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Abstract
A very special type of pneumonic disease that generated the COVID-19 was first iden-

tified in Wuhan, China in December 2019 and is spreading all over the world. The

ongoing outbreak presents a challenge for data scientists to model COVID-19, when

the epidemiological characteristics of the COVID-19 are yet to be fully explained.

The uncertainty around the COVID-19 with no vaccine and effective medicine available

till today create additional pressure on the epidemiologists and policy makers. In such a

crucial situation, it is very important to predict infected cases to support prevention of

the disease and aid in the preparation of healthcare service. India is fighting efficiently

against COVID-19 and facing greater challenges because of its large population and

high population density. Though the government of India is taking all needful steps

to prevent its spread but it is not enough to control and stop spread of the disease so

far, perhaps due to defiant nature of people living in India. Effective measure to control

this disease, medical professionals needs to know the estimated size of this pandemic

and pace. In this study, an attempt has been made to understand the spreading capability

of COVID-19 in India through some simple models. Findings suggest that the lockdown

strategies implemented in India are not successfully reducing the pace of the pandemic

significantly after first lockdown.
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1 Background

A novel corona virus is responsible for epidemic popularly known as COVID-19

is a new strain that has not been identified previously in humans. World Health

Organization (WHO) declared COVID-19 a pandemic on March 11, 2020. The

virus that caused the incidence of Severe Acute Respiratory Syndrome (SARS)

in 2002 in China, Middle East respiratory syndrome (MERS) in 2012 in Saudi

Arabia and the virus that causes COVID-19 are genetically related to each

other, but the diseases they caused are quite different (WHO). These viruses,

in general, are a family of viruses that target and affect mammal’s respiratory

systems. The SARS corona virus spread to humans via civet cats, while the

MERS virus spread via dromedaries. In case of the novel corona virus, typically

happens via contact with an infected animal, perhaps the common carriers are

bats initial reports from seafood market in central Wuhan, China.

The Novel Corona Virus (COVID-19) started from Wuhan, China and thus,

initially known as the Wuhan virus, expanded its circle in South Korea, Japan,

Italy, Iran, USA, France, Spain and finally spreading in India. It is named as

novel because it is never seen before mutation of animal corona virus but cer-

tain source of this pandemic is still unidentified. It is said that the virus might

be connected with a wet market (with seafood and live animals) from Wuhan

that was not complying with health and safety rules and regulations.

As of July 16, 2020, with the continuously increasing global risk more

than 14 million confirm positive cases and more than 0.58 million of deaths

have occurred in the world. As number of cases growing day by day, in most

of the countries of the world, some most populous countries like China, India,

Brazil, USA, etc., are badly affected by it. In this context, the crucial role of

modeling, transmission dynamics and estimating development of COVID-19

are expected. The population based mathematical model especially growth

model in this scenario are the most preferable techniques to understand the

epidemic future trajectory. Epidemiological characteristics like propagating

dynamics, severity, susceptibility, and the effects of control measures, for

COVID-19 has produced a greater concern for researchers (Cowling and

Leung, 2020; Lipsitch et al., 2020).

Since preventive measures like lockdown and social distancing have

immense pressure on economy of the country, quantitative estimates and

predictions are necessary to learn the impact of spread that will help in plan

the strategies against COVID-19. Given the paucity of such quantitative mea-

sures, the predictions on the basis of different idea given in this paper become

critical and to know when the COVID-19 stops. In recent past a number of

studies with various technique and tools have been carry out to understand

the dynamics of propagation of disease and future course of action. For

COVID-19, various models which are capable of providing worth insights

for health care policy making are being continuously developed and used

to explain this pandemic retrospectively as well as to project the events
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(Batista, 2020; Koo et al., 2020; Kucharski et al., 2020; Tuite and Fisman,

2020; Wu et al., 2020).

Wu et al. (2020) has been done to analyzing the pace of virus transmissi-

bility through estimating the value of R0 with the help of stochastic Markov

Chain Monte Carlo method. Another analysis with mathematical incidence

decay and exponential adjustment is performed. Further to explain growth

behavior of COVID-19 a statistical exponential growth model adopting the

serial interval from Severe Acute Respiratory Syndrome is applied by Zhao

et al. (2020). A three-parameter logistic growth function is applied and pre-

dicted for China as well as some other countries is found very satisfying

(Shen, 2020). In the context of India, an early study of COVID-19 (when it

started spreading in India) done by Singh and Adhikari (2020) rightly believed

that countrywide lockdown on March 24 for 21 days may be insufficient for

controlling the COVID-19 pandemic. Malhotra and Kashyap (2020) tried to

forecast the endpoints to explain the progression of COVID-19 in Indian

States, using SIR and logistic growth models and found the endpoint of

COVID-19 in India is in July 23, 2020.

India with a huge population about 1.3 billion, among majority of the peo-

ple are living in poor hygienic condition and the medical facilities like num-

ber of doctors and hospitals are less in India as compared to developed

countries indicates that the situation of India will become very critical but

comparatively better public health system and political control in India than

the above developed countries. The picture of India is not so good and has

more than 1 million confirm positive cases and more than 26 thousand of

deaths. Although the death rate of this pandemic is low in comparison of other

pandemics and diseases but its high rate of spread and no proper cure avail-

able so far is the major concern in the present time. Right now in India only

29 districts out of 739 districts have COVID-19 case more than 4000. These

districts are mainly metropolitans; if we implement preventive measures prop-

erly then spread can be under control at desired level, but due to defiant nature

of people living in India, political desire and rivalry, still we India society are

facing problem made by COVID-19.

The first case of COVID-19 is reported in India on January 30, 2020 when

a student returned from Wuhan, China (covid19india.org). The Government

of India was quick to launch various levels of travel advisories beginning

from February 26, 2020, with restrictions on travel to China and nonessential

travel restrictions to Singapore, South Korea, Iran and Italy. The efforts to

control by the Hon’ble Prime Minister Narendra Modi Ji through Janata

Curfew (public curfew) on March 22, 2020, can be seen as the beginning of

wide-scale public preventive measures. India has launched several social

distancing measures and personal hygiene measures during the second week

of March.

Symptoms of COVID-19 are reported as cough, acute onset of fever and

difficulty in breathing. Out of all the cases that have been confirmed,
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up to 20% have been deemed to be severe. Cases vary from mild forms to

severe ones that can lead to serious medical conditions or even death. It is

believed that symptoms may appear in 2–14 days, as the incubation period

for the COVID-19 has not yet been confirmed. However, in India 14 days

minimum quarantine period is declared by Government for suspected cases.

Since it is a new type of virus, there is a lot of research being carried out

across the world to understand the nature of the virus, origins of its spreads

to humans, the structure of it, possible cure/vaccine to treat COVID-19. India

also became a part of these research efforts after the first two confirmed cases

were reported here on January 31, 2020. Then in India screening of traveler at

airport migrant was started, immediate Chinese visas was canceled, and who

was found affected from COVID-19 kept in quarantine centers (Ministry of

Home Affaires Government of India, Advisory).

For the spread of COVID-19, when disease dynamics are still unclear, math-

ematical modeling helps us to estimate the cumulative number of positive cases

in the present scenarios. Now India is interring in the mid stages of the epi-

demic. It is important to predict how the virus is likely to grow among the

population. The COVID-19 pandemic presents a challenge for data scientists

to model it; however, the epidemiological characteristics of the COVID-19

are yet to be fully explained. The uncertainty around the COVID-19 with no

vaccine and effective medicine available until today create additional pressure

on the epidemiologists and policy makers. In such a crucial situation, it is very

important to predict infected cases to support prevention of the disease and

support in the preparation of healthcare service. A mathematical modeling

approach is a suitable tool to understand the dynamics of epidemic. In the study

some mathematical approach to understand the dynamics of novel COVID-19

in India has been discuss.

In absence of a definite treatment modality like vaccine, physical distancing

has been accepted globally as the most efficient strategy for reducing the sever-

ity of disease and gaining control over it (Ferguson et al., 2020). Also in India it

is reported that the country is well short of the WHO’s recommendations of

minimum threshold of 2.28 skilled health professionals per 1000 population

(Anand and Fan, 2016). Therefore, on March 24, 2020, the Government of

India under Prime Minister Narendra Modi Ji ordered a nationwide lockdown

for 21 days, limiting movement of the entire 1.3 billion population of India

as a preventive measure against the COVID-19 pandemic in India. It was

ordered after a 14-h voluntary public curfew on 22 March. The lockdown

was placed when the number of confirmed COVID-19 cases in India was

approximately 500. On 14 April, Prime Minister of India extended the nation-

wide lockdown until 3 May, with a conditional relaxation after 20 April for

some regions. On 4 May, the Government of India again extended the nation-

wide lockdown further by 2 weeks until 17 May. Also, the Government

has divided the entire nation into three zones viz. green, red and orange with

relaxations applied accordingly.
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There are already various measures such as social distancing, lockdown

masking and washing hand regularly has been implemented to prevent the

spread of COVID-19, but in absence of particular medicine and vaccine it is

very important to predict how the infection is likely to develop among the

population that support prevention of the disease and aid in the preparation

of healthcare service. This will also be helpful in estimating the health care

requirements and sanction a measured allocation of resources. It is well

known fact that COVID-19 has spread differently in different countries, any

planning for increasing a fresh response has to be adaptable and situation-

specific. Data obtained on COVID-19 outbreak have been studied by various

researchers using different mathematical models (Chang et al., 2020;

Srinivasa Rao Arni et al., 2020). Many other studies (Anastassopoulou

et al., 2020; Corman et al., 2020; Gamero et al., 2020; Huang et al., 2020;

Hui et al., 2020; Rothe et al., 2020) on this recent epidemic have been

reported so many meaningful modeling results based on the different princi-

ples of mathematics.

Most of pandemics follow an exponential curve during the initial spread

and eventually flatten out ( Junling et al., 2014). SIR model is one of the best

suited models for projecting the spread of infectious diseases like COVID-19

where a person once recovered is not likely to become susceptible to the

infection again (Kermack and McKendrick, 1927). Susceptible-Infectious-

Recovered (SIR) compartment model (Herbert, 2000) is used to include con-

siderations for susceptible, infectious, and recovered or deceased individuals.

These models have shown a significant predictive ability for the growth of

COVID-19 in India on a day to day basis so far. A time dependent SIR models

have been defined to observe the undetectable infected persons with COVID-

19 (Chen et al., 2020). A recent study by Mandal et al. (2020) has shown that

social distancing can reduce cases by up to 62%.

Further, time series models have been employed for predicting the inci-

dence of COVID-19 disease. As compared to other prediction models, for

instance support vector machine (SVM) and wavelet neural network

(WNN), ARIMA model is more capable in the prediction of natural adversi-

ties (Zhang et al., 2019). Chatterjee et al. (2020) studied a stochastic mathe-

matical model of the COVID-19 epidemic in India. The logistic growth

regression model is used for the estimation of the final size and its peak time

of the COVID-19 pandemic in many countries of the World and found similar

result obtained by SIR model (Batista, 2020).

It is well known that the effects of social distancing become visible only

after a few days from the lockdown. This is because the symptoms of the

COVID-19 normally take some time to come out after getting infected from

the COVID-19. An estimates indicates that, with hard lockdown and continued

social distancing, the peak total infections in India will be 97 million and the

number of infective by September is likely to be over 1100 million (Schueller

et al., 2020).

Modeling and forecasting the spread of COVID-19 Chapter 9 261



2 Why mathematical modeling?

The study of infectious diseases is called epidemiology. A disease is called

endemic if it persists in a population and pandemic when it occurs worldwide.

The spread of an infectious disease involves not only disease related factors

such as the infectious agent, mode of transmission, latent period, infectious

period, susceptibility and resistance, but also social, cultural, demographic,

economic and geographic factors. Mainly there are three types of models

for infectious diseases that are spreading directly through person to person

contact in a population. Some simple models are formulated and analyzed

mathematically considering differential equations. Parameters are estimated

for infectious diseases and also used to compare the vaccination levels neces-

sary for herd immunity. The three models considered here are the simple epi-

demiological models and suitable for diseases which are transmitted directly

from person to person. More complicated models must be used when there

is transmission by insects called vectors or a reservoir of nonhuman infective.

Epidemiological models are widely used to understand the pattern and policy

development.

Even though vaccines are available for many infectious diseases, these dis-

eases still cause suffering and mortality in the world, especially in developing

countries. In developed countries chronic diseases such as cancer and heart

disease have received more attention than infectious diseases, but infectious

diseases are still a more common cause of death in the world. The transmis-

sion mechanism from an infective to susceptible is understood or nearly all

infectious diseases and the spread of diseases through a chain of infections

is known. However, the transmission interactions in a population are very

complex so that it is difficult to comprehend the large scale dynamics of dis-

ease spread without the formal structure of a mathematical model. An epide-

miological model uses a microscopic description (the role of an infectious

individual) to predict the macroscopic behavior of disease spread through a

population. In many sciences it is possible to conduct experiments to obtain

information and test hypotheses. Experiments with infectious disease spread

in human populations are often impossible, unethical or expensive. Data is

sometimes available from naturally occurring epidemics or from the natural

incidence of endemic; however, the data is often incomplete due to underre-

porting. This lack of reliable data makes accurate parameter estimation diffi-

cult so that it may only be possible to estimate a range of values for some

parameters. Since repeatable experiments and accurate data are usually not

available in epidemiology, mathematical models and computer simulations

can be used to perform needed theoretical experiments.

Mathematical models have both limitations and capabilities that must

recognized. Sometimes questions cannot be answered by using epidemiologi-

cal models, but sometimes the modeler is able to find the right combination of

available data, an interesting question and a mathematical model which can

lead to the answer. Comparisons can lead to a better understanding of the
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processes of disease spread. Modeling can often be used to compare different

diseases in the same population, the same disease in different populations, or

the same disease at different times. Comparisons of diseases such as measles,

rubella, mumps, chickenpox, whooping cough, poliomyelitis and others are

made (Hethcote, 1983; Yorke and London, 1973; Yorke et al., 1979) and in

the article on rubella in this volume by Hethcote (1989). Quantitative predic-

tions of epidemiological models are always subject to some uncertainty since

the models are idealized and the parameter values can only be estimated.

However, predictions of the relative merits of several control methods are

often robust in the sense that the same conclusions hold over a broad range

of parameter values and a variety of models. Optimal strategies for vaccina-

tion can be found theoretically by using modeling. Longini et al. (1978) use

an epidemic model to decide which age groups should be vaccinated first to

minimize cost or deaths in an influenza epidemic. Hethcote (1988) uses a

modeling approach to estimate the optimal age of vaccination for measles.

Within a short period of time, COVID-19 has traumatized the world with a

greater magnitude and coercion than older pandemics. Its eventuality is

grabbed by the fact that it has infected millions and killed thousands across

the globe. Global markets, accessible transportation, large scale production

have largely contributed to make this pandemic spread faster. This has drasti-

cally affected the social life and health mental as well as physical of human

beings worldwide. The already burdened health infrastructure across the globe

is virtually exposed up to an irreparable point. The WHO declared 2019–2020
corona virus outbreak a Public Health Emergency of International Concern

(PHEIC) on January 30th, 2020 and a pandemic 12 days later on February

12th, 2020. With its outbreak in Wuhan, China, the pandemic seems to

occupy and include all the vitals of the world thereby affecting the mechanis-

tic processes of any nation. The countries are trying hard to combat and con-

tain this outbreak by following suitable set of protocols that tend to alter the

transmission rate effectively. In the initial phase of spread of COVID-19;

Italy, Spain, France and some other European countries are one of the worst

sufferers of the pandemic and the coercive measures have resulted in the dis-

ruption of all the necessary services. On the other hand, the case is virtually

less severe in South Asia. India is less affected by the COVID-19, however,

China is its neighboring country having border through buffer states like

Nepal and Bhutan.

Being the second most populous country of the world, India is fighting

hard to minimize the damage of COVID-19. As on 15th April, the total num-

ber of infected cases in India was 12,370 with 422 deaths and most recoveries

(covid19india.org). India reported its first case on 30th January and entered

the countrywide lockdown on March 24th, 2020 with constantly increase in

number of COVID-19 cases. Indian government as well as states government

has issued early guidelines and travel advisories to limit the further damage of

disease. Also, the timely precautions taken by the government have contribu-

ted greatly toward combating this pandemic. The paper attempts to devise a

Modeling and forecasting the spread of COVID-19 Chapter 9 263

http://covid19india.org


model that would conveniently help in assessing the predictability of pan-

demic COVID-19 in future time period. This can be achieved by evaluating

the different parameters that directly or indirectly affect the ongoing rate of

pandemic. Moreover, theoretical explanation, quantitative analysis and other

parameters are highly required to predict the peak and size of any pandemic.

We obtained information on cumulative number of COVID-19 confirmed

cases in India from covid19india.org. All cases are laboratory confirmed fol-

lowing the case definition by the Government of India. Some studies modeled

the epidemic curve obeying the exponential growth (De Silva et al., 2009).

The nonlinear least square framework is adopted for data fitting and parame-

ter estimation for COVID-19 at this early stage. First exponential and then

logistic growth curve is used to model the COVID-19 pandemic, since epi-

demics grow exponentially not linearly. But it is surprising that exponential

growth curve always provide increasing number of daily new cases. There

is no saturation point. Another deterministic model used for understanding

the dynamics of epidemic is the Susceptible-Infectious-Recovered (SIR)

model, which has been used to accurately predict incidence like SARS. In

the SIR model, we need to know the input parameters first the stats we feed

into the model (Chatterjee et al., 2020; Mandal et al., 2020; Singh and

Adhikari, 2020). The first one is R0 called the basic reproduction number. It

is essentially the number of new cases a single infected person will cause dur-

ing their infectious period. It is one of the most important parameters for

assessing any epidemic. Corona virus has an R0�2.4. In contrast, the swine

flu virus had an R0�1.5 in the 2009 swine flu epidemic (Gupta, 2020). The

R0 will inform us about how many people will get infected with one infected

person. Other one is the case fatality rate (CFR), which is the percentage of

infected people that will die due to the infection. The CFR for corona virus

has been reported between 0.5% and 4%. The lower values are more appropri-

ate in resource better settings of medical facility. But SIR model assumes that

every person is moving and has equal chance of contact with each and every

other person among the population irrespective of the space or distance

between different people. It is assumed that the transmission rate remains con-

stant throughout the period of pandemic. Also this model considered to have

the same transmission rate for who have been diagnosed and are in quarantine

or those who have not been quarantined. The harmonic analysis methods and

dynamic model (Rao Srinivasa Arni et al., 2020) estimates show that the num-

ber of COVID-19 infected would be 9225 (if there were 10 infected indivi-

duals as of March 1, 2020, who was not taking any precautions to spread),

17,986 (if there were 20) and 44,265 (if there were 50).

2.1 SIR and SEIR model

SIR model is a theoretical epidemiological model, in which, the population is

categories into three component such as: susceptible (S), which is the group of
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people who are vulnerable to exposure with infectious people, infected (I), are
those with the disease and can transmit it to the susceptible and the third com-

ponent is the individuals who have recovered from the infectious disease and

developed immunity and not susceptible to the same illness anymore (R). This
framework enables us to understand the dynamics of any epidemic. Thus

SIR model is a compartmental model in which individuals are separated into

different compartments based on their status and follow the corresponding

population sizes over the time. The diagrammatical representation of three-

compartment model (Kermack and McKendrick, 1927) is given as

( )S t ( )I t ( )R t

Susceptible
( ) ( )S t I tβ

Infected
( )I tγ

Recovered

where, S(t)¼Proportion of individual susceptible to COVID-19 at time t,
I(t)¼Proportion of individual who have been infected by COVID-19 and

are capable of infecting others at time t, and R(t)¼Proportion of individual

who have been infected by COVID-19 and recovered at time t, such that

S(t) + I(t) + R(t)¼1. Hereβ is the transmission parameter controlling how

much the disease can be transmitted. This is the average number of indivi-

duals that one infected individual will infect per unit time. It is determined

by the chance of contact and the probability of disease transmission. While

γ is the parameter representing the rate of recovery in a particular period.

The model allows us to describe the number or proportions of persons in each

compartment by solving the following ordinary differential equations,

dS tð Þ
dt

¼ �βS tð ÞI tð Þ

dI tð Þ
dt

¼ βS tð ÞI tð Þ � γI tð Þ

dR tð Þ
dt

¼ γI tð Þ
Several assumptions have been discussed with respect to the SIR model

(Brauer and Castillo-Chavez, 2012; Daley and Gani, 1999). Based on the

SIR model, the basic reproduction number is defined as,

R0 ¼ β
γ

Here, R0 is the average number of new COVID-19 cases produced by a

single COVID-19 infected case over the time. In order to fit a SIR model,

the parameters were obtained by minimizing the residual sum of squares

between the observed active cases and the predicted active cases.
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3 Formulation of SEIR model

The utilization of the SEIR model lies in the fact that it focuses on the basic

processes that are directly related to this growing pandemic. In the preparation

of this model, there is a need that the population is to be divided into some

subdivisions which are susceptible subdivision S(t), that denotes the population
which is susceptible to catch the virus; exposed subdivision E(t), that denotes
the population which is infected but the symptoms are not visible yet; infected

subdivision I(t), that denotes the population which has been infected by the

virus and are showing the symptoms; recovered subdivision R(t), that denotes
the population which has immunity to the infection. The basic assumption to

formulate this model is that the recovered patients acquired permanent active

immunity. It can be justified by the strong reason that none of the patients

were re-infected by the COVID-19. There have been numerous cases where

patients died after being discharged from the hospital but it was found that

the patients were either discharged for having mild symptoms or the testing

machine reported wrongly. Now we have normalized these components as

S+E+ I+R¼1.

Furthermore, suppose that there are equal birth and death rates, i.e., μ and
1
α is the mean latent period for the disease. 1γ is the mean infectious period and

recovered individuals are permanently immune. The contact rate β may or

may not be a function of time. Thus the SEIR model is defined as

dS tð Þ
dt

¼ μ� βS tð ÞI tð Þ � μS tð Þ
dE tð Þ
dt

¼ βS tð ÞI tð Þ � μ + αð ÞE tð Þ
dI tð Þ
dt

¼ αE tð Þ � μ + γð ÞI tð Þ

R0 ¼ αβ
μ + αð Þ μ + γð Þ

The variable R is determined from the other variables according to equa-

tion S+E+ I+R¼1.

3.1 Growth models

A growth curve is an empirical model of the evolution of a quantity over time.

Growth curves are widely used in biology for quantities such as population

size in population ecology and demography for population growth analysis,

individual body height in physiology for growth analysis of individuals.

Growth is also a key property of many systems such as an economic expan-

sion, spread of an epidemic, the formation of a crystal, an adolescent’s growth

and the condensation of a stellar mass.
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3.1.1 Linear growth

This is the simplest growth model, in which population grows at a constant

rate over time. Linear growth is described by the equation

Pt+1 ¼ Pt + A (1)

where Pt represents the numbers or size of the system at time t, Pt+1 represents

the system’s numbers or size of the system one time unit later, and A is the

system’s (linear) growth rate. Many times this model fails to explain natural

phenomenon.

3.1.2 Exponential growth (unlimited population growth)

Another simple model describes exponential growth, in which population

grows at a constant proportional rate over time. The relation may be expressed

in either of two forms, depending on whether reproduction is assumed to be

continuous or periodic (Shryock and Siegel, 1973). Exponential growth results

in a continuous curve of increase or decrease, whose slope varies in direct

relation to the size of the population.

Pt ¼ y ¼ P0e
rt (2)

where r is the constant rate of growth, Po is the initial population size, and

the variables t and Pt respectively represent time and the population at time

t (Method 1). Another form of exponential curve is as follows

Pt ¼ y ¼ P0k
t (3)

where k ¼ Pn

P0

� �1=n
and that therefore the growth rate in Eq. (3) does not a con-

stant growth rate. David A. Swanson, University of California, USA used this

type equation for prediction. We have used truncated information, i.e., only

30 days information (from March 4 to April 2, 2020) on number of

COVID-19 cases for the prediction purpose. We have used two equations of

exponential curve given below

I. 28e0.14tup to March 31, 2020

II. 28e0.15tfrom March 31, 2020 onward (adjusting faster rate of occurrence

of COVID-19 cases due to Tablighi spread)

With the current incidence of the COVID-19 going on, we hear about expo-

nential growth. In this study, an attempt has been made to understand and ana-

lyze the data through exponential growth curve. The reason for using

exponential growth curve for studying the pattern of COVID-19 incidence is

that epidemiologists have studied these types of happenings and it is well

known that the first period of an epidemic follows exponential growth. The

exponential growth function is not necessarily the perfect representation of

the epidemic. I have tried to fit exponential curve first, and at the next point
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to study the logistic growth curve because exponential curve is only fit the

epidemic at the beginning. At some point, recovered people will not spread

the virus anymore and when someone is or has been infected, the growth will

stop. Logistic growth is characterized by increasing growth in the beginning

period, but a decreasing growth after point of inflection. For example, in the

corona virus case, the maximum limit would be the total number of exposed

people in India because when everybody is infected, the growth will be

stopped. After that the increasing rate of curve starts to decline and reach to

the minimum.

3.1.3 Logistic growth (sigmoidal)

The logistic model reveals that the growth rate of the population is determined

by its biotic potential and the size of the population as modified by the natural

resistance, or, in other words, by all the various effects of inherent characteris-

tics, that are density dependence Pearl and Reed, 1920. Natural resistance

increases as population size gets closer to the carrying capacity. Logistic growth

is similar to exponential growth except that it assumes an essential sustainable

maximum point. In exponential growth curve, the rate of growth of y per unit of
time is directly proportional to y but in practice the rate of growth cannot be in

the same proportion always. The logistic curve will continue up to certain level,

called the level of saturation, sometimes called the carrying capacity, after

reaching carrying capacity it starts declining. A system far below its carrying

capacity will at first grow almost exponentially, however, this growth gradually

slows as the system expands, finally bringing it to a halt specifically at the car-

rying capacity (Pearl and Reed, 1920; Shryock and Siegel, 1973). The logistic

relationship can be expressed as

Pt ¼ yt ¼ k

1 + ea+bt
; b < 0 (4)

where a, b and k are constant and yt is that value of the time series at the

time t. The reciprocal of yt follows modified exponential law. Hence, the

given time series observation yt will follow Logistic Law if their reciprocal

1/ytfollows modified exponential law. Thus in general, we may take

dy
dt

¼ αy k � yð Þ; α > 0, k > 0

The factor y is called the momentum factor which increases with time

t and the factor (k�y) is known as the retarding factor which decreases with

time. When the process of growth approaches the saturation levelk, the rate of
growth tends to zero. Now we have

dy
y k�yð Þ ¼ αdt ) 1

k
1
y + 1

k�y

h i
dy ¼ αdt ) 1

y � 1
k�y

h i
dy ¼ αkdt

Integrating, we get

log y
k�y

� �
¼ αkt + γ, where γ is the constant of integration.
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k
y ¼ 1 + e�αkt:e�γ ) y ¼ k

1 + e� γ+αktð Þ, this equation is same as Eq. (4) where

a¼ � γ and b¼ �αk.
Logistic curve has a point of inflection at half of the carrying capacity k.

This point is the critical point from where the increasing rate of curve starts

to decline. The time of point of inflection can be estimate as �a
b . For the esti-

mation of parameter of logistic curve, method of three selected point given by

Pearl and Reed (1920) has been used. The estimate of the parameters can be

obtained with equation given as:

k ¼ y22 y1 + y3ð Þ � 2y1y2y3
y22 � y1y3

(5)

b ¼ 1

t2 � t1
ln

k � y2ð Þy1
k � y1ð Þy2

� �
(6)

a ¼ ln
k � y1
y1

� �
� bt1 (7)

where y1,y2andy3 are the cumulative number of COVID-19 cases at a given

time t1,t2and t3 respectively provided that t2� t1¼ t3� t2. You may also esti-

mate the parameter a and b by method of least square after fixing k.
To predict confirmed corona cases on different day, logistic growth curve

has been also used and found very exciting results. The truncated information

(means not from the beginning to the present date) on confirmed cases in

India has been taken from March 13 to April 2, 2020. The estimated value

of the parameters are as follows k¼18,708.28, a¼5.495 and b¼�0.174,

with these estimates predicted values has been obtained and found consider-

ably lower values than what we observed. On April 1 and 2, 2020 the number

of confirmed corona cases are drastically increasing in some part of India due

to some unavoidable circumstances thus there is an earnest need to increase

carrying capacity of the model, thus it is increased and considered as 22,000

and the other parameters a and b are estimated again which are a¼5.657

and b¼�0.173. The predicted cumulative number of cases is very close to

the observed cumulative number of cases till date. The time of point of inflec-

tion is obtained as 32.65, i.e., 35 days after beginning. We have taken data

from March 13, 2020 so that the time of point of inflection should be April

14, 2020 and by May 30, 2020 there will be no new cases found in the coun-

try. Exponential growth model and model given Swanson provided natural

estimate of the total infected cases by June 30, 2020 is all most all people

in India. This estimate is obtained when no preventive measure would be

taken by the Government of India. The testing rate is lower in India than

many western countries in the month of March and April, so our absolute

numbers was low, when government initiate faster testing process then we

have observed more number of cases and found this logistic model fail to pro-

vide cumulative number of corona confirm cases after April 17, 2020 thus

there is a need to modify this model (Fig. 1).
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In order to the modification, I have taken natural log of cumulative num-

ber of corona confirm cases instead of cumulative number of corona confirm

cases as taken in the previous model. This model provides the carrying capac-

ity is about 80,000 cases and time of point of inflection is April 30, 2020. The

present model provides reasonable estimate of the cumulative number of con-

firmed cases and by the end of July 2020 there will be no new cases found in

the country. Further, the number of COVID-19 cases increases and the model

estimate does not match to the observed number of case, therefore we need

to change the data period, since the logistic curve is data-driven model that

provide new estimate of point of inflection and maximum number of corona

positive cases by date when disease will disappear, that helps us to plan our

strategies. Finally in this study we changed the data period, i.e., we have taken

data from April 15th to July 16th 2020. This provides the carrying capacity is

about 45 lakh cases and time of point of inflection is August 15th, 2020 with

a maximum number of new cases on a day is about 30,000 per day. The model

based on this data (from April 15th to July 16th 2020) provides reasonable

estimate of the cumulative number of confirmed cases, and predicted value

along with 95% confidence interval provided up to August 15th, 2020 (see

Table 1) and by the end of March 2021 we expect there will be no new cases

in the country in absence of any effective medicine of vaccine (Fig. 2).

3.2 Significance of lockdown

To know the significance of lockdown we define the COVID-19 case trans-

mission is as ct ¼ xtPt

i¼0

xi

, where xt is the number of confirm cases on tthday.
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TABLE 1 Predicted value of COVID-19 cases from logistic growth model.

Date Predicted

95% Confidence limit

Date Predicted

95% Confidence limit

Lower Upper Lower Upper

15-Jul-2020 979,177 972,095 986,260 31-Jul-2020 1,414,533 1,404,319 1,424,746

16-Jul-2020 1,004,769 997,491 1,012,047 01-Aug-2020 1,443,118 1,432,717 1,453,519

17-Jul-2020 1,030,622 1,023,147 1,038,096 02-Aug-2020 1,471,804 1,461,217 1,482,391

18-Jul-2020 1,056,726 1,049,054 1,064,398 03-Aug-2020 1,500,579 1,489,809 1,511,350

19-Jul-2020 1,083,073 1,075,204 1,090,943 04-Aug-2020 1,529,434 1,518,482 1,540,386

20-Jul-2020 1,109,653 1,101,585 1,117,720 05-Aug-2020 1,558,357 1,547,226 1,569,488

21-Jul-2020 1,136,456 1,128,190 1,144,721 06-Aug-2020 1,587,339 1,576,032 1,598,647

22-Jul-2020 1,163,472 1,155,008 1,171,935 07-Aug-2020 1,616,371 1,604,889 1,627,852

23-Jul-2020 1,190,691 1,182,030 1,199,352 08-Aug-2020 1,645,441 1,633,788 1,657,093

24-Jul-2020 1,218,103 1,209,245 1,226,962 09-Aug-2020 1,674,539 1,662,718 1,686,360

25-Jul-2020 1,245,699 1,236,643 1,254,754 10-Aug-2020 1,703,657 1,691,671 1,715,644

26-Jul-2020 1,273,466 1,264,215 1,282,718 11-Aug-2020 1,732,784 1,720,636 1,744,933

27-Jul-2020 1,301,397 1,291,950 1,310,843 12-Aug-2020 1,761,912 1,749,604 1,774,219

28-Jul-2020 1,329,479 1,319,839 1,339,119 13-Aug-2020 1,791,030 1,778,567 1,803,492

29-Jul-2020 1,357,702 1,347,870 1,367,535 14-Aug-2020 1,820,129 1,807,514 1,832,743

30-Jul-2020 1,386,057 1,376,033 1,396,081 15-Aug-2020 1,849,200 1,836,437 1,861,963



We have calculated ct and the doubling time of the corona case transmission

in India. The doubling time is calculate as Ln2
ct

¼ 0:693
ct

.

We have calculated COVID-19 case transmission cton the basis of 5 days

moving average of daily confirm cases (in the beginning the data in India is

very fluctuating) and it is found gradually decreasing in India. This indicates

the good sign of government attempts to combat this pandemic through imple-

menting lockdown. These findings indicate that in future the burden of corona

will be expectedly lowering down if the current status remains same. In

Table 2 given below, an attempt has been made to show the summary statis-

tics of corona case transmission ctduring various lockdown periods in India.

It is observed that average COVID-19 case transmission was maximum

(0.16 with standard deviation 0.033) in the period prior to the lockdown. Dur-

ing the first lockdown period the average COVID-19 case transmission was

0.14 with standard deviation 0.032, however, in lockdown 2 it was 0.07 with

standard deviation 0.009 and in lockdown 3 COVID-19 case transmission was

0.06 with standard deviation 0.007, however, in the period of fourth lockdown

the average case transmission was 0.05 with standard deviation 0.005, thus

it is clear that both average transmission load and standard deviation are

decreasing. Table 3 reveals the result of ANOVA for average ctduring various

lockdown periods which is significant means that the average corona case

transmission is significantly different is various lockdown periods considered.

A group wise comparison of the average COVID-19 case transmission

ctduring various lockdown periods is shown in Table 4 which reveals that

first lockdown is significantly affects the spread of corona case transmission

than others but second lockdown period is not significantly different than

third and fourth. Same result is observed for third and fourth lockdown period.
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TABLE 2 Summary of ctduring various lockdown period.

Lockdown period N Mean Std. deviation Std. error

95% confidence interval for mean

Lower bound Upper bound

No 11 0.16 0.035 0.011 0.134 0.182

1 22 0.14 0.032 0.006 0.121 0.149

2 19 0.07 0.009 0.002 0.064 0.073

3 14 0.06 0.007 0.002 0.051 0.060

4 14 0.05 0.005 0.001 0.044 0.049

Total 80 0.093 0.048 0.005 0.082 0.104



This indicates that the COVID-19 transmission is not under control now.

Fig. 3 shows corona case transmission and doubling time in India. The corona

case propagation in decreasing and doubling time is increasing day by day.

3.3 Propagation model (based on Newton’s law of cooling)

Let us define a function called tempo of disease that is the first differences in

natural logarithms of the cumulative corona positive cases on a day, which is as:

rt ¼ ln
pt
pt�1

� �

where pt and pt�1 are the number of cumulative corona positive cases for

period t and t�1, respectively. When pt and pt�1 are equal then rtwill become

zero. If this value of rt , i.e., zero will continue a week then we can assume no

new corona cases will appear further. In the initial face of the disease spread,

the tempo of disease increases but after sometime when some preventive mea-

sures is being taken then it decreases.

Since rt is a function of time then the first differential is defined as

drt
dt

¼ k rt � rTð Þ (8)

where rtdenotes the tempo that is the first differences in natural logarithms of

the cumulative corona positive cases on a day, rT is the desired level of tempo,

i.e., zero in this study, t denotes the time and k is a constant of proportionality.

Eq. (8) is an example of an ordinary differential equation that can be

solved by the method of separating variables. The Eq. (8) can be written as

drt
rt

¼ kdt (9)

Integrating Eq. (9), we get

ln rt ¼ kt + C (10)

TABLE 3 ANOVA test for mean of ctduring various lockdown period.

Source of

variations

Sum of

squares df

Mean

square F p value

Between groups 0.147 04 0.037 75.58 0.000

Within groups 0.036 75 0.000

Total 0.183 79
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TABLE 4 Group wise comparison of means of ctduring various lockdown periods.

(I) group (J) group Mean difference (I2 J) Std. error p value 95% Confidence interval

Lower bound Upper bound

No 1 0.023 0.008 0.057 0.000 0.047

2 0.090 0.008 0.000 0.066 0.114

3 0.102 0.009 0.000 0.077 0.128

4 0.112 0.009 0.000 0.086 0.137

1 2 0.067 0.007 0.000 0.047 0.087

3 0.079 0.008 0.000 0.058 0.101

4 0.089 0.008 0.000 0.067 0.110

2 3 0.013 0.008 1.000 �0.010 0.035

4 0.022 0.008 0.059 �0.001 0.044

3 4 0.009 0.008 1.000 �0.015 0.033



where C is an arbitrary constant. Taking the antilogarithms of both sides of

Eq. (10) we have

rt ¼ ekt+C ) ekteC ) rt ¼ Aekt (11)

where A¼eC. This Eq. (11) is the general solution of Eq. (8). If k is less than
zero, Eq. (11) tells us how the COVID-19 cases will decreases over the time

until it reaches zero. Value of A and k is estimated by least square estimation

procedure using the data sets.

The Government of India implemented lockdown on March 24th, 2020

and expected that the tempo of disease is decreasing. Government suggested

and implemented social distancing and lockdown to control the spread of

COVID-19 in the society. In Table 5, the predicted value of COVID-19 cases

obtained with this method is given along with 95% confidence interval. About

21.5 lakh cases are expected by August 15th, 2020. With this model it is

expected that about 45 lakh peoples will be infected in India by the end of

October and after that no cases will happen since the tempo of disease rtwill
become zero (Fig. 4). In Table 6 an attempt has been made to show the sum-

mary statistics of tempo of COVID-19 rtduring various lockdown periods in

India. It is observed that average tempo is maximum (0.17 with standard

deviation 0.062) in the period prior to the lockdown. During the first lock-

down period the average tempo is 0.14 with standard deviation 0.044 and

after that it is found decreasing in the various lockdowns. Table 7 indicates

lockdown periods are significantly different in terms of tempo of disease

spread. A group wise comparison of the average tempo of COVID-19 during
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TABLE 5 Predicted confirmed cases of COVID-19 till 15 August 2020, India with propagation model.

Date Predicted

95% Confidence limit

Date Predicted

95% Confidence limit

Lower Upper Lower Upper

15-Jul-2020 1,140,781 845,770 1,568,823 31-Jul-2020 1,631,673 1,162,680 2,346,267

16-Jul-2020 1,169,628 864,891 1,613,198 01-Aug-2020 1,664,042 1,182,994 2,399,124

17-Jul-2020 1,198,757 884,133 1,658,183 02-Aug-2020 1,696,557 1,203,333 2,452,409

18-Jul-2020 1,228,163 903,487 1,703,769 03-Aug-2020 1,729,209 1,223,691 2,506,109

19-Jul-2020 1,257,836 922,949 1,749,945 04-Aug-2020 1,761,989 1,244,064 2,560,212

20-Jul-2020 1,287,768 942,513 1,796,703 05-Aug-2020 1,794,889 1,264,445 2,614,704

21-Jul-2020 1,317,951 962,171 1,844,032 06-Aug-2020 1,827,899 1,284,830 2,669,570

22-Jul-2020 1,348,376 981,919 1,891,920 07-Aug-2020 1,861,012 1,305,214 2,724,799

23-Jul-2020 1,379,035 1,001,750 1,940,359 08-Aug-2020 1,894,218 1,325,590 2,780,376

24-Jul-2020 1,409,918 1,021,658 1,989,336 09-Aug-2020 1,927,509 1,345,954 2,836,287

25-Jul-2020 1,441,019 1,041,638 2,038,840 10-Aug-2020 1,960,876 1,366,302 2,892,520

26-Jul-2020 1,472,327 1,061,682 2,088,859 11-Aug-2020 1,994,312 1,386,628 2,949,059

27-Jul-2020 1,503,833 1,081,786 2,139,382 12-Aug-2020 2,027,806 1,406,927 3,005,892

28-Jul-2020 1,535,530 1,101,944 2,190,397 13-Aug-2020 2,061,353 1,427,196 3,063,004

29-Jul-2020 1,567,409 1,122,149 2,241,891 14-Aug-2020 2,094,942 1,447,428 3,120,382

30-Jul-2020 1,599,459 1,142,396 2,293,852 15-Aug-2020 2,128,567 1,467,621 3,178,012



various lockdown periods is shown in Table 8 which reveals that first lock-

down is significantly different than others. Consecutive mean difference

shows that the decrease in disease spread has been observed but insignificant,

means there is no impact of lockdown on controlling the disease spread.

3.4 Joinpoint regression model

To analyze the temporal trends and to identify important changes in the trends

of the COVID-19 outbreak joinpoint regression is used in China (Al Hasan

et al., 2020); here in this study we performed a joinpoint regression analysis

in India to understand the pattern of COVID-19. Joinpoint regression analysis,

enable us to identify time at a meaningful change in the slope of a trend is

observed over the study period. The best fitting points known as joinpoints,

that are chosen when the slope changes significantly in the models.

To tackle the above problem joinpoint regression analysis (Kim et al., 2000)

has been employed in this study to present trend analysis. The goal of the join-

point regression analysis is not only to provide the statistical model that best fits

the time series data but also, the purpose is to provide that model which best

summarizes the trend in the data (Marrot, 2010).

Let yi denotes the reported COVID-19 positive cases on day ti such that

t1< t2<…< tn. Then the joinpoint regression model is defined as

ln yi ¼ α + β1t1 + δ1u1 + δ2u2 + :…+ δ ju j + εi (12)
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TABLE 6 Summary of rtduring various lockdown period.

Lockdown period N Mean Std. deviation Std. error 95% Confidence interval for mean

Lower bound Upper bound

No 11 0.17 0.062 0.019 0.125 0.210

1 22 0.14 0.044 0.009 0.120 0.159

2 19 0.07 0.012 0.003 0.064 0.076

3 14 0.06 0.007 0.002 0.051 0.059

4 14 0.05 0.006 0.001 0.046 0.052

Total 80 0.10 0.056 0.006 0.084 0.109



where u j ¼ t j � k j

� 	
if t j > k j

0 otherwise



and k1<k2…<kj are joinpoints. The

details of joinpoint regression analysis are given elsewhere (Kim et al., 2004).

Joinpoint regression analysis is used when the temporal trend of an amount,

like incidence, prevalence and mortality is of interest (Doucet et al., 2016). How-

ever, this method has generally been applied with the calendar year as the time

scale (Akinyede and Soyemi, 2016; Chatenoud et al., 2015; Missikpode et al.,

2015; Mogos et al., 2016). The joinpoint regression analysis can also be applied

in epidemiological studies in which the starting date can be easily established

such as the day when the disease is detected for the first time as is the case in

the present analysis (Rea et al., 2017). Estimated regression coefficients (β) were
calculated for the trends extracted from the joinpoint regression. Additionally,

the average daily percent change (ADPC), calculated as a geometric weighted

average of the daily percent changes (Clegg et al., 2009). The joinpoints are

selected based on the data-driven Bayesian Information Criterion (BIC) method

(Zhang and Siegmund, 2007).

The equation for computing the BIC for a k-joinpoints regression is:

BIC kð Þ ¼ ln
SSE kð Þ

n

� �
+

2 k + 1ð Þ � ln nð Þ
n

(13)

where SSE is the sum of squared errors of the k-joinpoints regression model

and n is the number of observations. The model which has the minimum value

of BIC(k) is selected as the final model. There are other methods also for

identifying the joinpoints such as permutation test method and the weighted

BIC methods. Relative merits and demerits of different methods of identifying

the joinpoints are discussed elsewhere (National Institute Cancer, 2013). The

permutation test method is regarded as the best method but it is computation-

ally very intensive. It controls the error probability of selecting the wrong

model at a certain level (i.e., 0.05). The BIC method, on the other hand, is less

complex computationally.

TABLE 7 ANOVA test for mean of rtduring various lockdown period.

Source of

variations

Sum of

squares

df Mean

square

F p value

Between groups 0.166 04 0.041 37.24 0.000

Within groups 0.083 75 0.001

Total 0.249 79
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TABLE 8 Group wise comparison of means of rtduring various lockdown periods.

(I) group (J) group Mean difference (I2 J) Std. error p value 95% Confidence interval

Lower bound Upper bound

No 1 0.027 0.012 0.306 �0.009 0.063

2 0.097 0.013 0.000 0.061 0.134

3 0.112 0.013 0.000 0.073 0.151

4 0.118 0.013 0.000 0.079 0.157

1 2 0.070 0.010 0.000 0.040 0.100

3 0.085 0.011 0.000 0.052 0.118

4 0.091 0.011 0.000 0.058 0.124

2 3 0.015 0.012 1.000 �0.019 0.049

4 0.021 0.012 0.790 �0.013 0.055

3 4 0.006 0.013 1.000 �0.030 0.043



In the present case, data on the reported confirmed cases of COVID-19 are

available on a daily, thus the daily percent change (DPC) from day t to day

(t+1) is defined as

DPC ¼ yt+1 � yt
yt

� �
� 100 (14)

If the trend in the daily reported confirmed cases of COVID-19 is modeled as

ln ytð Þ ¼ b0 + b1t + ε (15)

then, it can be shown that the DPC is equal to

DPC ¼ eb1 � 1
� 	� 100 (16)

It is worthwhile to discuss here is that the positive value of DPC indicates

an increasing trend while the negative value of DPC suggests a declining

trend. The DPC reflects the trend in the reported COVID-19 positive cases

in different time segments of the reference period observed through joinpoint

regression techniques. For the entire study period, it is possible to estimate

average daily percent change (ADPC) that is the weighted average of DPC
of different time segments of the study period with weights equal to the length

of different time segments. However, when the trend changes frequently,

ADPC has little meaning. It assumes that the random errors are heteroscedas-

tic (have nonconstant variance). Heteroscedasticity is handled by joinpoint

regression using weighted least squares (WLS). The weights in WLS are the

reciprocal of the variance and can be specified in several ways. Thus standard

error is used to control heteroscedastic in the analysis during the entire period.

To observe the trend of reported cases, the moving average method has

been used in this study. The daily percent change (DPC) in the daily reported

confirmed cases of COVID-19 during the period March 14th, 2020 through

July 16th, 2020 is used for forecasting the daily reported confirmed cases of

COVID-19 in the immediate future under the assumption that the trend in the

daily reported confirmed cases of COVID-19 remains unchanged. The number

of cases increased by the rate of 6.20% per day in India; however, the rate is

different in the different segment. Also Table 9 reveals that the growth rate

is positive and significant (about 19%) from 16th March to 3rd April and after

that the growth rate is decreasing in comparison of first segment, i.e., for

28 days (from 3rd April to 30th April). The possible reason may be lockdown

imposed in India. In the third segment, i.e., from 30th April to 4th May a high

increase has been observed but it is insignificant. From 4th April to 13th May

the rate is although the positive but dramatically lower than the previous seg-

ments growth rate. In the next segment, i.e., 5th segment which is of 8 days,

we observe a significant increase of 6.55% in COVID-19 cases. In the last

and 6th segment from 20th May to 14th July, i.e., for 56 days, the growth rate

is found again positive and significant (3.03% per day) in the COVID-19 cases.
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TABLE 9 Results of the joinpoint regression analysis, India with sd.

Segment

Lower

endpoint

Upper

endpoint

Number

of daysa
Average daily percent

change (ADPC)b

95% Confidence

interval Test

statistic (t) P> | t |Lower Upper

1 16 March 3 April 19 19.19c 17.20 21.20 20.74 0.00

2 3 April 30 April 28 5.27c 4.99 5.56 37.68 0.00

3 30 April 4 May 5 11.34 �2.48 27.12 1.61 0.11

4 4 May 13 May 10 1.78c 0.44 3.13 2.64 0.01

5 13 May 20 May 8 6.55c 3.63 9.54 4.54 0.00

6 20 May 14 July 56 3.03c 2.98 3.08 117.45 0.00

All 16 March 14 July 121 6.20c 5.63 6.78 21.82 0.00

aNumber of days in a segment include both lower endpoint and upper endpoint.
bAverage daily percent change.
cStatistically significant.



Fig. 5 shows that the trend increases in India still sharply and there is no hope

of decline in COVID-19 cases. Fig. 2 shows the forecasted value of COVID-19

daily cases in India. The COVID-19 cases will increase further if the same trend

prevailing.

Table 10 presents the forecast of the predicted cases of COVID-19 in India

along with 95% confidence intervals. This exercise suggests that by August

15th, 2020, the confirmed cases of COVID-19 in India is likely to be

2,587,007 with a 95% confidence interval of 2,571,896–2,602,282 and daily

reported cases will be 78,729 with 95% confidence interval of 77,516–79,961.
This daily reported COVID-19 positive cases may change only when an appro-

priate set of new interventions are introduced to fight COVID-19 pandemic. It is

observed that analysis indicates that in the month of August, India faces more

than 50 thousand cases per day (Fig. 6).

4 Conclusions

India is in the comfortable zone with a lower growth rate than other countries.

Logistic model shows that, the epidemic is likely to stabilize with 45 lakh

cases by the end of March 2021 and peak will come in middle of the August,

however, propagation model provide estimate of maximum COVID-19 case

as 45 lakh but the timing is different (by end October) than the logistic model.

0
15

* Indicates that the Annual Percent Change (APC) is significantly different from zero at the alpha = 0.05 level.
 Final Selected Model: 5 Joinpoints.
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FIG. 5 Trend in daily reported confirmed cases of COVID-19 in India using joinpoint regression

analysis with BIC criterion.
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TABLE 10 Forecast of daily predicted confirmed cases of COVID-19 till August 15, 2020, India.

Date Predicted 95% Confidence limit Date Predicted 95% Confidence limit

Lower Upper Lower Upper

15-Jul-2020 31,208 31,193 31,223 31-Jul-2020 50,313 49,900 50,730

16-Jul-2020 32,153 32,122 32,184 01-Aug-2020 51,837 51,387 52,292

17-Jul-2020 33,127 33,079 33,176 02-Aug-2020 53,408 52,918 53,903

18-Jul-2020 34,131 34,065 34,198 03-Aug-2020 55,026 54,495 55,563

19-Jul-2020 35,165 35,080 35,251 04-Aug-2020 56,694 56,119 57,274

20-Jul-2020 36,231 36,126 36,337 05-Aug-2020 58,412 57,791 59,038

21-Jul-2020 37,329 37,202 37,456 06-Aug-2020 60,181 59,513 60,857

22-Jul-2020 38,460 38,311 38,609 07-Aug-2020 62,005 61,287 62,731

23-Jul-2020 39,625 39,452 39,799 08-Aug-2020 63,884 63,113 64,663

24-Jul-2020 40,826 40,628 41,024 09-Aug-2020 65,819 64,994 66,655

25-Jul-2020 42,063 41,839 42,288 10-Aug-2020 67,814 66,931 68,708

26-Jul-2020 43,337 43,086 43,590 11-Aug-2020 69,868 68,925 70,824

27-Jul-2020 44,650 44,370 44,933 12-Aug-2020 71,985 70,979 73,005

28-Jul-2020 46,003 45,692 46,317 13-Aug-2020 74,167 73,094 75,254

29-Jul-2020 47,397 47,053 47,743 14-Aug-2020 76,414 75,273 77,572

30-Jul-2020 48,833 48,456 49,214 15-Aug-2020 78,729 77,516 79,961



Logistic model need to monitor the data time to time for good long term pre-

diction. The projections produced by the model and after their validation can

be used to determine the scope and scale of measures that government need to

initiate. Joinpoint regression is based on the daily reported confirmed cases of

COVID-19, asserts that there has virtually been little impact of the nationwide

lockdown as well as relaxations in restrictions on the progress of the COVID-

19 pandemic in India. The joinpoint regression analysis provides better esti-

mate up to 15th August for the confirmed COVID-19 cases than the other

two methods. To know the better understanding of the progress of the epidemic

in the country may be obtained by analyzing the progress of the epidemic at the

regional level. In conclusion, if the current mathematical model results can be

validated within the range provided here, then the social distancing and other

prevention, treatment policies that the central and various state governments

and people are currently implementing should continue until new cases are

not seen. The spread from urban to rural and rich to poor populations should

be monitor and control is an important point of consideration. Mathematical

models have certain limitations that there are many assumptions about homoge-

neity of population in terms of urban/rural or rich/poor that does not capture

variations in population density. If several protective measures will not be taken

effectively, then this rate may be changed. However, the government of India

under the leadership of Modi Ji has already taken various protective measures

such as lockdown in several areas, make possible quarantine facility to reduce

the rate of increase of COVID-19, thus we may hopefully conclude that, coun-

try will be successful to reduce the rate of this pandemic.
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