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Abstract: In recent years, flexible perovskite solar cells have drawn tremendous attention in the
field of wearable devices, and optimization of perovskite composition plays an important role in
improving film quality and photophysical properties. At present, some researchers have only studied
A-site organic cations mixing or X-site halide anions mixing in the ABX3 structure of perovskite,
but there are few reports on co-mixing of A-site and X-site ions in flexible perovskite solar cells.
In this paper, we mainly try to study the effects of different concentrations of mixed formamidine
methylamine halide (FAxMA1-xBrxClyI1-x-y) precursor solutions on the quality and photophysical
properties of perovskite films under low temperature process. We conclude that the film quality and
photophysical properties reached the best results when the optimized precursor solution concentration
was 60:6:6. The investigation on composition optimization in this experiment laid the foundation for
the improvement of the performance of flexible perovskite solar cells. We also use the results of this
experiment to prepare flexible perovskite solar cells based on carbon electrodes, which are expected
to be applied in other flexible optoelectronic or electro-optical devices.

Keywords: perovskite composition; film quality; photophysical properties; flexible perovskite
solar cells

1. Introduction

Flexible perovskite solar cells are expected to be integrated into wearable mobile devices to
form self-powered devices due to their light weight, flexibility, and low cost, which has aroused
increasing interest in the field of organic–inorganic hybrid perovskite solar cells [1–5]. Recently,
the power conversion efficiency (PCE) of flexible perovskite solar cells has rocketed from the initial 6%
to 18.4% [6,7].

There are many factors that affect the quality and photophysical properties of perovskite films.
For example, the different composition of the perovskite functional layer will change the quality
and photophysical properties of the perovskite film. The concentration of the precursor solution
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has a greater effect on the morphology of the perovskite layer, which affects the efficiency of the
device [8–10]. In 2017, Wang et al. prepared flexible perovskite solar cells by mixing CH3NH3

+ (MA+)
and HN=CHNH3

+ (FA+), extending the absorption edge of perovskite to longer wavelength, enhancing
photocurrent of the flexible perovskite solar cells, and significantly improving the performance of
the device [11]. In 2018, Du et al. prepared flexible perovskite solar cell with a PCE of 13.27% by
mixing I- and Cl- in perovskite, and adding suitable H2O additive to the perovskite precursor solution,
improving film quality [12].

However, when FA+ and MA+ are mixed in the perovskite, grains become much smaller, leading
to relatively high grain boundary density, which may cause charge recombination [11]. Therefore, in
our study, PC61BM was used to passivate the grain boundaries of perovskite film, increase the grain
size, and improve device performance [11,13].

FA+ has the advantages of changing the lattice parameters of perovskite and reducing the
perovskite band gap, and the thermal stability of solar cells can also be improved when FA+ and
MA+ are mixed [11,14]; Cl- and Br− improve the crystallinity and coverage of the films [15]. In recent
years, for flexible perovskite solar cells, there have been a few reports on the mixing of organic
cations or halide anions in perovskite layers [11,12], but there have been few reports on the co-mixing
of organic cations and halide anions. Therefore, based on the above advantages, different from
previous studies, this experiment was oriented to flexible perovskite solar cells. We prepared mixed
HC(NH2)2)x(CH3NH3)1-xPbBrxClyI3-x-y/FAxMA1-xPbBrxClyI3-x-y perovskite by using FA+ and MA+ to
achieve the A-site mixing in the typical ABX3 structure of perovskite and by using I−, Cl−, and Br− to
achieve X-site mixing. By changing the concentration of the mixed formamidine methylamine halide
(FAxMA1-xBrxClyI1-x-y) precursor solution, we prepared perovskite solar cells under low temperature
process and characterized the perovskite film and device performance. We have also obtained
an optimal ratio of precursor solution, which also has laid the foundation for the flexible perovskite
solar cell preparation and optimization process; we then used the results of this experimental study to
prepare flexible perovskite solar cells based on carbon film counter electrodes.

In this experiment, we prepared perovskite layers by adjusting the concentrations of mixed
formamidine methylamine halide (FAxMA1-xBrxClyI1-x-y) precursor solution, and then prepared the
perovskite solar cell. Through the characterization of the perovskite film and device performance, we
found that when the concentration was 60:6:6, the film quality, photophysical properties, and device
performance reached the best result.

2. Results and Discussion

In this paper, we mainly investigated the effects of different concentrations of mixed formamidine
methylamine halide (FAxMA1-xBrxClyI1-x-y) precursor solution on perovskite film quality and
photophysical properties under a low temperature process. SEM images of perovskite layers prepared
with different concentrations of FAxMA1-xBrxClyI1-x-y precursor solutions are shown in Figure 1.
Figure 1 are SEM images of perovskite layers prepared at concentrations of precursor solutions of
40:4:4, 50:5:5, 60:6:6, and 70:7:7, respectively, at a magnification of 20,000 times.

It can be seen from Figure 1a that when the concentration of FAxMA1-xBrxClyI1-x-y precursor
solution was 40:4:4, the size of the perovskite grain was small, and the shape was irregular. As seen in
Figure 1b, when the concentration of the solution was 50:5:5, the grain size of perovskite increased,
and the grain boundary was clearer, but there were traces of scale growth on the surface of the grains.
When the concentration of the solution was increased to 60:6:6, compared with Figure 1a,b as shown in
Figure 1c, the diameter of the perovskite grains reached the maximum value, and the largest grain
diameter even exceeded 1 µm. The film surface was flat, the shape was regular15, the grain boundaries
were clear, and there were no obvious defects; thus, the film quality was better. As seen in Figure 1d,
when the concentration of the solution continued to increase to 70:7:7, obvious pinholes appeared on
the surface of the film, the grain boundary became blurred, and the film surface became rough, which
may have been caused by the abnormal growth of perovskite [16]. Based on the above analysis, we
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drew the conclusion that the quality of perovskite thin film first got better and then worse with the
increase of the concentration of mixed FAxMA1-xBrxClyI1-x-y precursor solution. The film quality was
best when the precursor solution concentration was 60:6:6.
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Figure 1. SEM images of perovskite layer prepared with formamidine methylamine halide precursors
solutions with concentrations of 40:4:4 (a), 50:5:5 (b), 60:6:6 (c), and 70:7:7 (d), respectively.

Figure 2 shows the normalized XRD patterns of perovskite layer prepared with
FAxMA1-xBrxClyI1-x-y precursor solution of different concentrations. The peak at 2θ at 12.5◦ was the
characteristic peak of PbI2. The diffraction peaks at 14.0◦ and 28.1◦ corresponded to the (111) and
(222) planes of the perovskite, and the diffraction peak at 31.6◦ was the (123) plane of the perovskite
crystals [17]. It was found that when the concentration of the precursor solution was 40:4:4, the ratio
of the PbI2 emission peak (12.5◦) to the perovskite emission peak (14.0◦) was greater than 2, which
indicated the ratio of the two precursor solutions mixed to form perovskite was very low. As the
solution concentration increased, the emission peak of PbI2 gradually decreased, which means that more
PbI2 was involved in the chemical reaction to form perovskite [9,11]. When the solution concentration
was 60:6:6, there was a slight PbI2 residue in the crystal, which would be beneficial to passivate
the grain boundary of perovskite film and improve carrier life [18,19]. The ratio of the intensity of
the 28.1◦ diffraction peak to the 31.6◦ diffraction peak at this concentration was higher than that at
a concentration of 70:7:7, indicating that the preferential orientation axis of the perovskite crystals
prepared at a concentration of 60:6:6 was along the (111) axis, and the film had a more pure crystal
phase [17], which is consistent with Figure 1c.
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Figure 2. Normalized XRD patterns of perovskite layers prepared with mixed formamidine
methylamine halide precursor solutions at different concentrations.

The UV–vis absorption spectrum of the perovskite layer prepared with FAxMA1-xBrxClyI1-x-y

precursor solution of different concentrations is shown in Figure 3, and the curve accorded with
the light absorption characteristics of conventional perovskite films. When the concentration of
FAxMA1-xBrxClyI1-x-y precursor solution was 40:4:4, the UV–vis absorption spectrum of the prepared
perovskite layer is shown in the red line in the figure. The absorbance of the prepared perovskite film at
this concentration was lower than that at the other three concentrations, which was ascribed to the poor
morphology of the film. With the increasing of concentration, the light absorption intensity increased
gradually. When the precursor solution concentration was 60:6:6 and 70:7:7, the prepared perovskite
films had high absorbance due to the good crystallinity of the perovskite films [20]. The perovskite
film with the concentration of 40:4:4 exhibited the rough absorption edge at 801 nm; the perovskite
film with the concentration of 50:5:5 exhibited the rough absorption edge at 805 nm; the perovskite
film with the concentration of 70:7:7 exhibited the rough absorption edge at 808 nm; the absorption
wavelength of the perovskite film prepared at the concentration of 60:6:6 was about 810 nm, which
indicated that the band gap of the perovskite prepared at this concentration was narrower, which was
more conducive to the generation of electron-holes after absorbing photons, improving the short-circuit
current density, and thus improving the PCE of the solar cell [9].
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Figure 4 shows the photoluminescence spectroscopy of perovskite layers prepared by
FAxMA1-xBrxClyI1-x-y precursor solution of different concentrations. It can be seen that when
the concentrations of mixed FAxMA1-xBrxClyI1-x-y precursor solution was 50:5:5 and 60:6:6,
the photoluminescence peak of the film was relatively low. This is because the two films had
better film morphology, fewer defects, and lower probability of radiation recombination [12], which is
also consistent with the results of the SEM diagram.
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Figure 4. Photoluminescence spectroscopy of perovskite layers prepared with different concentrations
of formamidine methylamine halide precursors solutions.

The device structure prepared on the indium tin oxide (ITO) conductive substrate
in this experiment is shown in Figure 5a; the structures are ITO/Low-temperature
(LT)-TiO2/PC61BM/FAxMA1-xPbBrxClyI3-x-y/Spiro/Carbon/Fluorine-doped tin oxide (FTO), respectively.
When sunlight enters from the conductive substrate, it passes through the electron transport layer to
the perovskite layer prepared by FAxMA1-xBrxClyI1-x-y precursor solution of different concentrations,
and then passes through the hole transport layer to the electrode made of carbon film. When the device
is connected to the external circuit, a current is generated.
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The J–V curves of perovskite solar cells prepared by FAxMA1-xBrxClyI1-x-y precursor solution of
different concentrations are shown in Figure 5b, and the performance parameters of corresponding
curves in Figure 5b are shown in Table 1. In the definition diagram, 4-for represents FAI:MABr:MACl
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= 40 mg:4 mg:4 mg and forward scanning of the device, and 4-rev represents the reverse scanning.
As the concentration of the mixed FAxMA1-xBrxClyI1-x-y in precursor solution continued to increase,
the PCE of the device increased first and then decreased. The best concentration was FAI:MABr:MACl
= 60 mg:6 mg:6 mg, which was consistent with the corresponding parameters of the J–V curves, giving
a Voc of 0.98 V, a Jsc of 20.87 mA/cm2, an FF of 47.68%, and a PCE of 9.79%. This may have resulted
from the proper mass ratio of the two precursor solutions and the complete solute reaction.

Table 1. Performance parameters of perovskite solar cells prepared with different concentrations of
formamidine methylamine halide precursor solution.

Samples PCE (%) a Voc (V) b Jsc (mA/cm2) c FF (%) d

4-for 3.87 0.79 15.18 32.08

4-rev 4.28 0.84 16.66 30.56

5-for 5.70 0.81 18.43 38.10

5-rev 6.02 0.86 17.96 38.96

6-for 7.28 0.92 20.78 38.19

6-rev 9.79 0.98 20.87 47.68

7-for 6.64 0.91 20.39 35.57

7-rev 7.12 0.96 19.94 37.28
a Power conversion efficiency; b Open-circuit voltage; c Short-circuit photocurrent density; d Fill factor.

According to the results of the experiments discussed above, we prepared flexible perovskite solar
cells on flexible ITO/polyethylene naphthalate (PEN) substrate by using the mixed FAxMA1-xBrxClyI1-x-y

precursor solution with a concentration of 60:6:6, and realized a reverse scanning PCE of 3.24%. Figure 6
shows the J–V curve of the flexible perovskite solar cell, Table 2 shows the performance parameters of
the corresponding curve in Figure 6, and Figure 7 shows the photo of the flexible solar cell. In the
experiment, the carbon film counter electrode was used as the solar cell photocathode and was
prepared by candle flame fumigation. Due to the instability of the candle flame and the uncertainty of
the fumigation time, the performance of the solar cell was greatly affected. In addition, the overall
optimization of the device and the interface modification of each layer were not been completed. Later,
more efforts will be made to explore better processes to improve the efficiency of flexible perovskite
solar cells.Molecules 2020, 25, x 7 of 10 
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Table 2. Performance parameters of flexible perovskite solar cell.

Samples PCE (%) a Voc (V) b Jsc (mA/cm2) c FF (%) d

1-for 2.60 0.76 9.92 34.52

1-rev 3.24 0.81 9.04 44.23
a Power conversion efficiency; b Open-circuit voltage; c Short-circuit photocurrent density; d Fill factor.
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3. Materials and Experimental Methods

3.1. Materials

FTO substrate (thickness of 2.2 mm, surface resistance of 15 Ω/sq, transmittance of more than
85%) and ITO rigid substrate (thickness of 1.1 mm, surface resistance of 7 Ω/sq, about 85% light
transmittance) were purchased from Shanghai Mater Win New Materials Co., Ltd. (Shanghai, China).
Flexible ITO/PEN substrate (area resistance of about 15 Ω/sq) was purchased from Aoge Technology Co.,
Ltd. Low temperature nanocrystalline TiO2 spin coating solution(LT-TiO2), chlorobenzene (C6H5Cl)
(purity ≥ 99%), dimethyl sulfoxide (DMSO) (purity ≥ 99.8%), and N,N-dimethylformamide (DMF)
(purity ≥ 99.8%) were also purchased from Shanghai Mater Win New Materials Co., Ltd. (Shanghai,
China). Formamidine iodine (HC(NH2)2I) (purity ≥ 99%), methylamine bromide (CH3NH3Br) (purity
≥ 99%), methylamine chloride (CH3NH3Cl) (purity ≥ 99%), lead iodide (PbI2) (purity ≥ 99.99%),
[6,6]-phenyl C61 methyl butyrate (PC61BM) (purity ≥ 99%), and Spiro-OMeTAD were also purchased
from Xi’an Polymer Light Technology Corp. (Xi’an, China).

3.2. Device Fabrication

The cleanliness of FTO/ITO/flexible ITO/PEN transparent conductive substrate has a very important
impact on the performance of perovskite solar cells, so it must be cleaned. First, after cutting the
conductive substrate and putting it into a clean petri dish, we added an appropriate amount of
deionized water and detergent and placed it in an ultrasonic vibration washing machine for ultrasonic
cleaning for 20 min. Next, we added an appropriate amount of absolute ethanol to the petri dish and
ultrasonically cleaned it for 20 min. Then, an appropriate amount of a mixed solution of isopropanol,
acetone, and deionized water was added to the petri dish, the volume ratio of which was 1:1:1, and it
was ultrasonically washed for 20 min. Finally, the cleaned conductive substrate was dried at a constant
temperature in a drying box for 90 min, and then placed in a UV light washer for 15 min [21].

The low temperature dense TiO2 layer was prepared by spin-coating low temperature
nanocrystalline TiO2 spin coating solution on an ITO conductive substrate under a low temperature
process. Only one layer was spin-coated at a spin-coating speed of 2000 rpm and a time of 30 s. First,
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spin-coated ITO conductive substrate was left at room temperature for 1 h, then placed on a hot plate
at room temperature to heat the hot plate program to 150 ◦C with a heating rate of 8 ◦C/min, and finally
at 150 ◦C for 20 min. The PC61BM electron transport layer was prepared by dissolving PC61BM in
chlorobenzene and configuring it into PC61BM solution with a concentration of 20 mg/mL, and then
spin-coating the solution on a low temperature dense TiO2 layer at a spin-coating speed of 1500 rpm
and a time of 30 s.

The perovskite layer was prepared by dissolving PbI2 in a mixed solution of
N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) (the volume ratio of DMF to DMSO
was 0.95:0.05) to form 600 mg/mL of precursor solution. Then the mass ratios of FAI, MABr, and MACl
of 40 mg:4 mg:4 mg; 50 mg:5 mg:5 mg; 60 mg:6 mg:6 mg; and 70 mg:7 mg:7 mg, respectively, were
dissolved in 1 mL of anhydrous isopropanol to prepare mixed solutions of different concentrations.
Then, the mass ratios of FAI, MABr, and MACl, which were 40 mg:4 mg:4 mg; 50 mg:5 mg:5 mg;
60 mg:6 mg:6 mg; and 70 mg:7 mg:7 mg, respectively, were dissolved in 1 mL of anhydrous isopropanol
to form 4 different concentrations of formamidine methylamine halide (FAxMA1-xBrxClyI1-x-y) precursor
solutions. Next, the PbI2 precursor solution was directly spin-coated on the electron-transporting
layer of PC61BM; the spin-coating speed was 1500 rpm, and the spin-coating time was 30 s. After
the rotation was stopped, the mixed methylformamide methylamine halide (FAxMA1-xBrxClyI1-x-y)
precursor solution with different concentrations was evenly drip-coated on the unheated PbI2 film
using a pipette and then spin-coated immediately with a spin-coating speed of 1500 rpm; the spin
coating time was 30 s. Finally, the spin-coated substrate was immediately placed on a glue dryer and
heated at 150 ◦C for 20 min. In this way, perovskite film was made.

The hole-transporting layer was spin-coated on a perovskite film with Spiro-OMeTAD solution at
a speed of 3000 rpm for 30 s [22]. Finally, the conductive surface of the cleaned FTO conductive glass
substrate was cleaned with a candle flame to make a carbon film counter electrode. The carbon film
was aligned on the top of the device, and the two sides were clamped with clips to complete the device
preparation [23].

3.3. Characterization

A field emission scanning electron microscope (SEM) (SIGMA, Zeiss, Jena, Germany) was used
to characterize the perovskite film. An XRD spectrum was obtained using an X-ray diffractometer
(D8 Focus, Bruker, Dresden, Germany) from a perovskite film deposited on ITO/LT-TiO2/PC61BM.
The absorption spectra of perovskite films were obtained by an ultraviolet (UV) visible absorption
spectrometer (Avantes, Apeldoorn, the Netherlands), and the photoemission spectra (PL spectra) of
perovskite films were measured by a fluorescence spectrometer (HORIBA Jobin Yvon, Paris, France).
Finally, a solar simulator (Sol 3A, Oriel, New port, RI, USA) was used to measure the current–voltage
(J–V) characteristic curve of the solar cell under standard AM 1.5 G light.

4. Conclusions

In summary, our work shows that the optimization of the perovskite composition can improve the
film quality and photophysical properties. The SEM image shows that when the solution concentration
is 60:6:6, the quality of the perovskite film reaches the best result. From the UV–vis absorption
spectrum, it can be seen that when the solution concentration is 60:6:6, the absorbance of the film
is better, and the absorption edge also reaches 810 nm, which is more conducive to improving the
short-circuit current density. It can be seen from the PL spectrum that with the solution concentration
increasing, the photoluminescence peak decreases first and then increases. When the solution
concentration is 50:5:5 and 60:6:6, the photoluminescence peaks of the film are very low, which is more
conducive for the carrier to be injected from the perovskite layer into the TiO2 layer. Finally, according
to the J–V curve, it can be seen that when the solution concentration is 60:6:6, the device efficiency
reaches the highest level.
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The study of perovskite composition optimization in this experiment paves the way for the
exploration of co-mixing processes in flexible perovskite solar cells, which is also expected to be used
in other flexible photosensitive devices or light emitting diodes. The flexible perovskite solar cell based
on a carbon electrode as a photocathode is also shown, and flexible perovskite solar cells based on
a gold electrode as a photocathode are under investigation.
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