bur-

dens and classified as 1+, 2+, and 3+. All subjects were treated with standard DOTS treatment therapy

(2HRZE/4HR). All except four subjects were declared as sputum smear-negative post-treatment. Treatment

was continued for six months in clear cases and longer in cases with complications. One patient was diag-

nosed with lung cancer in addition to TB after 4 months and died during the study. 12 subjects were lost to

follow up after 6 months. The remaining subjects were followed-up for 1 year from the start of treatment.

Whole blood samples were collected at the time of enrollment (week-0), week-2, week-3, month-1, month-

2, month-3, month-4, month-5, month-6, month-8, month-10 and month-12 (Number of samples collected

at each time point are listed in Table S1A). Attempts were made to obtain AFB sputum smear test, Chest X-

ray score (Timika score) (Chakraborthy et al., 2018), TB Score I and II (Rudolf, 2014; Rudolf et al., 2013), Kar-

nofsky performance score (Schag et al., 1984; Péus et al., 2013), and ESR (Erythrocyte Sedimentation rate) at

each time point of blood collection (details in Table S4). Only 32 of the recruited active TB subjects followed

up the whole 6-month DOTS treatment therapy, which we refer to to as the Bangalore Longitudinal TB

Cohort (BLTB), of which we had samples for most time points only for 25 subjects (Figure 1A, demographic

details of the BLTB individuals are listed in Table S1C). Patients with early sputum conversion and main-

tained negative sputum throughout the course of treatment and those which showed decrease in Timika

score (Chest-Xray score) were considered as Good responders (N = 22). There was a smooth progression

from TB to treated state upon 6-month TB treatment therapy in Good responders. Patients (a) who had late

sputum conversion, (b) no decrease in Timika score, and (c) those who developed TB related complications

during the course of treatment were considered as poor responders (N = 10, Table S1C).

Building a healthy cohort

Ethical clearance was obtained from the Indian Institute of Science Human Ethics committee (11-15032017),

to take blood samples from healthy volunteers for the purpose of establishing reference ranges of gene

expression values. Informed consent was obtained from each volunteer. The inclusion criteria were: Age:

18–65, healthy people, both men and women. The exclusion criteria were: Diabetes, hypertension, HIV,

consumption of alcohol 24 h prior to sample collection, pregnancy, lactation, any medication, chronic liver

or kidney diseases (Table S1B). Samples were collected at the Health Center, Indian Institute of Science,

Bangalore, India. Volunteers were subjected to a routine medical check-up, hemogram, IGRA, HIV and a

chest X-ray (Figure 1B and Table S1D). Three individuals were found to be IGRA positive with the Quanti-

FERON-TB Gold assay, reflective of possible latent tuberculosis and were hence excluded from the cohort.

The remaining 22 individuals were IGRA negative, HIV negative, and had a normal chest X-rays and hemo-

gram profiles and were considered as healthy controls (HC). Tables S1C and S1D describes the details of

the individual classes of subjects and healthy controls that were recruited in the study.

METHOD DETAILS

Datasets used in the study

We searched public gene expression repositories (NCBI-GEO and ArrayExpress) and retained datasets

that had whole blood gene expression data for active pulmonary tuberculosis patients before and after

TB treatment. The following whole blood transcriptomes from active TB subjects at different TB treatment

time points that were available publicly are used in this study: GSE89403 (99 TB patients followed through

week1, week4 and week24 of TB treatment), GSE31348 (27 TB patient followed through week1, week2,

week4 and week26 of TB treatment), GSE40553 (29 TB patient followed through week2, month2, month6

and month12 of TB treatment) and GSE122485 (4 TB patient followed at month6 and month12 of TB treat-

ment) (Thompson et al., 2017; Cliff et al., 2013; Bloom et al., 2012; Sambarey et al., 2017b). In addition, two
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other cohorts that were used in this study are: a South Indian TB0 and TR cohort (BLTB with 32 patients fol-

lowed up for a year with 204 samples) and a healthy cohort (22 samples) which are described earlier (Tables

1 and S1A).

Blood collection procedure and RNA isolation

Whole blood was collected from subjects in potassium EDTA tubes and transferred in RNAlater tubes after

mixing, which were stored at �20+C. RNA was extracted from blood using RiboPure-Blood kit (Thermo-

Fisher scientific) following the manufacturer0s protocol. Briefly, 1.8 mL of each RNAlater mixed blood sam-

ple (0.5 mL blood +1.3 mL of RNAlater) was transferred to a 2 mL microcentrifuge tube and centrifuged at

16,000 3 g for 1 min. The supernatant was discarded and the pellet was lysed by adding 800 mL of lysis so-

lution and 50 mL of sodium acetate solution and vortexed vigorously. 500 mL of acid-phenol chloroform was

added and vortexed for 30 s and stored at room temperature for 5 min. The sample was then centrifuged at

16,0003 g for 1min to separate aqueous and organic phases. The aqueous phase was transferred to a fresh

tube and 600 mL of ethanol was added and invert-mixed. The ethanol-added aqueous phase was loaded on

a filter cartridge assembly and centrifuged for 30 s and further washed, first with Wash-solution one and

subsequently twice with Wash solution 2/3. Filters were allowed to dry and the RNA was eluted in a pre-

heated 50 mL of elution buffer. RNA was DNase treated and quantified on NanoDrop Light UV-Vis Spectro-

photometer (Thermo Fisher Scientific).

qRT-PCR

First-strand cDNA synthesis was performed using 600 ng of total RNA with iScript Select cDNA synthesis kit

(Bio-Rad) using random hexamer oligonucleotide as well as oligo dT primers (Table S5). Gene expression

was analyzed with real-time PCR using iQTM SYBERGreen Supermix (Bio-Rad) on StepOnePlus PCR system

(Applied Biosystem). 18S rRNA was used as the internal housekeeping control gene because its level of

expression was relatively high and consistent in all the treated blood samples. The delta cycle threshold

of the gene (DCtg1) is calculated by substracting the internal housekeeping control gene Ct value (Ct18S)

from the Ct value of the gene (Ctg1), as described in Equation 1:

DCtðg1Þ = Ctg1
� Ct18S (Equation 1)

Median DCtg1 values were then used to calculate relative copy number for each gene (RCN(g1)), as

described in Equation 2:

RCNðg1Þ = 2�DCtðg1Þ (Equation 2)

Integrating a knowledge-based human interactome with transcriptomes in TB0 and TR

conditions

A human knowledge-based comprehensive protein-protein interaction network (hPPiN, Table S2A), avail-

able in the laboratory, was used for the construction of condition-specific networks (Sambarey et al., 2017a).

This hPPiN is manually curated and includes high confidence, protein-protein interactions reported in the

primary literature and five large databases, STRING v10, SignaLink v2.0, Cancer Cell Map, BioGRID and

Multinet. hPPiN thus constructed, contained both physical complexes of the proteins as well as functional

or genetic interactions. A majority of edges had directional information. The rest were considered bidirec-

tional. In the network, proteins are represented as nodes and the interactions among them are represented

as edges. The network consisted of 17,062 nodes and 208,760 edges.

Normalised gene expression values from the RNA-Seq data of the discovery datasets (GSE122485-Sam-

barey and GSE89403-Thompson) (Sambarey et al., 2017b; Thompson et al., 2017) were integrated onto

the hPPiN in the form of node weights to generate condition-specific networks for TB0 and TR conditions.

Node weight (NWi) for gene i is calculated in Equation 3:

NWi =
Expa

Expb
(Equation 3)

Here, Expa/b is the fold change in gene expression value of gene i in condition a (TB0) as compared to con-

dition b (TR). Edge weights (EWij) between interacting genes i and j is calculated in Equation 4:

EWij =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NWi 3NWj

p (Equation 4)
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Here, NWi and NWj are the node weights of the edge forming interacting nodes. Edge weight represents

the strength of interacting nodes. Lower the edge weight stronger is the interaction between the nodes

and higher the expression of the participating nodes.

Computing response networks

A sensitive network mining algorithm previously developed in the laboratory was used for constructing a

response network, which in essence captures the response of the system (TB0 vs. TR) in the form of top-

ranked perturbed paths (Sambarey et al., 2013, 2017b). To identify these, all-source to all-destination short-

est paths in each condition-specific network were computed using Dijkstra0s algorithm implemented in the

Zen library in python2.7 http://www.networkdynamics.org/static/zen/html/api/algorithms/shortest_path.

html. A path refers to a set of serially connected edges in the network that are traversed to reach a sink

from a source node and a path score is taken as the summation of the edge weights present in the given

path, which is normalized with the path length to get a normalized path score. Paths were computed for all

pairs of nodes. Sub-paths are not explicitly eliminated for two reasons: (a) the paths are scored and the top-

ranked paths were taken for final analysis, which largely eliminates the need for explicitly eliminating sub-

paths, (b) unique edges from the top-ranked paths are taken as an input into response network construc-

tion, which in any case removes redundancy in nodes and edges. Given the weighting scheme and the

formulation of the shortest path algorithm, paths with the least score are ranked the highest and represent

the highest perturbations. Approximately 1.5 billion paths were generated by running Dijkstra0s algorithm,

from which the top 0.005 percentile paths were taken as the top-ranked perturbed paths and were pooled

into a response network.

Network visualisation and pathway enrichment

All networks were visualised and analyzed in Cytoscape v3 (Shannon et al., 2003). Module identification and

Reactome pathway enrichment for each module was performed using ReactomeFIViz, Cytoscape plugin

(Wu and Haw, 2017; Fabregat et al., 2017). Reactome pathways with q-value < 0.05 were considered signif-

icantly enriched. Gene set enrichment analysis for genes present in response networks was carried out us-

ing EnrichR and KEGG pathways with adjusted pvalue < 0.05 were considered significantly enriched (Xie

et al., 2021; Kanehisa et al., 2021).

Performance evaluation of the signature

The gene panel identified in the study was evaluated in three independent cohorts, using the Logistic

Regression (LR) classifier from scikit learn package v0.20.3 in python2.7 (Hosmer et al., 2013; Pedregosa

et al., 2011). Model evaluation was performed with 5-fold cross-validation to check how well it performs

in predicting the target variable on different subsets of the data and to minimise any bias and variance.

Sensitivity, specificity and prediction accuracies were computed based on the generated confusion

matrices. A Receiver Operating Characteristic (ROC) curve was generated which summarizes the model0s
performance by evaluating the trade-offs between the true positive rate (TPR/sensitivity) and the false pos-

itive rate (FPR/1- specificity).

R9-score formulation

A response score was formulated to determine response to TB treatment as follows: The antilog values of

the fold change in gene expression of each gene in the panel is calculated, as described in Equation 5:

FCðg1Þ =
It
I0

(Equation 5)

Here, FC(g1) is the fold change in expression of gene g1, It is the gene expression value of gene g1 in TR at a

given time point t of treatment, and I0 is the gene expression value for the same gene g1 in TB0 (Week 0).

The R9-score at time t (Equation 6), is the inverse of the geometric mean of the fold change values of all the

nine genes in the panel, explained in Equation 5:

R9 � scoret =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FCðg1Þ 3FCðg2Þ.3 FCðg9Þ

9
p (Equation 6)

For qRT-PCR data RQ values (fold change values), were calculated for each gene from the Ct values, as

described in Equations 7 and 8:
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DDCtðg1Þ = DCtt � DCt0 (Equation 7)

RQðg1Þ = 2�DDCtðg1Þ (Equation 8)

Here, DCtt is the normalized Ct value of the gene obtained after subtracting the Ct value of internal refer-

ence gene (18s rRNA) in TR.DCt0 is the normalizedCt value of the gene in active TB condition (Week-0 TB or

TB0).DDCt(g1) is the relative change in expression of gene g1 in TRt vs. TB0. RQ(g1) is the fold change value of

gene g1. The R9-score is further calculated by taking the inverse of the geometric mean of all nine gene RQ

values, as described in Equation 9:

R9 � scoret =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RQðg1Þ 3RQðg2Þ.3RQðg9Þ

9
p (Equation 9)

For Week-0 score calculation 18SrRNA (qRT-PCR data) and SDHA (GSE89403 data) were used as internal

reference genes as these genes showed least change in expression across patients. For GSE89403 dataset

Week-0 score (W0-score) was calculted by taking an inverse of geometric mean of the nine genes normal-

ized antilog values obtained after substracting the log value of the gene (E(g1)) with the same patient refer-

ence gene expression (E(SDHA)), as described in Equations 10 and 11:

E0ðg1Þ = Eðg1Þ � EðSDHAÞ (Equation 10)

W0 � score=
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ðg1Þ 3E0ðg2Þ.3E0ðg9Þ

9
p (Equation 11)

For qRT-PCR data Week-0 score (W0-score) was calculated from the Week-0 DCt0 values of the 9-genes, as

described in Equation 12:

W0 � score=
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DCt0ðg1Þ 3DCt0ðg2Þ.3DCt0ðg9Þ

9
p (Equation 12)

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R version 3.6.3 (R Core Team, 2013). ANOVA and Kruskal-

Wallis were used for multi-group comparisons and Student0s t-test and Wilcoxon-Mann-Whitney test

were used for two group comparisons for parametric and non-parametric data respectively. Differences

with a pvalue of < 0.05 were considered as significant. Median with IQR are shown when individuals points

are not plotted in the box and whisker plots and p-values are represented as *p< 0.05, **p< 0.01, ***p<

0.001.

ADDITIONAL RESOURCES

Ethical approval for this study was obtained from the Institutional Ethics Committee at Rajiv Gandhi Univer-

sity of Health Sciences, Bangalore (SDS/IEC/01/2016-17), and the Institutional Human Ethics Committee

(IHEC) at the Indian Institute of Science (11-15032017), Bangalore, India.
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